Skip to main content
Log in

Combined iron and magnesium isotope geochemistry of pyroxenite xenoliths from Hannuoba, North China Craton: implications for mantle metasomatism

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

We present high-precision iron and magnesium isotopic data for diverse mantle pyroxenite xenoliths collected from Hannuoba, North China Craton and provide the first combined iron and magnesium isotopic study of such rocks. Compositionally, these xenoliths range from Cr-diopside pyroxenites and Al-augite pyroxenites to garnet-bearing pyroxenites and are taken as physical evidence for different episodes of melt injection. Our results show that both Cr-diopside pyroxenites and Al-augite pyroxenites of cumulate origin display narrow ranges in iron and magnesium isotopic compositions (δ57Fe = −0.01 to 0.09 with an average of 0.03 ± 0.08 (2SD, n = 6); δ26Mg = − 0.28 to −0.25 with an average of −0.26 ± 0.03 (2SD, n = 3), respectively). These values are identical to those in the normal upper mantle and show equilibrium inter-mineral iron and magnesium isotope fractionation between coexisting mantle minerals. In contrast, the garnet-bearing pyroxenites, which are products of reactions between peridotites and silicate melts from an ancient subducted oceanic slab, exhibit larger iron isotopic variations, with δ57Fe ranging from 0.12 to 0.30. The δ57Fe values of minerals in these garnet-bearing pyroxenites also vary widely (−0.25 to 0.08 in olivines, −0.04 to 0.25 in orthopyroxenes, −0.07 to 0.31 in clinopyroxenes, 0.07 to 0.48 in spinels and 0.31–0.42 in garnets). In addition, the garnet-bearing pyroxenite shows light δ26Mg (−0.43) relative to the mantle. The δ26Mg of minerals in the garnet-bearing pyroxenite range from −0.35 for olivine and orthopyroxene, to −0.34 for clinopyroxene, 0.04 for spinel and −0.68 for garnet. These measured values stand in marked contrast to calculated equilibrium iron and magnesium isotope fractionation between coexisting mantle minerals at mantle temperatures derived from theory, indicating disequilibrium isotope fractionation. Notably, one phlogopite clinopyroxenite with an apparent later metasomatic overprint has the heaviest δ57Fe (as high as 1.00) but the lightest δ26Mg (as low as −1.50) values of all investigated samples. Overall, there appears to be a negative co-variation between δ57Fe and δ26Mg in the Hannuoba garnet-bearing pyroxenite and in the phlogopite clinopyroxenite xenoliths and minerals therein. These features may reflect kinetic isotopic fractionation due to iron and magnesium inter-diffusion during melt–rock interaction. Such processes play an important role in producing inter-mineral iron and magnesium isotopic disequilibrium and local iron and magnesium isotopic heterogeneity in the subcontinental mantle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ackerman L, Jelinek E, Medaris LG, Jezek J, Siebel W, Strnad L (2009) Geochemistry of Fe-rich peridotites and associated pyroxenites from Horní Bory, Bohemian Massif: insights into subduction-related melt-rock reactions. Chem Geol 259:152–167

    Article  Google Scholar 

  • An YJ, Wu F, Xiang YX, Nan XY, Yu X, Yang JH, Yu HM, Xie LW, Huang F (2014) High-precision Mg isotope analyses of low-Mg rocks by MC-ICP-MS. Chem Geol 390:9–21

    Article  Google Scholar 

  • An Y, Huang JX, Griffin WL, Liu C, Huang F (2017) Isotopic composition of Mg and Fe in garnet peridotites from the Kaapvaal and Siberian Cratons. Geochim Cosmochim Acta 200(1):167–185

    Article  Google Scholar 

  • Basu AR, Wang JW, Huang WK, Xie GH, Tatsumoto M (1991) Major element, REE, and Pb, Nd and Sr isotopic geochemistry of Cenozoic volcanic rocks of eastern China: implications for their origin from suboceanic-type mantle reservoirs. Earth Planet Sci Lett 105:149–169

    Article  Google Scholar 

  • Beard BL, Johnson CM (2004) Inter-mineral Fe isotope variations in mantle-derived rocks and implications for the Fe geochemical cycle. Geochim Cosmochim Acta 68(22):4727–4743

    Article  Google Scholar 

  • Beyer EE, Griffin WL, O’Reilly SY (2006) Transformation of archaean lithospheric mantle by refertilization: evidence from exposed peridotites in the Western Gneiss Region. Norway J Petrol 47:1611–1636

    Article  Google Scholar 

  • Bigeleisen J, Mayer MG (1947) Calculation of equilibrium constants for isotopic exchange reactions. J Chem Phys 15:261–267

    Article  Google Scholar 

  • Bizzarro M, Paton C, Larsen K, Schiller M, Trinquier A, Ulfbeck D (2011) High-precision Mg-isotope measurements of terrestrial and extraterrestrial material by HR-MC-ICPMS-implications for the relative and absolute Mg-isotope composition of the bulk silicate Earth. J Anal Atom Spectrom 26(3):565–577

    Article  Google Scholar 

  • Bodinier JL, Godard M (2014) Orogenic, ophiolitic, and abyssal peridotites. In: Carlson RW (ed) The mantle and core. Treatise on geochemistry. Elsevier-Pergamon, Oxford

