Skip to main content
Log in

Destruction of the lower crust beneath the North China Craton recorded by granulite and pyroxenite xenoliths

  • Review
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

The lower crust beneath the North China Craton (NCC) was transformed during the craton destruction in the Mesozoic, however, the transformation processes are yet to be fully understood. Compositional and geochronological variations of granulite and pyroxenite xenoliths provided insights into the nature of the lower crust before and after the craton destruction. In this study, we summarized the latest results of geochemistry and zircon geochronology coupled with Hf-O isotopes from granulite and pyroxenite xenoliths hosted by Phanerozoic igneous rocks in NCC. Comparing previous studies on the granulite terranes and adakitic rocks of NCC, we aim to discuss the destruction processes of lower crust beneath the NCC. The granulite and pyroxenite xenoliths of NCC were divided into two and three groups, respectively, based on the differences of geochemical features. Group I granulite xenoliths from the NCC have silicic-basic compositions, with metamorphic ferrosilite. The Group I granulite xenoliths show relatively lower Mg# values of pyroxenes and whole-rock than that of the Group II granulite xenoliths, and enrichments of light rare earth elements and Sr-Nd isotopic compositions. Their zircons display Archean-Phanerozoic ages with three peaks of Neoarchean, Paleoproterozoic, and Mesozoic. Generally, Group I granulite xenoliths show close affinities to the granulite terranes of the NCC in terms of the major and trace elements and Sr-Nd isotopic compositions, with a consistent Archean-Proterozoic evolutionary history. However, Group I granulite xenoliths have abundant Phanerozoic zircons with variable Hf isotopic compositions from depleted to enriched, which could be formed by modifications of magma underplating. Therefore, Group I granulite xenoliths represent the modified ancient lower crust beneath the NCC. The Group II granulite and Group III pyroxenite xenoliths from the NCC have similar geochemical features and are basic in compositions, with metamorphic to magmatic orthopyroxenes. The Group II granulite and Group III pyroxenite xenoliths usually show higher MgO and lower incompatible elements compositions in minerals and bulk rocks than that in the granulite terranes and Group I granulite xenoliths, but their Sr-Nd isotopic compositions fall into the fields of granulite terranes and group I granulite xenoliths. Zircons from the Group II granulite and Group III pyroxenite xenoliths are predominantly Phanerozoic with subordinate Archean-Proterozoic ages, and the Hf-O isotopic compositions of zircons are similar to those in the Group I granulite xenoliths. Additionally, the trace element compositions of Group II granulite and Group III pyroxenite xenoliths are complementary to those of the adakitic rocks from the NCC. Furthermore, the similar Sr-Nd and zircon Hf isotopic compositions among Group II granulite and Group III pyroxenite xenoliths and adakitic rocks indicate that they are cognate. Therefore, we suggest that the Group II granulite and Group III pyroxenite xenoliths could be restites left after partial melting of the ancient basic lower crust that produced voluminous adakitic rocks. In contrast, Group I and II pyroxenite xenoliths from the NCC have cumulate and reaction origins, respectively. The Group I and II pyroxenite xenoliths commonly have magmatic enstatite and show higher Mg# values and depleted Sr-Nd isotopic compositions of minerals and bulk rocks relative to that in the granulite and Group III pyroxenite xenoliths. Formation of voluminous Group I pyroxenite cumulates in the crust-mantle transition zones implies extensive magma underplating beneath the NCC during the Mesozoic-Cenozoic, which also provided exotic materials and heat for the reworking of the ancient lower crust. Therefore, the destruction of the lower crust beneath the NCC could result from continuous modifications and remelting of the ancient lower crust triggered by magma underplating. These processes led to not only the transformations of some ancient basic lower crust into granulite and pyroxenite restites but also the compositional modifications of the ancient lower crust. Consequently, the lower crust beneath the NCC showed downward rejuvenation, similar to the lithospheric mantle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bhattacharyya C. 1971. An evaluation of the chemical distinctions between igneous and metamorphic orthopyroxenes. Amer Mineral, 56: 499–506

    Google Scholar 

  • Chen B, Jahn B M, Suzuki K. 2012. Petrological and Nd-Sr-Os isotopic constraints on the origin of high-Mg adakitic rocks from the North China Craton: Tectonic implications. Geology, 41: 91–94

    Article  Google Scholar 

  • Chen S H, O’Reilly S Y, Zhou X H, Griffin W L, Zhang G H, Sun M, Feng J L, Zhang M. 2001. Thermal and petrological structure of the lithosphere beneath Hannuoba, Sino-Korean Craton, China: Evidence from xenoliths. Lithos, 56: 267–301

    Article  Google Scholar 

  • Cui W Y, Wang C Q. 1992. Evolution of metamorphism of Archean Jianping metamorphic complex from the Western Liaoning Province. Acta Sci Natural, 28: 745–759

    Google Scholar 

  • Cui W Y, Wang C Q, Wang S Q. 1991. Geochemistry and metamorphism P-T-t path of the Archean Jianping metamorphic complex in Western Liaoning province (in Chinese with English abstract). Acta Petrol Sin, 4: 13–27

