Skip to main content
Log in

Fluid/melt in continental deep subduction zones: Compositions and related geochemical fractionations

  • Research Paper
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

Plate subduction is the most magnificent process in the Earth. Subduction zones are important sites for proceeding matter- and energy- transports between the Earth’s surface and the interior, continental crust growth, and crust-mantle interactions. Besides, a number of geological processes in subduction zones are closely related to human beings’ daily life, such as volcanic eruptions and earthquakes, formation of mineral deposits. Subduction process thus has long been the centric topic of Earth sciences. The finding in 1980s that continental crust could be subducted to mantle depths is a revolutionary progress in plate tectonic theory. Compared to oceanic crust, continental crust is colder, drier, lighter, and much more geochemically/isotopically heterogeneous Hence, continental subduction process would affect the structure, compositions and evolutions of the overlying mantle wedge even more. During continental subduction and subsequent exhumation, fluids and melts can be generated in the (de)hydration process and partial melting process, respectively. These melts/fluids play important roles in crust-mantle interactions, elemental migrations, isotopic fractionations, and mantle metasomatism. By summarizing recent research works on subduction zones in this paper, we present a review on the types, physicochemical conditions and compositions of fluids/melts, as well as the migration behaviors of fluid-related characteristic elements (Nb-Ta-V) and the fractionation behaviors of non-traditional stable isotopes (Li-Mg) in subduction zones. The aim of this paper is to provide the readers an update comprehensive overview of the melt/fluid activities in subduction zones and of Li-Mg isotope systematics in subduction-related rocks and minerals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abers G A, Nakajima J, van Keken P E, Kita S, Hacker B R. 2013. Thermal-petrological controls on the location of earthquakes within subducting plates. Earth Planet Sci Lett, 369: 178–187

    Article  Google Scholar 

  • Agostini S, Ryan J G, Tonarini S, Innocenti F. 2008. Drying and dying of a subducted slab: Coupled Li and B isotope variations in Western Anatolia Cenozoic Volcanism. Earth Planet Sci Lett, 272: 139–147

    Article  Google Scholar 

  • Ague J J, Nicolescu S. 2014. Carbon dioxide released from subduction zones by fluid-mediated reactions. Nat Geosci, 7: 355–360

    Article  Google Scholar 

  • Alt J, Burdett J. 1992. Sulfur in Pacific deep-sea sediments (Leg 129) and implications for cycling of sediment in subduction zones. Proc ODP Sci Res. 283–294

    Google Scholar 

  • Alt J C. 1995. Sulfur isotopic profile through the oceanic crust: Sulfur mobility and seawater-crustal sulfur exchange during hydrothermal alteration. Geology, 23: 585–588

    Article  Google Scholar 

  • Alt J C, Anderson T F, Bonnell L. 1989. The geochemistry of sulfur in a 1.3 km section of hydrothermally altered oceanic crust, DSDP Hole 504B. Geochim Cosmochim Acta, 53: 1011–1023

    Article  Google Scholar 

  • Alt J C, Garrido C J, Shanks W, Turchyn A, Padrón-Navarta J A, Sánchez-Vizcaíno V L, Pugnaire M T G, Marchesi C. 2012. Recycling of water, carbon, and sulfur during subduction of serpentinites: A stable isotope study of Cerro del Almirez, Spain. Earth Planet Sci Lett, 327: 50–60

    Article  Google Scholar 

  • Alt J C, Shanks W C. 2011. Microbial sulfate reduction and the sulfur budget for a complete section of altered oceanic basalts, IODP Hole 1256. (eastern Pacific). Earth Planet Sci Lett, 310: 73–83

    Article  Google Scholar 

  • Antignano A, Manning C E. 2008. Rutile solubility in H2O, H2O-SiO2, and H2O-NaAlSi3O8 uids at 0.7–2.0 GPa and 700–1000°C: Implications for mobility of nominally insoluble elements. Chem Geol, 255: 283–293

    Article  Google Scholar 

  • Auzanneau E, Vielzeuf D, Schmidt M. 2006. Experimental evidence of decompression melting during exhumation of subducted continental crust. Contrib Mineral Petrol, 152: 125–148

    Article  Google Scholar 

  • Barth M, McDonough W F, Rudnick R L. 2000. Tracking the budget of Nb and Ta in the continental crust. Chem Geol 165: 197–213

    Article  Google Scholar 

  • Beaumont C, Jamieson R A, Butler J P, Warren C J. 2009. Crustal structure: A key constraint on the mechanism of ultra-high-pressure rock exhumation. Earth Planet Sci Lett, 287: 116–129