    Google Scholar 

  • Bodinier JL, Vaseur G, Vernieres J, Dupuy C, Fabries J (1990) Mechanisms of mantle metasomatism: geochemical evidence from the Lherz orogenic peridotite. J Petrol 31:597–628

    Article  Google Scholar 

  • Bourdon B, Tipper ET, Fitoussi C, Stracke A (2010) Chondritic Mg isotope composition of the Earth. Geochim Cosmochim Acta 74(17):5069–5083

    Article  Google Scholar 

  • Brey GP, Köhler T (1990) Geothermobarometry in four-phase lherzolites II: new thermobarometers, and practical assessment of existing thermobarometers. J Petrol 31(6):1353–1378

    Article  Google Scholar 

  • Chen SH, O’Reilly SY, Zhou XH, Griffin WL, Zhang GH, Sun M, Feng JL, Zhang M (2001) Thermal and petrological structure of the lithosphere beneath Hannuoba, Sino-Korean Craton, China: evidence from xenoliths. Lithos 56(4):267–301

    Article  Google Scholar 

  • Choi SH, Mukasa SB, Zhou XH, Xian XH, Andronikov AV (2008) Mantle dynamics beneath East Asia constrained by Sr, Nd, Pb and Hf isotopic systematics of ultramafic xenoliths and their host basalts from Hannuoba, North China. Chem Geol 248:40–61

    Article  Google Scholar 

  • Chu ZY, Wu FY, Walker RJ, Rudnick RL, Pitcher L, Puchtel IS, Yang YH, Wilde SA (2009) Temporal evolution of the lithospheric mantle beneath the Eastern North China Craton. J Petrol 50:1857–1898

    Article  Google Scholar 

  • Craddock PR, Dauphas N (2011) Iron isotopic compositions of geological reference materials and chondrites. Geostand Geoanal Res 35(1):101–123

    Article  Google Scholar 

  • Dantas C, Grégoire M, Koester E, Conceição RV, Rieck N (2009) The lherzolite–websterite xenolith suite from Northern Patagonia (Argentina): evidence of mantle–melt reaction processes. Lithos 107(1):107–120

    Article  Google Scholar 

  • Dauphas N, Craddock PR, Asimow PD, Bennett VC, Nutman AP, Ohnenstetter D (2009) Iron isotopes may reveal the redox conditions of mantle melting from Archean to Present. Earth Planet Sci Lett 288(1–2):255–267

    Article  Google Scholar 

  • Dauphas N, Teng FZ, Arndt NT (2010) Magnesium and iron isotopes in 2.7 Ga Alexo komatiites: mantle signatures, no evidence for Soret diffusion, and identification of diffusive transport in zoned olivine. Geochim Cosmochim Acta 74(11):3274–3291

    Article  Google Scholar 

  • Dauphas N, Roskosz M, Alp EE, Neuville DR, Hu MY, Sio CK, Tissot FLH, Zhao J, Tissandier L, Cordier C (2014) Magma redox and structural controls on iron isotope variations in Earth’s mantle and crust. Earth Planet Sci Lett 398:127–140

    Article  Google Scholar 

  • Downes H (2001) Formation and modification of the shallow subcontinental lithospheric mantle: a review of geochemical evidence from ultramafic xenolith suites and tectonically emplaced ultramafic massifs of western and central Europe. J Petrol 42:233–250

    Article  Google Scholar 

  • Downes H (2007) Origin and significance of spinel and garnet pyroxenites in theshallow lithospheric mantle: ultramafic massifs in orogenic belts in Western Europe and NW Africa. Lithos 99:1–24

    Article  Google Scholar 

  • Fan QC, Hooper PR (1991) The Cenozoic basaltic rocks of eastern China: petrology and chemical composition. J Petrol 32:765–810

    Article  Google Scholar 

  • Fan WM, Zhang HF, Baker J, Jarvis KE, Mason PRD, Menzies MA (2000) On and off the North China Craton: where is the Archaean keel? J Petrol 41(7):933–950

    Article  Google Scholar 

  • Fan QC, Sui JL, Liu RX, Zhou XM (2001) Eclogite facies garnet-pyroxenite xenoliths in Hannuoba area: new evidence of magma underplating (in Chinese with English Abs.). Acta Pet. Sin 17:1–6

    Google Scholar 

  • Fan QC, Zhang HF, Sui JL, Zhai MG, Sun Q, Li N (2005) Magma underplating and Hannuoba present crust-mantle transitional zone composition: xenolith petrological and geochemical evidence. Sci China Ser D 48:1089–1105 (in Chinese with English abstract)

    Article  Google Scholar 

  • Galy A, Yoffe O, Janney PE, Williams RW, Cloquet C, Alard O, Halicz L, Wadhwa M, Hutcheon ID, Ramon E, Carignan J (2003) Magnesium isotope heterogeneity of the isotopic standard SRM 980 and new reference materials for magnesium isotope ratio measurements. J Anal At Spectrom 18:1352–1356

    Article  Google Scholar 

  • Gao S, Rudnick RL, Carlson RW, McDonough WF, Liu Y (2002) Re − Os evidence for replacement of ancient mantle lithosphere beneath the North China Craton. Earth Planet Sci Lett 198:307–322