    Google Scholar 

  • Dai H K, Zheng J P, Griffin W L, O’Reilly S Y, Xiong Q, Ping X Q, Chen F K, Lu J G. 2021. Pyroxenite xenoliths record complex melt impregnation in the deep lithosphere of the Northwestern North China Craton. J Petrol, 62: egaa079

    Article  Google Scholar 

  • Deng J F, Su S G, Liu C, Zhao G C, Zhao X G, Zhou S, Wu Z X. 2006. Discussion on the lithospheric thinning of the North China Craton: Delamination? or therm erosion and chemical metamosatism?. (in Chines with English abstract) Earth Sci Front, 13: 105–119

    Google Scholar 

  • Deng W M, Zhong D L. 1997. Crust-mantle transition and its geological meaning in the lithsopheric evolution (in Chinese). Chin Sci Bull, 42: 2474–2482

    Google Scholar 

  • Du X X, Fan Q C. 2011. Discussion on genesis of pyroxenite and granulite xenoliths from Hannuoba (in Chinese with English abstract). Acta Petrol Sin, 27: 2927–2936

    Google Scholar 

  • Fan Q C, Liu R X. 1996. High-temperature granulite xenoliths in Hannuoba basalt (in Chinese). Chin Sci Bull, 41: 235–238

    Google Scholar 

  • Fan W M, Zhang H F, Baker J, Jarvis K E, Mason P R D, Menzies M A. 2000. On and off the North China Craton: Where is the Archaean keel? J Petrol, 41: 933–950

    Article  Google Scholar 

  • Gao S, Rudnick R L, Yuan H L, Liu X M, Liu Y S, Xu W L, Ling W L, Ayers J, Wang X C, Wang Q H. 2004. Recycling lower continental crust in the North China Craton. Nature, 432: 892–897

    Article  Google Scholar 

  • Griffin W, Zhang A, O’Reilly S, Ryan C. 1998. Phanerozoic evolution of the lithosphere beneath the Sino-Korean Craton. Mantle Dynamics and Plate Interactions in East Asia 27: 107–126

    Article  Google Scholar 

  • Guo J H, Sun M, Chen F K, Zhai M G. 2005. Sm-Nd and SHRIMP U-Pb zircon geochronology of high-pressure granulites in the Sanggan area, North China Craton: Timing of Paleoproterozoic continental collision. J Asian Earth Sci, 24: 629–642

    Article  Google Scholar 

  • Guo J H, Zhai M G. 2000. Sm-Nd age dating of high-pressure granulites and amphibolite from Sanggan area, North China Craton. Chin Sci Bull, 46: 106–111

    Article  Google Scholar 

  • Guo J H, Zhai M G, Li Y, Yan Y. 1998. Contrasting metamorphic P-T paths of Archean high-pressure granulites from the North China Craton: Metamorphism and tectonic significance (in Chinese with English abstract). Acta Petrol Sin, 14: 430–448

    Google Scholar 

  • Guo J H, Zhai M G, Xu R H. 2001. Timing of the granulite facies metamorphism in the Sanggan area, North China Craton: Zircon U-Pb geochronology. Sci China Ser D-Earth Sci, 44: 1010–1018

    Article  Google Scholar 

  • He Y K, Wu T R, Jing X, Luo H L, Zhao L. 2009. Early Cretaceous underplating of the northern margin of North China Craton: Evidence from the granulite xenoliths (in Chinese with English Abstract). Acta Petrol Sin, 25: 1201–1215

    Google Scholar 

  • Hu J, Jiang N, Guo J H, Fan W B, Liu D Q. 2020. The role of basaltic underplating in the evolution of the lower continental crust. Geochim Cosmochim Acta, 275: 19–35

    Article  Google Scholar 

  • Hu Y, Teng F Z, Zhang H F, Xiao Y, Su B X. 2016. Metasomatism-induced mantle magnesium isotopic heterogeneity: Evidence from pyroxenites. Geochim Cosmochim Acta, 185: 88–111

    Article  Google Scholar 

  • Huang F, He Y S. 2010. Partial melting of the dry mafic continental crust: Implications for petrogenesis of C-type adakites (in Chinese). Chin Sci Bull, 55: 1255–1267

    Article  Google Scholar 

  • Huang X L, Xu Y G, Chu X L, Zhang H X, Liu C Q. 2001. Geochemical comparative studies of some granulite terrains and granulite xenoliths from North China Craton (in Chinese with English abstract). Acta Petrol Mineral, 20: 318–328

    Google Scholar 

  • Huang X L, Xu Y G, Liu D Y. 2004. Geochronology, petrology and geochemistry of the granulite xenoliths from Nushan, east China: Implication for a heterogeneous lower crust beneath the Sino-Korean Craton. Geochim Cosmochim Acta, 68: 127–149

    Article  Google Scholar 

  • Jiang N, Carlson R, Guo J H. 2011. Source of Mesozoic intermediate-felsic igneous rocks in the North China Craton: Granulite xenolith evidence. Lithos, 125: 335–346