    Article  Google Scholar 

  • Bebout G E. 2007. Metamorphic chemical geodynamics of subduction zones. Earth Planet Sci Lett, 260: 373–393

    Article  Google Scholar 

  • Bebout G E, Marilyn L F, Cartigny P. 2013a. Nitrogen: Highly volatile yet surprisingly compatible. Elements, 9: 333–338

    Article  Google Scholar 

  • Bebout G E, Agard P, Kobayashi K, Moriguti T, Nakamura E. 2013b. Devolatilization history and trace element mobility in deeply subducted sedimentary rocks: Evidence from Western Alps HP/UHP suites. Chem Geol, 342: 1–20

    Article  Google Scholar 

  • Behn M D, Kelemen P B, Hirth G, Hacker B R, Massonne H J. 2011. Diapirs as the source of the sediment signature in arc lavas. Nat Geosci, 4: 641–646

    Article  Google Scholar 

  • Beinlich A, Klemd R, John T, Gao J. 2010. Trace-element mobilization during Ca-metasomatism along a major fluid conduit: Eclogitization of blueschist as a consequence of fluid-rock interaction. Geochim Cosmochim Acta, 74: 1892–1922

    Article  Google Scholar 

  • Berkesi M, Guzmics T, Szabó C, Dubessy J, Bodnar R J, Hidas K, Ratter K. 2012. The role of CO2-rich fluids in trace element transport and metasomatism in the lithospheric mantle beneath the Central Pannonian Basin, Hungary, based on fluid inclusions in mantle xenoliths. Earth Planet Sci Lett, 331: 8–20

    Article  Google Scholar 

  • Blundy J, Cashman K, Humphreys M. 2006. Magma heating by decompression-driven crystallization beneath and esite volcanoes. Nature, 443: 76–80

    Article  Google Scholar 

  • Blundy J, Wood B. 2003. Partitioning of trace elements between crystals and melts. Earth Planet Sci Lett, 210: 383–397

    Article  Google Scholar 

  • Bourdon B, Tipper E T, Fitoussi C, Stracke A. 2010. Chondritic Mg isotope composition of the Earth. Geochim Cosmochim Acta, 74: 5069–5083

    Article  Google Scholar 

  • Bromiley G D, Pawley A R. 2003. The stability of antigorite in the systems MgO-SiO2-H2O (MSH) and MgO-Al2O3-SiO2-H2O (MASH): The effects of Al3+ substitution on high-pressure stability. Am Mineral, 88: 99–108

    Article  Google Scholar 

  • Brovarone V A, Alard O, Beyssac O, Martin L, Picatto M. 2014. Lawsonite metasomatism and trace element recycling in subduction zones. J Metamorph Geol, 32: 489–514

    Article  Google Scholar 

  • Burton M R, Sawyer G M, Granieri D. 2013. Deep carbon emissions from volcanoes. Rev Mineral Geochem, 75: 323–354

    Article  Google Scholar 

  • Caciagli N, Brenan J, McDonough W F, Phinney D. 2011. Mineral-fluid partitioning of lithium and implications for slab-mantle interaction. Chem Geol, 280: 384–398

    Article  Google Scholar 

  • Canfield D E. 2004. The evolution of the Earth surface sulfur reservoir. Am J Sci, 304: 839–861

    Article  Google Scholar 

  • Carmichael I. 2002. The andesite aqueduct: Perspectives on the evolution of intermediate magmatism in west-central (105°–99°W) Mexico. Contrib Mineral Petrol, 143: 641–663

    Article  Google Scholar 

  • Cartigny P, Marty B. 2013. Nitrogen isotopes and mantle geodynamics: The emergence of life and the Atmosphere-Crust-Mantle connection. Elements, 9: 359–364

    Article  Google Scholar 

  • Cervantes P, Wallace P. 2003. Magma degassing and basaltic eruption styles: A case study of ~2000 year BP Xitle volcano in central Mexico. J Volcanol Geotherm Res, 120: 249–270

    Article  Google Scholar 

  • Chen R X, Zheng Y F, Gong B. 2011. Mineral hydrogen isotopes and water contents in ultrahigh-pressure metabasite and metagranite: Constraints on fluid flow during continental subduction-zone metamorphism. Chem Geol, 281: 103–124

    Article  Google Scholar 

  • Chen Y X, Zheng Y F, Hu Z. 2013a. Petrological and zircon evidence for anatexis of UHP quartzite during continental collision in the Sulu orogen. J Metamorph Geol, 31: 389–413

    Article  Google Scholar 

  • Chen Y, Ye K, Wu Y W, Guo S, Su B, Liu J B. 2013b. Hydration and dehydration in the lower margin of a cold mantle wedge: Implications for crust-mantle interactions and petrogeneses of arc magmas. Int Geol Rev, 55: 1506–1522