    Article  Google Scholar 

  • Gao S, Rudnick RL, Yuan HL, Liu XM, Liu YS, Xu WL, Ling WL, Ayers J, Wang XC, Wang QH (2004) Recycling lower continental crust in the North China craton. Nature 432:892–897

    Article  Google Scholar 

  • Garrido CJ, Bodinier JL (1999) Diversity of mafic rocks in the Ronda peridotite: evidence for pervasive melt-rock reaction during heating of subcontinental lithosphere by upwelling asthenosphere. J Petrol 40:729–754

    Article  Google Scholar 

  • Griffin WL, O’Reilly SY, Ryan CG (1992) Composition and thermal structure of the lithosphere beneath South Africa, Siberia and China: proton microprobe studies. In Proceedings of the International Symposium on Cenozoic Volcanic rocks and deep-seated xenoliths of China and its Environs, Beijing pp 65–66

  • Griffin WL, Zhang AD, O’Reilly SY, Ryan CG (1998) Phanerozoic evolution of the lithosphere beneath the Sino-Korean Craton. In: Flower MFJ, Chung SL, Lo CH, Lee TY (eds) Mantle dynamics and plate interactions in East Asia. American Geophysical Union, Washington, pp 107–126

    Chapter  Google Scholar 

  • Handler MR, Baker JA, Schiller M, Bennett VC, Yaxley GM (2009) Magnesium stable isotope composition of Earth’s upper mantle. Earth Planet Sci Lett 282(1):306–313

    Article  Google Scholar 

  • Hart SR, Dunn T (1993) Experimental CPX/melt partitioning of 24 trace elements. Contrib Mineral Petrol 113(1):1–8

    Article  Google Scholar 

  • Hauri EH, Wagner TP, Grove TL (1994) Experimental and natural partitioning of Th, U, Pb and other trace elements between garnet, clinopyroxene and basaltic melts. Chem Geol 117:149–166

    Article  Google Scholar 

  • Hibbert KEJ, Williams HM, Kerr AC, Puchtel IS (2012) Iron isotopes in ancient and modern komatiites: evidence in support of an oxidised mantle from Archean to present. Earth Planet Sci Lett 321:198–207

    Article  Google Scholar 

  • Hirschmann MM, Stolper EM (1996) A possible role for garnet pyroxenite in the origin of the “garnet signature” in MORB. Contrib Mineral Petrol 124:185–208

    Article  Google Scholar 

  • Hu Y, Teng FZ, Zhang HF, Xiao Y, Su BX (2016) Metasomatism-induced mantle magnesium isotopic heterogeneity: evidence from pyroxenites. Geochim Cosmochim Acta 185:88–111

    Article  Google Scholar 

  • Huang F, Zhang ZF, Lundstrom CC, Zhi XC (2011) Iron and magnesium isotopic compositions of peridotite xenoliths from Eastern China. Geochim Cosmochim Acta 75(12):3318–3334

    Article  Google Scholar 

  • Huang F, Chen LJ, Wu ZQ, Wang W (2013) First-principles calculations of equilibrium Mg isotope fractionations between garnet, clinopyroxene, orthopyroxene, and olivine: implications for Mg isotope thermometry. Earth Planet Sci Lett 367:61–70

    Article  Google Scholar 

  • Jacob D (2004) Nature and origin of eclogite xenoliths from kimberlites. Lithos 77:295–316

    Article  Google Scholar 

  • Johnson KTM (1998) Experimental determination of partition coefficients for rare earth and high-field-strength elements between clinopyroxene, garnet, and basalticmelt at high pressures. Contrib Mineral Petrol 133:60–68

    Article  Google Scholar 

  • Keshav S, Sen G, Presnall DC (2007) Garnet-bearing xenoliths from Salt Lake Crater, Oahu, Hawaii: high-pressure fractional crystallization in the oceanic mantle. J Petrol 48:1681–1724

    Article  Google Scholar 

  • Konter JG, Pietruszka AJ, Hanan BB, Finlayson VA, Craddock PR, Jackson MG, Dauphas N (2016) Unusual δ56 Fe values in Samoan rejuvenated lavas generated in the mantle. Earth Planet Sci Lett 450:221–232

    Article  Google Scholar 

  • Korenaga J, Kelemen PB (2000) Major element heterogeneity in the mantle source of the North Atlantic igneous province. Earth Planet Sci Lett 184:251–268

    Article  Google Scholar 

  • Lai YJ, Strandmann PAE, Dohmen R, Takazawa E, Tim Elliott (2015) The influence of melt infiltration on the Li and Mg isotopic composition of the Horoman Peridotite Massif. Geochim Cosmochim Acta 164(1):318–332

    Article  Google Scholar 

  • Lee CT, Rudnick RL (1999) Compositionally stratified cratonic lithosphere: petrology and geochemistry of peridotite xenoliths from the Labait volcano, Tanzania. In: Gurney JJ, Gurney JL, Pascoe MD (eds) Proceedings of the 7th International Kimberlite Conference l. Red Roof Design, Cape Town, pp 503–521

    Google Scholar 

  • LeRoux V, Bodinier JL, Tommasi A, Alard O, Dautria JM, Vauchez A, Riches AJV (2007) The Lherz spinel lherzolite: refertilized rather than pristine mantle. Earth Planet Sci Lett 259:599–612