    Article  Google Scholar 

  • Jiang N, Guo J H. 2010. Hannuoba intermediate-mafic granulite xenoliths revisited: Assessment of a Mesozoic underplating model. Earth Planet Sci Lett, 293: 277–288

    Article  Google Scholar 

  • Jiang N, Guo J H, Zhai M G, Zhang S Q. 2010. ∼2.7 Ga crust growth in the North China Craton. Precambrian Res, 179: 37–49

    Article  Google Scholar 

  • Jiang N, Liu Y S, Zhou W G, Yang J H, Zhang S Q. 2007. Derivation of Mesozoic adakitic magmas from ancient lower crust in the North China Craton. Geochim Cosmochim Acta, 71: 2591–2608

    Article  Google Scholar 

  • Jiang N, Zhang S Q, Wen G Z, Liu Y S. 2009. Origin of a Mesozoic granite with A-type characteristics from the North China Craton: Highly fractionated from I-type magmas?. Contrib Mineral Petrol, 158: 113–130

    Article  Google Scholar 

  • Jin S Q, Li D C. 1986. Pyroxene from granulite-facies metamorphic rocks, North China (in Chinese). Bull Changchun Geol, 16: 29–36

    Google Scholar 

  • Li C D, Zhang Q, Miao L C, Meng X F. 2004. Mesozoic high-Sr, low-Yand low-Sr, low-Y types granitoids in the northern Hebei province: Geochemistry and petrogenesis and its relation to mineralization of gold deposits (in Chinese with English abstract). Acta Petrol Sin, 20: 269–284

    Google Scholar 

  • Li S G, Wang Y. 2018. Formation time of the big mantle wedge beneath eastern China and a new lithospheric thinning mechanism of the North China Craton—Geodynamic effects of deep recycled carbon. Sci China Earth Sci, 61: 853–868

    Article  Google Scholar 

  • Li S G, Xiao Y L, Liou D, Chen Y Z, Ge N J, Zhang Z Q, Sun S S, Cong B L, Zhang R Y, Hart S R, Wang S S. 1993. Collision of the North China and Yangtse Blocks and formation of coesite-bearing eclogites: Timing and processes. Chem Geol, 109: 89–111

    Article  Google Scholar 

  • Li W P, Li X H, Lu F X. 2005. Genesis and geological significance for the middle Jurassic high Sr and low Y type volcanic rocks in Fuxin area of west Liaoning, northeastern China (in Chinese with English abstract). Acta Petrol Sin, 17: 523–532

    Google Scholar 

  • Liu F L. 1997. The metamorphic reaction and water activity of basic granulite in the Datong-Huaian Region (in Chinese with English abstract). Acta Petrol Sin, 13: 33–42

    Google Scholar 

  • Liu H T, Sun S H, Liu J M, Zhai M G. 2002. The Mesozoic high-Sr granitoids in the northern marginal region of North China Craton: Geochemistry and source region (in Chinese with English abstract). Acta Petrol Sin, 18: 18–29

    Google Scholar 

  • Liu S, Hu R Z, Gao S, Feng C X, Yu B B, Qi Y Q, Wang T, Feng G Y, Coulson I M. 2009. Zircon U-Pb age, geochemistry and Sr-Nd-Pb isotopic compositions of adakitic volcanic rocks from Jiaodong, Shandong Province, Eastern China: Constraints on petrogenesis and implications. J Asian Earth Sci, 35: 445–458

    Article  Google Scholar 

  • Liu Y C, Wang A D, Rolfo F, Groppo C, Gu X F, Song B. 2009. Geochronological and petrological constraints on Palaeoproterozoic granulite facies metamorphism in southeastern margin of the North China Craton. J Metamorph Geol, 27: 125–138

    Article  Google Scholar 

  • Liu Y D, Ying J F, Li J, Sun Y, Teng F Z. 2020. Diverse origins of pyroxenite xenoliths from Yangyuan, North China Craton: Implications for the modification of lithosphere by magma underplating and melt-rock interactions. Lithos, 372–373: 105680

    Article  Google Scholar 

  • Liu Y S, Gao S, Gao C G, Zong K Q, Hu Z C, Ling W L. 2010. Garnet-rich granulite xenoliths from the Hannuoba Basalts, North China: Petrogenesis and implications for the Mesozoic crust-mantle interaction. J Earth Sci, 21: 669–691

    Article  Google Scholar 

  • Liu Y S, Gao S, Jin S Y, Hu S H, Sun M, Zhao Z B, Feng J L. 2001. Geochemistry of lower crustal xenoliths from Neogene Hannuoba basalt, North China Craton: Implications for petrogenesis and lower crustal composition. Geochim Cosmochim Acta, 65: 2589–2604

    Article  Google Scholar 

  • Liu Y S, Gao S, Lee C T A, Hu S H, Liu X M, Yuan H L. 2005. Melt-peridotite interactions: Links between garnet pyroxenite and high-Mg# signature of continental crust. Earth Planet Sci Lett, 234: 39–57

    Article  Google Scholar 

  • Liu Y S, Gao S, Liu X M, Chen X M, Zhang W L, Wang X C. 2003. Lithospheric thermal dynamic reorded by lower crust-upper mantle xenolith from Hannuoba (in Chinese). Chin Sci Bull, 48: 1575–1581

    Google Scholar 

  • Liu Y S, Gao S, Yuan H L, Zhou L, Liu X M, Wang X C, Hu Z C, Wang L S. 2004a. U-Pb zircon ages and Nd, Sr, and Pb isotopes of lower crustal xenoliths from North China Craton: Insights on evolution of lower continental crust. Chem Geol, 211: 87–109

    Article  Google Scholar 

  • Liu Y S, Yuan H L, Gao S, Hu Z C, Wang X C, Liu X M, Ling W L. 2004b. Zircon U-Pb ages from Hannuoba olivine-pyroxenite xenolith: Relations between 97–158 Ma magma underplating and granulite meta-morphism (in Chinese). Chin Sci Bull, 49: 790–797

    Google Scholar 

  • Lu H S, Wei C J. 2020. Late Neoarchean or late Paleoproterozoic high-pressure granulite facies metamorphism from the East Hebei terrane, North China Craton? J Asian Earth Sci, 190: 104195

    Article  Google Scholar 

  • Ma Q. 2013. Triassic-Jurassic Volcanic Rocks in Western Liaoning: Implications for Lower Crustal Reworking and Lithospheric Destruction in the North Part of Eastern North China Craton (in Chinese). Doctoral Dissertation. Wuhan: Chinese University of Geoscience

    Google Scholar 

  • Ma Q, Xu Y G. 2021. Magmatic perspective on subduction of Paleo-Pacific plate and initiation of big mantle wedge in East Asia. Earth-Sci Rev, 213: 103473

    Article  Google Scholar 

  • Ma Q, Xu Y G, Huang X L, Zheng J P, Ping X, Xia X P. 2020. Eoarchean to Paleoproterozoic crustal evolution in the North China Craton: Evidence from U-Pb and Hf-O isotopes of zircons from deep-crustal xenoliths. Geochim Cosmochim Acta, 278: 94–109

    Article  Google Scholar 

  • Ma Q, Xu Y G, Zheng J P, Griffin W L, Hong L B, Ma L. 2016a. Coexisting Early Cretaceous high-Mg andesites and adakitic rocks in the North China Craton: The role of water in intraplate magmatism and cratonic destruction. J Petrol, 57: 1279–1308

    Article  Google Scholar 

  • Ma Q, Xu Y G, Zheng J P, Sun M, Griffin W L, Xia X, Pan S K. 2017. Phanerozoic magma underplating and crustal growth beneath the North China Craton. Terra Nova, 29: 211–217

    Article  Google Scholar 

  • Ma Q, Xu Y G, Zheng J P, Sun M, Griffin W L, Wei Y, Ma L, Yu X. 2016b. High-Mg adakitic rocks and their complementary cumulates formed by crystal fractionation of hydrous mafic magmas in a continental crustal magma chamber. Lithos, 260: 211–224

    Article  Google Scholar 

  • Ma Q, Zheng J P. 2009. In-situ U-Pb dating and Hf isotopic analyses of zircons in the volcanic rock of the Lanqi Formation in the Beipiao area, Western Liaoning Province (in Chinese with English abstract). Acta Geol Sin, 25: 3287–3297

    Google Scholar 

  • Ma Q, Zheng J P, Griffin W L, Zhang M, Ping X Q. 2012. Triassic “adakitic” rocks in an extensional setting (North China): Melts from the cratonic lower crust. Lithos, 149: 159–173

    Article  Google Scholar 

  • Ma Q, Zheng J P, Xu Y G, Griffin W L, Zhang R S. 2015. Are continental “adakites” derived from thickened or foundered lower crust? Earth Planet Sci Lett, 419: 125–133

    Article  Google Scholar 

  • Meng Q R. 2003. What drove late Mesozoic extension of the northern China—Mongolia tract? Tectonophysics, 369: 155–174

    Article  Google Scholar 

  • Menzies M A, Fan W, Zhang M. 1993. Palaeozoic and Cenozoic lithoprobes and the loss of >120 km of Archaean lithosphere, Sino-Korean craton, China. J Geol Soc, 76: 71–81

    Google Scholar 

  • Ping X Q, Zheng J P, Tang H Y, Xiong Q, Su Y P. 2015. Paleoproterozoic multistage evolution of the lower crust beneath the southern North China Craton. Precambrian Res, 269: 162–182

    Article  Google Scholar 

  • Ping X Q, Zheng J P, Xiong Q, Griffin W L, Yu C M, Su Y P. 2019. Downward rejuvenation of the continental lower crust beneath the southeastern North China Craton. Tectonophysics, 750: 213–228

    Article  Google Scholar 

  • Qian Q, Hermann J. 2013. Partial melting of lower crust at 10–15 kbar: Constraints on adakite and TTG formation. Contrib Mineral Petrol, 165: 1195–1224