    Article  Google Scholar 

  • LeRoux V, Bodinier JL, Alard O, O’Reilly SY, Griffin WL (2009) Isotopic decoupling during porous melt flow: a case-study in the Lherz peridotite. Earth Planet Sci Lett 279:76–85

    Article  Google Scholar 

  • Li WY, Teng FZ, Xiao Y, Huang J (2011) High-temperature inter-mineral magnesium isotope fractionation in eclogite from the Dabie orogen, China. Earth Planet Sci Lett 304(1):224–230

    Article  Google Scholar 

  • Li JX, Qin KZ, Li GM, Evans NJ, Zhao JX, Cao MJ, Huang F (2016a) The Nadun Cu-Au mineralization, central Tibet: root of a high sulfidation epithermal deposit. Ore Geol Rev 78:371–387

    Article  Google Scholar 

  • Li WY, Teng FZ, Xiao Y, Gu HO, Zha XP, Huang J (2016b) Empirical calibration of the clinopyroxene-garnet magnesium isotope geothermometer and implications. Contrib Mineral Petrol 171:61. doi:10.1007/s00410-016-1269-1

    Article  Google Scholar 

  • Liu DY, Nutman AP, Compston W, Wu JS, Shen QH (1992) Remnants of ≥ 3800 Ma crust in the Chinese part of the Sino-Korean craton. Geology 20(4):339–342

    Article  Google Scholar 

  • Liu CQ, Masuda A, Xie GH (1994) Major- and traceelement compositions of Cenozoic basalts in eastern China: petrogenesis and mantle source. Chem Geol 114:19–42

    Article  Google Scholar 

  • Liu YS, Yuan HL, Gao S, Hu ZC, Wang X, Liu XM, Lin WL (2004) Zircon U-Pb ages of olivine pyroxenite xenolith from Hannuoba: links between the 97-158 Ma basaltic underplating and granulite-facies metamorphism. Chin Sci Bull 49:1055–1062

    Google Scholar 

  • Liu YS, Gao S, Lee CTA, Hu SH, Liu XM, Yuan HL (2005) Melt-peridotite interactions: links between garnet pyroxenite and high-Mg# signature of continental crust. Earth Planet Sci Lett 234:39–57

    Article  Google Scholar 

  • Liu YS, Gao S, Hu ZC, Gao CG, Zong KQ, Wang DB (2010) Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths. J Petrol 51:537–571

    Article  Google Scholar 

  • Liu SA, Teng FZ, Yang W, Wu FY (2011) High-temperature inter-mineral magnesium isotope fractionation in mantle xenoliths from the North China craton. Earth Planet Sci Lett 308(1):131–140

    Article  Google Scholar 

  • Macris CA, Manning CE, Young ED (2015) Crystal chemical constraints on inter-mineral Fe isotope fractionation and implications for Fe isotope disequilibrium in San Carlos mantle xenoliths. Geochim Cosmochim Acta 154:168–185

    Article  Google Scholar 

  • McDonough WF, Frey FA (1989) Rare earth elements in upper mantle rocks. In: Lipin B, McKay G (eds) Geochemistry and mineralogy of rare earth. Elements, Reviews in Minerology, USA

    Google Scholar 

  • McDonough WF, Sun SS (1995) The composition of the earth. Chem Geol 120:223–253

    Article  Google Scholar 

  • Melson WG, Vallier TL, Wright TL, Byerly G, Nelen J (1976) Chemical diversity of abyssal volcanic glass erupted along the Pacific, Atlantic and Indian Ocean sea-floor spreading centres. The geophysics of the Pacific Ocean Basin and its margin. American Geophysics Union, Washington, pp 351–368

    Google Scholar 

  • Menzies MA, Xu YG (1998) Geodynamics of the North China Craton. Mantle dynamics and plate interactions in East Asia, vol 27. AGU, Washington, pp 155–165

    Chapter  Google Scholar 

  • Menzies MA, Kempton PD, Dungan M (1985) Interaction of continental lithosphere and asthenospheric melts below the Geronimo Volcanic Field, Arizona, USA. J Petrol 26:663–693

    Article  Google Scholar 

  • Menzies MA, Fan WM, Zhang M (1993) Palaeozoic and Cenozoic lithoprobes and the loss of >120 km of Archaean lithosphere, Sino-Korean craton, China. Geological Society, London

    Google Scholar 

  • Menzies MA, Xu YG, Zhang HF, Fan WM (2007) Integration of geology, geophysics and geochemistry: a key to understanding the North China Craton. Lithos 96(1–2):1–21

    Article  Google Scholar 

  • Morimoto N (1988) Nomenclature of pyroxenes. Can Mineral 27:143–156

    Google Scholar 

  • Nickel KG, Green DH (1985) Empirical geothermobarometry for garnet peridotites and implications for the nature of the lithosphere, kimberlites and diamonds. Earth Planet Sci Lett 73:158–170

    Article  Google Scholar 

  • Nimis P, Taylor WR (2000) Single clinopyroxene thermobarometry for garnet peridotites. Part I. Calibration and testing of a Cr-in-Cpx barometer and an enstatite-in-Cpx thermometer. Contrib Mineral Petrol 139:541–554