    Article  Google Scholar 

  • Rietmeijer F J M. 1983. Chemical distinction between igneous and metamorphic orthopyroxenes especially those coexisting with Ca-rich clinopyroxenes: A re-evaluation. Mineral mag, 47: 143–151

    Article  Google Scholar 

  • Rudnick R L, Gao S. 2014. 4.1—composition of the continental crust. In: Holland H D, Turekian K K, eds. Treatise on Geochemistry. 2nd ed. Oxford: Elsevier. 1–51

    Google Scholar 

  • Shao J A, Han Q J. 2000. Early Mesozoic mantle-crust transitional zone in eastern Inner Mongolia: Evidence from measurements of compressional velocities of xenoliths at high pressure and high temperature. Sci China Ser D-Earth Sci, 43: 253–261

    Article  Google Scholar 

  • Shao J A, Wei C J. 2011. Petrology and tectonic significance of the early Mesozoic granulite xenoliths from the eastern Inner Mongolia, China. Sci China Earth Sci, 54: 1484–1491

    Article  Google Scholar 

  • Shao J A, Zhang Z, She H Q. 2012. The discovery of Phanerozoic granulite in Chifeng are of North Craton and its implication (in Chinese with English abstract). Earth Sci Front, 19: 188–198

    Google Scholar 

  • Springer W, Seck H A. 1997. Partial fusion of basic granulites at 5 to 15 kbar: Implications for the origin of TTG magmas. Contrib Mineral Petrol, 127: 30–45

    Article  Google Scholar 

  • Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geol Soc London Spec Publ, 42: 313–345

    Article  Google Scholar 

  • Tang Y J, Ying J F, Zhao Y P, Xu X R. 2021. Nature and secular evolution of the lithospheric mantle beneath the North China Craton. Sci China Earth Sci, 64: 1492–1503

    Article  Google Scholar 

  • Valley J, Lackey J, Cavosie A, Clechenko C, Spicuzza M, Basei M, Bindeman I, Ferreira V, Sial A, King E, Peck W, Sinha A, Wei C. 2005. 4.4 billion years of crustal maturation: Oxygen isotope ratios of magmatic zircon. Contrib Mineral Petrol, 150: 561–580

    Article  Google Scholar 

  • Vervoort J D, Jonathan Patchett P. 1996. Behavior of hafnium and neodymium isotopes in the crust: Constraints from Precambrian crustally derived granites. Geochim Cosmochim Acta, 60: 3717–3733

    Article  Google Scholar 

  • Wang C, Liu Y, Foley S F, Zong K, Hu Z. 2019. Lithospheric transformation of the northern North China Craton by changing subduction style of the Paleo-Asian oceanic plate: Constraints from peridotite and pyroxenite xenoliths in the Yangyuan basalts. Lithos, 328–329: 58–68

    Article  Google Scholar 

  • Wang K, Zhao L, Xu X B, Yang J F. 2018. Heterogeneous destruction of the North China Craton: Coupled constraints from seismology and geodynamic numerical modeling. Sci China Earth Sci, 61: 515–526

    Article  Google Scholar 

  • Wang T, Zheng Y D, Zhang J J, Wang X S, Zeng L S, Tong Y. 2007. Some problems in the study of Mesozoic extensional structure in the North China Craton and its significance for the study of lithospheric thinning (in Chinese with English abstract). Geol Bull Chin, 26: 1154–1166

    Google Scholar 

  • Wang X. 2020. Investigation on the Rheology and partial melting of garnet amphibolites of the lower crust of the Tibetan Plateau (in Chinese). Doctoral Dissertation. Wuhan: China University of Geosciences

    Google Scholar 

  • Wang Y, Sun L X, Zhou L Y, Xie Y T. 2018. Discussion on the relationship between the Yanshanian Movement and cratonic destruction in North China. Sci China Earth Sci, 61: 499–514

    Article  Google Scholar 

  • Wang Z Z, Liu S A, Ke S, Liu Y C, Li S G. 2016. Magnesium isotopic heterogeneity across the cratonic lithosphere in eastern China and its origins. Earth Planet Sci Lett, 451: 77–88

    Article  Google Scholar 

  • Wei C J. 2018. Neoarchean granulite facies metamorphisam and its tectonic implications from the East Hebei terrane (in Chinese with English abstract). Acta Petrol Sin, 34: 895–912

    Google Scholar 

  • Wei Y, Mukasa S B, Zheng J, Fahnestock M F, Bryce J G. 2019. Phanerozoic lower crustal growth from heterogeneous mantle beneath the North China Craton: Insights from the diverse Hannuoba pyroxenite xenoliths. Lithos, 324–325: 55–67

    Article  Google Scholar 

  • Wei Y, Zheng J P, Su Y P, Ma Q, Griffin W L. 2015. Lithological and age structure of the lower crust beneath the northern edge of the North China Craton: Xenolith evidence. Lithos, 216–217: 211–223

    Article  Google Scholar 

  • Wu F Y, Xu Y G, Zhu R X, Zhang G W. 2014. Thinning and destruction of the cratonic lithosphere: A global perspective. Sci China Earth Sci, 57: 2878–2890

    Article  Google Scholar 

  • Xia B, Thybo H, Artemieva I M. 2016. Seismic crustal structure of the North China Craton and surrounding area: Synthesis and analysis. J Geophys Res-Solid Earth, 122: 5181–5207

    Article  Google Scholar 

  • Xiong X L, Liu X C, Zhu Z M, Li Y, Xiao W S, Song M S, Zhang S, Wu J H. 2011. Adakitic rocks and destruction of the North China Craton: Evidence from experimental petrology and geochemistry. Sci China Earth Sci, 54: 858–870

    Article  Google Scholar 

  • Xu J F, Shinjo R, Defant M J, Wang Q, Rapp R P. 2002. Origin of Mesozoic adakitic intrusive rocks in the Ningzhen area of east China: Partial melting of delaminated lower continental crust? Geology, 30: 1111

    Article  Google Scholar 

  • Xu N Q, Zhao G C, Zhang H C G, Wang C, Yao J L. 2021. Phase equilibria modelling and zircon U-Pb ages of the Paleoproterozoic high-pressure mafic granulites in the Jianping Complex and tectonic implications. Precambrian Res, 367: 106460

    Article  Google Scholar 

  • Xu W L, Gao S, Wang Q H, Wang D Y, Liu Y S. 2006a. Mesozoic crustal thickening of the eastern North China Craton: Evidence from eclogite xenoliths and petrologic implications. Geology, 34: 721

    Article  Google Scholar 

  • Xu W L, Wang Q H, Wang D Y, Guo J H, Pei F P. 2006b. Mesozoic adakitic rocks from the Xuzhou-Suzhou area, eastern China: Evidence for partial melting of delaminated lower continental crust. J Asian Earth Sci, 27: 454–464

    Article  Google Scholar 

  • Xu W L, Zhou Q J, Pei F P, Yang D B, Gao S, Li Q L, Yang Y H. 2013. Destruction of the North China Craton: Delamination or thermal/chemical erosion? Mineral chemistry and oxygen isotope insights from websterite xenoliths. Gondwana Res, 23: 119–129

    Article  Google Scholar 

  • Xu Y G. 2002. Evidence for crustal components in the mantle and constraints on crustal recycling mechanisms: Pyroxenite xenoliths from Hannuoba, North China. Chem Geol, 182: 301–322

    Article  Google Scholar 

  • Yang C, Wei C J. 2017. Two phases of granulite facies metamorphism during the Neoarchean and Paleoproterozoic in the East Hebei, North China Craton: Records from mafic granulites. Precambrian Res, 301: 49–64

    Article  Google Scholar 

  • Ying J F, Zhang H F, Tang Y J. 2010. Lower crustal xenoliths from Junan, Shandong province and their bearing on the nature of the lower crust beneath the North China Craton. Lithos, 119: 363–376

    Article  Google Scholar 

  • Ying J F, Zhang H F, Tang Y J. 2013a. Phanerozoic modification of the lower crust beneath the North China Craton: Constraints from granulite xenoliths (in Chinese with English abstract). Acta Petrol Mineral, 32: 567–576

    Google Scholar 

  • Ying J F, Zhang H F, Tang Y J, Su B X, Zhou X H. 2013b. Diverse crustal components in pyroxenite xenoliths from Junan, Sulu orogenic belt: Implications for lithospheric modification invoked by continental sub-duction. Chem Geol, 356: 181–192

    Article  Google Scholar 

  • Zhai M G. 2004. Precambrian tectonic evolution of the North China Craton. SP, 226: 57–72

    Article  Google Scholar 

  • Zhai M G. 2008. Lower crust and lithsopheric mantle beneath the North China Craton before the Mesozoic lithospheric disruption (in Chinese with English abstract). Acta Petrol Sin, 24: 2185–2204

    Google Scholar 

  • Zhai M G. 2009. Two kinds of granulites (HT-HP and HT-UHT) in North China Craton: Their genetic relation ans geotectonic implications (in Chinese with English abstract). Acta Petrol Sin, 25: 1753–1771

    Google Scholar 

  • Zhai M G, Fan Q C, Zhang H F, Sui J L, Shao J A. 2007. Lower crustal processes leading to Mesozoic lithospheric thinning beneath eastern North China: Underplating, replacement and delamination. Lithos, 96: 36–54

    Article  Google Scholar 

  • Zhai M G, Guo J H. 1992. Discovery and the implication for the deep crust of high-pressure basic granulite from the North China. Adv Earth Sci, 7: 60–63

    Google Scholar 

  • Zhai M G, Liu W J. 2001. The formation of granulite and its contribution to evolution of the continental crust (in Chinese with English abstract). Acta Petrol Sin, 17: 28–38

    Google Scholar 

  • Zhai M G, Zhu R X, Liu J M, Meng Q R, Hou Q L, Hu S B, Li Z J, Zhang H F. 2003. Mesozoic tectonic system transition of the eastern North China. Sci China Ser D-Earth Sci, 33: 961–969