    Article  Google Scholar 

  • O’Reilly SY, Griffin WL (2012) Mantle Metasomatism. In: Harlov D, Austrheim H (eds) Metasomatism and the chemical transformation of rock: the role of fluids in terrestrial and extraterrestrial processes (Lecture notes in earth system sciences). Springer-Verlag, Berlin, pp 471–534

    Google Scholar 

  • Pearson DG, Nowell GM (2004) Re-Os and Lu-Hf isotope constraints on the origin and age of pyroxenites from the Beni Bousera peridotite massif implications for mixed peridotite-pyroxenite mantle sources. J Petrol 45(2):439–455

    Article  Google Scholar 

  • Pilet S, Baker MB, Stolper EM (2008) Metasomatized lithosphere and the origin of alkaline lavas. Science 320:916–919

    Article  Google Scholar 

  • Poitrasson F, Halliday AN, Lee DC, Levasseur S, Teutsch N (2004) Iron isotope differences between Earth, Moon, Mars and Vesta as possible records of contrasted accretion mechanisms. Earth Planet Sci Lett 223(3):253–266

    Article  Google Scholar 

  • Poitrasson F, Delpech G, Grégoire M (2013) On the iron isotope heterogeneity of lithosphericmantle xenoliths: implications for mantlemetasomatism, the origin of basalts and the iron isotope composition of the Earth. Contrib Mineral Petrol 165(6):1243–1258

    Article  Google Scholar 

  • Qian SP, Ren ZR, Zhang L, Hong LB, Liu JQ (2015) Chemical and Pb isotope composition of olivine-hosted melt inclusions from the Hannuoba basalts, North China Craton:implications for petrogenesis and mantle source. Chem Geol 401:111–125

    Article  Google Scholar 

  • Richter FM, Watson EB, Mendybaev RA, Teng FZ, Janney PE (2008) Magnesium isotope fractionation in silicate melts by chemical and thermal diffusion. Geochim Cosmochim Acta 72:206220

    Google Scholar 

  • Richter FM, Watson EB, Mendybaev RA, Dauphas N, Georg RB, Watkins J, Valley JW (2009) Isotopic fractionation of the major elements of molten basalt by chemical and thermal diffusion. Geochim Cosmochim Acta 73:4250–4263

    Article  Google Scholar 

  • Roskosz M, Sio CK, Dauphas N, Bi WL, Tissot FLH, Hu MY, Zhao JY, Alp EE (2015) Spinel-olivine-pyroxene equilibrium iron isotopic fractionation and applications to natural peridotites. Geochim Cosmochim Acta 169:184–199

    Article  Google Scholar 

  • Rudnick RL, Gao S, Ling WL, Liu YS, McDonough WF (2004) Petrology and geochemistry of spinel peridotite xenoliths from Hannuoba and Qixia, North China Craton. Lithos 77:609–637

    Article  Google Scholar 

  • Schauble EA (2004) Applying stable isotope fractionation theory to new systems. Rev Mineral Geochem 55(1):65–111

    Article  Google Scholar 

  • Schauble EA (2011) First-principles estimates of equilibrium magnesium isotope fractionation in silicate, oxide, carbonate and hexaaquamagnesium(2+) crystals. Geochim Cosmochim Acta 75(3):844–869

    Article  Google Scholar 

  • Schilling JG, Zajac M, Evans R, Johnston T, White W, Devine JD, Kingsley R (1983) Petrologic and geochemical variations along the Mid-Atlantic Ridge from 27_N to 73_N. Am J Sci 283:510–586

    Article  Google Scholar 

  • Schoenberg R, Blanckenburg FV (2006) Modes of planetary-scale Fe isotope fractionation. Earth Planet Sci Lett 252(3–4):342–359

    Article  Google Scholar 

  • Schuessler JA, Schoenberg R, Sigmarsson O (2009) Iron and lithium isotope systematics of the Hekla volcano, Iceland-Evidence for Fe isotope fractionation during magma differentiation. Chem Geol 258(1–2):78–91

    Article  Google Scholar 

  • Sio CKI, Dauphas N, Teng FZ, Chaussidon M, Helz RT, Roskosz M (2013) Discerning crystal growth from diffusion profiles in zoned olivine by in situ Mg–Fe isotopic analyses. Geochim Cosmochim Acta 123:302–321

    Article  Google Scholar 

  • Sobolev NV, Lavrent’ev YG, Pokhilenko NP, Usova LV (1973) Chrome-rich garnets from the kimberlites of Yakuti and their parageneses. Contrib Mineral Petrol 40(1):39–52

    Article  Google Scholar 

  • Sobolev AV, Hofmann AW, Sobolev SV, Nikogosian IK (2005) An olivine-free mantle source of Hawaiian shield basalts. Nature 434:590–597

    Article  Google Scholar 

  • Song Y, Frey FA (1989) Geochemistry of peridotite xenoliths in basalt from Hannuoba, eastern China: implications for subcontinental mantle heterogeneity. Geochim Cosmochim Acta 53:97–113

    Article  Google Scholar 

  • Song Y, Frey FA, Zhi XC (1990) Isotopic characteristics of Hannuoba basalts, eastern China: implications for their petrogenesis and the composition of subcontinental mantle. Chem Geol 88(1):35–52

    Article  Google Scholar 

  • Sossi PA, Foden JD, Halverson GP (2012) Redox-controlled iron isotope fractionation during magmatic differentiation: an example from the Red Hill intrusion, S. Tasmania Contrib Mineral Petrol 164(5):757–772

    Article  Google Scholar 

  • Strandmann PAP, Elliott T, Marschall HR, Coath C, Lai YJ, Jeffcoate AB, Ionov DA (2011) Variations of Li and Mg isotope ratios in bulk chondrites and mantle xenoliths. Geochim Cosmochim Acta 75(18):5247–5268

    Article  Google Scholar 

  • Tanaka T, Togashi S, Kamioka H, Amakawa H, Kagami H, Hamamoto T, Yuhara M, Orihashi Y, Yoneda S, Shimizu H, Kunimaru T, Takahashi K, Yanagi T, Nakano T, Fujimaki H, Shinjo R, Asahara Y, Tanimizu M, Dragusanu C (2000) vJNdi-1: a neodymium isotopic reference in consistency with LaJolla neodymium. Chem Geol 168:279–281

    Article  Google Scholar 

  • Tang YJ, Zhang HF, Nakamura E, Moriguti T, Kobayashi K, Ying JF (2007) Lithium isotopic systematics of peridotite xenoliths from Hannuoba, North China Craton: implications for melt-rock interaction in the considerably thinned lithospheric mantle. Geochim Cosmochim Acta 71:4327–4341

    Article  Google Scholar 

  • Tatsumoto M, Basu AR, Huang WK, Wang JW, Xie GH (1992) Sr, Nd, and Pb isotopes of ultramafic xenoliths in volcanic-rocks of Eastern China: enriched components EMI and EMII in subcontinental lithosphere. Earth Planet Sci Lett 113:107–128

    Article  Google Scholar 

  • Teng FZ, Wadhwa M, Helz RT (2007) Investigation of magnesium isotope fractionation during basalt differentiation: implications for a chondritic composition of the terrestrial mantle. Earth Planet Sci Lett 261(1):84–92

    Article  Google Scholar 

  • Teng FZ, Dauphas N, Helz RT (2008) Iron isotope fractionation during magmatic differentiation in Kilauea Iki Lava Lake. Science 320(5883):1620–1622

    Article  Google Scholar 

  • Teng FZ, Li WY, Ke S, Marty B, Dauphas N, Huang SC, Wu FY, Pourmand A (2010) Magnesium isotopic composition of the Earth and chondrites. Geochim Cosmochim Acta 74(14):4150–4166

    Article  Google Scholar 

  • Teng FZ, Dauphas N, Helz RT, Gao S, Huang SC (2011) Diffusion-driven magnesium and iron isotope fractionation in Hawaiian olivine. Earth Planet Sci Lett 308(3–4):317–324

    Article  Google Scholar 

  • Teng FZ, Dauphas N, Huang SC, Marty B (2013) Iron isotopic systematics of oceanic basalts. Geochim Cosmochim Acta 107:12–26

    Article  Google Scholar 

  • Teng FZ, Dauphas N, Watkins JM (2017) Non-Traditional Stable Isotopes: retrospective and Prospective. Rev Mineral Geochem 82(1):219–287

    Article  Google Scholar 

  • Urey HC (1947) The thermodynamic properties of isotopic substance. J Chem Soc 8:562–581

    Article  Google Scholar 

  • Wang C, Jin ZM, Gao S, Zhang JF, Zheng S (2010) Eclogite-melt/peridotite reaction: experimental constraints on the destruction mechanism of the North China Craton. Sci China Earth Sci 53:797–809

    Article  Google Scholar 

  • Wang SJ, Teng FZ, Williams HM, Li SG (2012) Magnesium isotopic variations in cratonic eclogites: origins and implications. Earth Planet Sci Lett 359:219–226

    Article  Google Scholar 

  • Wang SJ, Teng FZ, Li SG (2014a) Tracing carbonate-silicate interaction during subduction using magnesium and oxygen isotopes. Nat Commun 5:5328. doi:10.1038/ncomms6328

    Article  Google Scholar 

  • Wang SJ, Teng FZ, Li SG, Hong JA (2014b) Magnesium isotopic systematics of mafic rocks during continental subduction. Geochim Cosmochim Acta 143:34–48

    Article  Google Scholar 

  • Wang SJ, Teng FZ, Bea F (2015a) Magnesium isotopic systematics of metapelite in the deep crust and implications for granite petrogenesis. Geochem Perspect Lett 1:75–83

    Article  Google Scholar 

  • Wang SJ, Teng FZ, Rudnick RL, Li SG (2015b) Magnesium isotope evidence for a recycled origin of cratonic eclogites. Geology 43:1071–1074

    Article  Google Scholar 

  • Wells PRA (1977) Pyroxene thermometry in simple and complex systems. Contrib Mineral Petrol 62:129–139

    Article  Google Scholar 

  • Weyer S, Ionov DA (2007) Partial melting and melt percolation in the mantle: the message from Fe isotopes. Earth Planet Sci Lett 259(1–2):119–133

    Article  Google Scholar 

  • Weyer S, Seitz HM (2012) Coupled lithium and iron isotope fractionation during magmatic differentiation. Chem Geol 294(2):42–50

    Article  Google Scholar 

  • Williams HM, Bizimis M (2014) Iron isotope tracing of mantle heterogeneity within the source regions of oceanic basalts. Earth Planet Sci Lett 404:396–407