    Google Scholar 

  • Zhang H F. 2009. Peridotite-melt interaction: A key point for the destruction of cratonic lithospheric mantle (in Chinese). Chin Sci Bull, 54: 3417–3437

    Google Scholar 

  • Zhang H F. 2012. Destruction of ancient lower crust through magma underplating beneath Jiaodong Peninsula, North China Craton: U-Pb and Hf isotopic evidence from granulite xenoliths. Gondwana Res, 21: 281–292

    Article  Google Scholar 

  • Zhang H F, Ying J F, Shimoda G, Kita N T, Morishita Y, Shao J A, Tang Y J. 2007. Importance of melt circulation and crust-mantle interaction in the lithospheric evolution beneath the North China Craton: Evidence from Mesozoic basalt-borne clinopyroxene xenocrysts and pyroxenite xenoliths. Lithos, 96: 67–89

    Article  Google Scholar 

  • Zhang H F, Ying J F, Tang Y J, Li X H, Feng C, Santosh M. 2011. Phanerozoic reactivation of the Archean North China Craton through episodic magmatism: Evidence from zircon U-Pb geochronology and Hf isotopes from the Liaodong Peninsula. Gondwana Res, 19: 446–459

    Article  Google Scholar 

  • Zhang J, Zhang H F. 2007. Composition features and P-T conditions of granulite xenoliths from late Cretaceous mafic dike, Qingdao region (in Chinese with English abstract). Acta Petrol Sin, 23: 1133–1140

    Google Scholar 

  • Zhang Q, Qian Q, Wang E, Wang Y, Zhao T P, Hao J, Guo G J. 2001a. An east China plateau in mid-late Yanshanian period: Implication from adakities (in Chinese with English abstract). Chin J Geol, 36: 248–255

    Google Scholar 

  • Zhang Q, Wang Y, Liu H T, Wang Y L, Li Z T. 2003. On the space-time distribution and geodynamic environments of adakites in China annex: Controversies over differing opinions for adakites in China (in Chinese with English absract). Earth Sci Front, 4: 385–400

    Google Scholar 

  • Zhang Q, Wang Y, Qian Q, Yang J H, Wang Y L, Zhao T P, Guo G J. 2001b. The characteristics and tectonic-metallogenic significances of the adakites in Yanshan period from eastern China (in Chinese with English abstract). Acta Petrol Sin, 17: 236–244

    Google Scholar 

  • Zhang Q, Wang Y, Wang Y L. 2001c. Preliminary study on the components of the lower crust in east China Plateau during Yanshanian Period: Constraints on Sr and Nd isotopic compositions ofadakite-like rocks (in Chinese with English abstract). Acta Petrol Sin, 17: 505–513

    Google Scholar 

  • Zhang R Y, Cong B L, Ying Y P. 1982. The studies of pyroxene in granulite from Taipingzhai region, eastern Hebei province (in Chinese with English abstract). Chin J Geol, 17: 134–143

    Google Scholar 

  • Zhang Y L, Zhang H F, Bao Z A, Santosh M, Yuan H L. 2016. Heterogeneous Pb isotope composition in the Archean lower crust of the North China Craton induced by Cenozoic basaltic magma underplating. J Asian Earth Sci, 125: 71–86

    Article  Google Scholar 

  • Zhao G, Cawood P A, Li S, Wilde S A, Sun M, Zhang J, He Y, Yin C. 2012. Amalgamation of the North China Craton: Key issues and discussion. Precambrian Res, 222–223: 55–76

    Article  Google Scholar 

  • Zhao G C, Sun M, Wilde S, Li S Z. 2005. Archean to Paleoproterozoic evolution of the North China Craton. J Asian Earth Sci, 24: 519–522

    Article  Google Scholar 

  • Zhao X M, Cao H, Mi X, Evans N, Qi Y, Huang F, Zhang H. 2017. Combined iron and magnesium isotope geochemistry of pyroxenite xenoliths from Hannuoba, North China Craton: Implications for mantle metasomatism. Contrib Mineral Petrol, 172: 40

    Article  Google Scholar 

  • Zhao X M, Wang H, Li Z H, Evans N J, Ying J F, Yang Y H, Zhang H F. 2021. Nature and evolution of lithospheric mantle beneath the western North China Craton: Constraints from peridotite and pyroxenite xenoliths in the Sanyitang basalts. Lithos, 384–385: 105987

    Article  Google Scholar 

  • Zheng J P, Griffin W L, Ma Q, O’Reilly S Y, Xiong Q, Tang H Y, Zhao J H, Yu C M, Su Y P. 2012. Accretion and reworking beneath the North China Craton. Lithos, 149: 61–78

    Article  Google Scholar 

  • Zheng J P, Griffin W, O’Reilly S, Lu F X, Wang C Y, Zhang M, Wang F Z, Li H M. 2004a. 3.6 Ga lower crust in central China: New evidence on the assembly of the North China Craton. Geology, 32: 229