    Article  Google Scholar 

  • Williams HM, McCammon CA, Peslier AH, Halliday AN, Teutsch N, Levasseur S, Burg JP (2004) Iron isotope fractionation and the oxygen fugacity of the mantle. Science 304(5677):1656–1659

    Article  Google Scholar 

  • Williams HM, Peslier AH, McCammon C, Halliday AN, Levasseur S, Teutsch N, Burg JP (2005) Systematic iron isotope variations inmantle rocks and minerals: the effects of partial melting and oxygen fugacity. Earth Planet Sci Lett 235(1–2):435–452

    Article  Google Scholar 

  • Williams HM, Nielsen SG, Renac C, Griffin WL, O’Reilly SY, McCammon CA, Pearson N, Viljoen F, Alt JC, Halliday AN (2009) Fractionation of oxygen and iron isotopes by partial melting processes: implications for the interpretation of stable isotope signatures in mafic rocks. Earth Planet Sci Lett 283(1–4):156–166

    Article  Google Scholar 

  • Williams HM, Wood BJ, Wade J, Frost DJ, Tuff J (2012) Isotopic evidence for internal oxidation of the Earth’s mantle during accretion. Earth Planet Sci Lett 321:54–63

    Article  Google Scholar 

  • Wilshire HG, Shervais JW (1975) Al-augite and Cr-diopside ultramafic xenoliths in basaltic rocks from western United States. Phys Chem Earth 9:257–272

    Article  Google Scholar 

  • Wu ZQ, Huang F, Huang SC (2015) Isotope fractionation induced by phase transformation: first-principles investigation for Mg2SiO4. Earth Planet Sci Lett 409:339–347

    Article  Google Scholar 

  • Xiao Y, Teng FZ, Zhang HF, Yang W (2013) Large magnesium isotope fractionation in peridotite xenoliths from eastern North China craton: product of melt–rock interaction. Geochim Cosmochim Acta 115:241–261

    Article  Google Scholar 

  • Xu YG (2001) Thermo-tectonic destruction of the Archean lithospheric keel beneath the Sino-Korean Craton in China: evidence, timing and mechanism. Phys Chem Earth 26:747–757

    Article  Google Scholar 

  • Xu YG (2002) Evidence for crustal components in the mantle and constrains on crustal recycling mechanism: pyroxenite xenoliths from Hannuoba, North China. Chem Geol 182:301–322

    Article  Google Scholar 

  • Yang JH, Wu FY, Wilde SA (2003) A review of the geodynamic setting of large-scale Late Mesozoic gold mineralization in the North China Craton: an association with lithospheric thinning. Ore Geol Rev 23(3–4):125–152

    Article  Google Scholar 

  • Yang W, Teng FZ, Zhang HF (2009) Chondritic magnesium isotopic composition of the terrestrial mantle: a case study of peridotite xenoliths from the North China craton. Earth Planet Sci Lett 288(3):475–482

    Article  Google Scholar 

  • Ying J, Zhang H, Tang Y, Su B, Zhou X (2013) Diverse crustal components in pyroxenite xenoliths from Junan, Sulu orogenic belt: implications for lithospheric modification invoked by continental subduction. Chem Geol 356:181–192

    Article  Google Scholar 

  • Young ED, Tonui E, Manning CE, Schauble E, Macris CA (2009) Spinel-olivine magnesium isotope thermometry in the mantle and implications for the Mg isotopic composition of Earth. Earth Planet Sci Lett 288:524–533

    Article  Google Scholar 

  • Young ED, Manning CE, Schauble EA, Shahar A, Macris CA, Lazar C, Jordan M (2015) High-temperature equilibrium isotope fractionation of non-traditional stable isotopes: experiments, theory, and applications. Chem Geol 395:176–195

    Article  Google Scholar 

  • Yu SY, Xu YG, Ma JL, Zheng YF, Kuang YS, Hong LB, Ge WC, Tong LX (2010) Remnants of oceanic lower crust in the subcontinental lithospheric mantle: trace element and Sr-Nd-O isotope evidence from aluminous garnet pyroxenite xenoliths from Jiaohe, Northeast China. Earth Planet Sci Lett 297:413–422

    Article  Google Scholar 

  • Zhang HF, Sun M, Zhou XH, Fan WM, Zhai MG, Ying JF (2002) Mesozoic lithosphere destruction beneath the North China Craton: evidence from major-, trace-element and Sr-Nd-Pb isotope studies of Fangcheng basalts. Contrib Mineral Petrol 144:241–253

    Article  Google Scholar 

  • Zhang HF, Sun M, Zhou XH, Ying JF (2005) Geochemical constraints on the origin of Mesozoic alkaline intrusive complexes from the North China Craton and tectonic implications. Lithos 81(1):297–317

    Article  Google Scholar 

  • Zhang HF, Goldstein SL, Zhou XH, Sun M, Cai Y (2009a) Comprehensive refertilization of lithospheric mantle beneath the North China Craton: further Os-Sr-Nd isotopic constraints. J Geol Soc 166(2):249–259

    Article  Google Scholar 

  • Zhang JJ, Zheng YF, Zhao ZF (2009b) Geochemical evidence for interaction between oceanic crust and lithospheric mantle in the origin of Cenozoic continental basalts in east-central China. Lithos 110:305–326