    Article  Google Scholar 

  • Zheng J P, Griffin W, O’Reilly S, Lu F X, Yu C M, Zhang M, Li H M. 2004b. U-Pb and Hf-isotope analysis of zircons in mafic xenoliths from Fuxian kimberlites: Evolution of the lower crust beneath the North China Craton. Contrib Mineral Petrol, 148: 79–103

    Article  Google Scholar 

  • Zheng J P, Griffin W L, O’Reilly S Y, Zhao J H, Wu Y B, Liu G L, Pearson N, Zhang M, Ma C Q, Zhang Z H, Yu C M, Su Y P, Tang H Y. 2009a. Neoarchean (2.7–2.8 Ga) accretion beneath the North China Craton: U-Pb age, trace elements and Hf isotopes of zircons in diamondiferous kimberlites. Lithos, 112: 188–202

    Article  Google Scholar 

  • Zheng J P, Griffin W L, Qi L, O’Reilly S Y, Sun M, Zheng S, Pearson N, Gao J F, Yu C M, Su Y P, Tang H Y, Liu Q S, Wu X L. 2009b. Age and composition of granulite and pyroxenite xenoliths in Hannuoba basalts reflect Paleogene underplating beneath the North China Craton. Chem Geol, 264: 266–280

    Article  Google Scholar 

  • Zheng J P, Sun M, Lu F X, Pearson N. 2003. Mesozoic lower crustal xenoliths and their significance in lithospheric evolution beneath the Sino-Korean Craton. Tectonophysics, 361: 37–60

    Article  Google Scholar 

  • Zheng J P, Xia B, Dai H K, Ma Q. 2021a. Lithospheric structure and evolution of the North China Craton: An integrated study of geophysical and xenolith data. Sci China Earth Sci, 64: 205–219

    Article  Google Scholar 

  • Zheng J P, Xia B, Ping X Q, Wei Y, Tang H Y, Su Y P, Ma Q. 2021b. Rock probes and seismic methods to constrain the structure, composition and evolution of the deep crust beneath North China Block. Chin Sci Bull, 66: 3018–3031

    Article  Google Scholar 

  • Zheng J P, Yu C M, Lu F X, Li H M. 2004c. Zircon geochronology and geochemistry of mafic xenoliths from Liaoning kimberlites: Track the early evolution of the lower crust, North China Craton. Sci China Ser D-Earth Sci, 47: 961–972

    Article  Google Scholar 

  • Zheng Y F, Xu Z, Zhao Z F, Dai L Q. 2018. Mesozoic mafic magmatism in North China: Implications for thinning and destruction of cratonic lithosphere. Sci China Earth Sci, 61: 353–385

    Article  Google Scholar 

  • Zhou X H, Sun M, Zhang G, Chen S. 2002. Continental crust and lithospheric mantle interaction beneath North China: Isotopic evidence from granulite xenoliths in Hannuoba, Sino-Korean craton. Lithos, 62: 111–124

    Article  Google Scholar 

  • Zhu R X, Xu Y G. 2019. The subduction of the west Pacific plate and the destruction of the North China Craton. Sci China Earth Sci, 62: 1340–1350

    Article  Google Scholar 

  • Zindler A, Hart S. 1986. Chemical Geodynamics. Annu Rev Earth Planet Sci, 14: 493–571

    Article  Google Scholar 

  • Zong K Q, Liu Y S. 2018. Carbonate metasomatism in the lithospheric mantle: Implications for cratonic destruction in North China. Sci China Earth Sci, 61: 711–729

    Article  Google Scholar 

  • Zou D Y, Liu Y S, Hu Z C, Gao S, Zong K Q, Xu R, Deng L X, He D T, Gao C G. 2014. Pyroxenite and peridotite xenoliths from Hexigten, Inner Mongolia: Insights into the Paleo-Asian Ocean subduction-related melt/fluid—peridotite interaction. Geochim Cosmochim Acta, 140: 435–454

    Article  Google Scholar 

  • Zou D Y, Zhang H F. 2022. Destruction of Archean lower crust recorded in granulite and pyroxenite xenoliths of Mesozoic basalts from Western Liaoning, North China Craton. Contrib Mineral Petrol, 177: 93

    Article  Google Scholar 

  • Zou D Y, Zhang H F, Liu D. 2022. Evolution of the Neoarchean lower crust beneath Western Liaoning of the North China Craton: Evidence from U-Pb-Hf-O isotopes in zircon. Precambrian Res, 370: 106555

    Article  Google Scholar 

Download references

Acknowledgements

We sincerely appreciate the constructive and beneficial suggestions from Editorial Board members and two anonymous reviewers. This work was supported by the National Natural Science Foundation of China (Grant Nos. 41688103 & 42003026).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongya Zou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zou, D., Zhang, H. Destruction of the lower crust beneath the North China Craton recorded by granulite and pyroxenite xenoliths. Sci. China Earth Sci. 66, 190–204 (2023). https://doi.org/10.1007/s11430-022-1007-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-022-1007-5

Keywords

Navigation