    Article  Google Scholar 

  • Zhang HF, Nakamura E, Kobayashi K, Ying JF, Tang YJ (2010) Recycled crustal melt injection into lithospheric mantle: implication from cumulative composite and pyroxenite xenoliths. Int J Earth Sci 99(6):1167–1186

    Article  Google Scholar 

  • Zhang JF, Wang C, Wang YF (2012) Experimental constraints on the destruction mechanism of the North China Craton. Lithos 149:91–99

    Article  Google Scholar 

  • Zhao GC, Sun M, Wilde SA, Li SZ (2005) Late Archean to Paleoproterozoic evolution of the North China Craton: key issues revisited. Precambrian Res 136(2):177–202

    Article  Google Scholar 

  • Zhao XM, Zhang HF, Zhu XK, Tang SH, Tang YJ (2010) Iron isotope variations in spinel peridotite xenoliths fromNorth China Craton: implications for mantlemetasomatism. Contrib Mineral Petrol 160(1):1–14

    Article  Google Scholar 

  • Zhao XM, Zhang HF, Zhu XK, Tang SH, Yan B (2012) Iron isotope evidence for multistage melt-peridotite interactions in the lithospheric mantle of eastern China. Chem Geol 292–293:127–139

    Article  Google Scholar 

  • Zhao XM, Zhang HF, Zhu XK, Zhu B, Cao HH (2015) Effects of melt percolation on iron isotopic variation in peridotites from Yangyuan, North China Craton. Chem Geol 401:96–110

    Article  Google Scholar 

  • Zhao XM, Zhang ZF, Huang SC, Liu YF, Li X, Zhang ZF (2017) Coupled extremely light Ca and Fe isotopes in peridotites. Geochim Cosmochim Acta. doi:10.1016/j.gca.2017.03.024

    Google Scholar 

  • Zheng JP, O’reilly SY, Griffin WL, Lu FX, Zhang M (1998) Nature and evolution of Cenozoic lithospheric mantle beneath Shandong peninsula, Sino-Korean Craton, eastern China. Int Geol Rev 40(6):471–499

    Article  Google Scholar 

  • Zheng JP, Griffin WL, O’Reilly SY, Yang JS, Li TF, Zhang M, Zhang RY, Liou JG (2006) Mineral chemistry of peridotites from Paleozoic, Mesozoic and Cenozoic lithosphere: constraints on mantle evolution beneath eastern China. J Petrol 47(11):2233–2256

    Article  Google Scholar 

  • Zheng JP, Griffin WL, O’Reilly SY, Yu CM, Zhang HF, Pearson N, Zhang M (2007) Mechanism and timing of lithospheric modification and replacement beneath theeastern North China Craton: peridotitic xenoliths from the 100 Ma Fuxin basalts anda regional synthesis. Geochim Cosmochim Acta 71(21):5203–5225

    Article  Google Scholar 

  • Zheng JP, Griffin WL, Qi L, O’Reilly SY, Sun M, Zheng S, Pearson N, Gao JF, Yu CM, Su YP, Tang HY, Liu QS, Wu XL (2009) Age and composition of granulite and pyroxenite xenoliths in Hannuoba basalts reflect Paleogene underplating beneath the North China Craton. Chem Geol 264:266–280

    Article  Google Scholar 

  • Zhi XC, Song Y, Frey FA, Feng JL, Zhai MG (1990) Geochemistry of Hannuoba basalts, eastern China: constraints on the origin of continental alkalic and tholeiitic basalt. Chem Geol 88:1–33

    Article  Google Scholar 

  • Zhu BQ (1998) Theory and Applications of Isotope Systematics in Geosciences: Evolution of Continental Crust and Mantle in China (in Chinese). Science Press, Beijing

    Google Scholar 

  • Zhu XK, Guo Y, Williams RJP, O’Nions RK, Matthews A, Belshaw NS, Canters GW, Waal EC, Weser U, Burgess BK, Salvato B (2002) Mass fractionation processes of transition metal isotopics. Earth Planet Sci Lett 200(1–2):47–62

    Article  Google Scholar 

Download references

Acknowledgements

We thank Zhuying Chu for Rb–Sr and Sm–Nd isotope analyses at the Institute of Geology and Geophysics (IGG), Chinese Academy of Sciences and Huimin Yu for Fe and Mg isotopes analyses at the Chinese Academy of Sciences Key Laboratory of Crust-Mantle Materials and Environments, University of Science and Technology of China (USTC). Jifeng Ying is thanked for the helpful discussion. This work was financially supported by the National Science Foundation of China (41373041 and 41673021 to Xin Miao Zhao). Associate editor Franck Poitrasson, Michel Grégoire and one anonymous reviewer are thanked for their thoughtful and constructive reviews which substantially improved the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Miao Zhao.

Additional information

Communicated by Franck Poitrasson.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, X.M., Cao, H.H., Mi, X. et al. Combined iron and magnesium isotope geochemistry of pyroxenite xenoliths from Hannuoba, North China Craton: implications for mantle metasomatism. Contrib Mineral Petrol 172, 40 (2017). https://doi.org/10.1007/s00410-017-1356-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00410-017-1356-y

Keywords

Navigation