    Article  Google Scholar 

  • Chen Y, Ye K, Su B, Guo S, Liu J B. 2013c. Metamorphism and metasomatism of orogenic peridotites from Dabie-Sulu UHP terrane (in Chinese). Chin Sci Bull, 58: 2294–2299

    Google Scholar 

  • Chopin C. 1984. Coesite and pure pyrope in high-grade blueschists of the Western Alps: A first record and some consequences. Contrib Mineral Petrol, 86: 107–118

    Article  Google Scholar 

  • Clarke G, Powell R, Fitzherbert J. 2006. The lawsonite paradox: A comparison of field evidence and mineral equilibria modelling. J Metamorph Geol, 24: 715–725

    Article  Google Scholar 

  • Cloos M, Shreve R L. 1988a. Subduction-channel model of prism accretion, mélange formation, sediment subduction, and subduction erosion atconvergent plate margins: 1, Background and description. Pure Appl Geophys, 128: 455–500

    Article  Google Scholar 

  • Cloos M, Shreve R L. 1988b. Subduction-channel model of prism accretion, mélange formation, sediment subduction, and subduction erosion at convergent plate margins: 2, Implications and discussion. Pure Appl Geophys, 128: 501–505

    Article  Google Scholar 

  • Connolly J. 2005. Computation of phase equilibria by linear programming: A tool for geodynamic modeling and its application to subduction zone decarbonation. Earth Planet Sci Lett, 236: 524–541

    Article  Google Scholar 

  • Cooper L B, Ruscitto D M, Plank T, Wallace P J, Syracuse E M, Manning C E. 2012. Global variations in H2O/Ce: 1. Slab surface temperatures beneath volcanic arcs. Geochem Geophys Geosyst, 13, doi: 10.1029/ 2011GC003902

    Google Scholar 

  • Cottrell E, Kelley K A. 2011. The oxidation state of Fe in MORB glasses and the oxygen fugacity of the upper mantle. Earth Planet Sci Lett, 305: 270–282

    Article  Google Scholar 

  • Crerar D, Wood S, Brantley S, Bocarsly A. 1985. Chemical controls on solubility of ore-forming minerals in hydrothermal solutions. Can Mineral, 23: 333–352

    Google Scholar 

  • Davies J H, Stevenson D J. 1992. Physical model of source region of subduction zone volcanics. J Geophys Res, 97: 2037–2070

    Article  Google Scholar 

  • Defant M J, Drummond M S. 1990. Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature, 347: 662–665

    Article  Google Scholar 

  • Deschamps F, Godard M, Guillot S, Hattori K. 2013. Geochemistry of subduction zone serpentinites: A review. Lithos, 178: 96–127

    Article  Google Scholar 

  • Dobrzhinetskaya L F, Green II H W, Wang S. 1996. Alpe Arami: A pridotite massif from depths of more than 300 kilometers. Science, 271: 1841–1845

    Article  Google Scholar 

  • Dohmen R, Kasemann S A, Coogan L, Chakraborty S. 2010. Diffusion of Li in olivine. Part I: Experimental observations and a multi species diffusion model. Geochim Cosmochim Acta, 74: 274–292

    Article  Google Scholar 

  • Dvir O, Pettke T, Fumagalli P, Kessel R. 2011. Fluids in the peridotite-water system up to 6 GPa and 800°C: New experimental constrains on dehydration reactions. Contrib Mineral Petrol, 161: 829–844

    Article  Google Scholar 

  • Eggler D H, Burnham C W. 1984. Solution of H2O in diopside melts— a thermodynamic model. Contrib Mineral Petrol, 85: 58–66

    Article  Google Scholar 

  • Enami M, Liou J G, Mattinson C G. 2004. Epidote minerals in high P/T metamorphic terranes: Subduction zone and high- to ultrhigh-pressure metamorphism. Rev Mineral Geochem, 56: 347–398

    Article  Google Scholar 

  • Ernst W, Tsujimori T, Zhang R, Liou J G. 2007. Permo-Triassic collision, subduction-zone metamorphism, and tectonic exhumation along the East Asian continental margin. Annu Rev Earth Planet Sci, 35: 73–110

    Article  Google Scholar 

  • Ferrando S, Frezzotti M, Dallai L, Compagnoni R. 2005. Multiphase solid inclusions in UHP rocks (Su-Lu, China): Remnants of supercritical silicate-rich aqueous fluids released during continental subduction. Chem Geol, 223, 68–81

    Article  Google Scholar 

  • Foley S F, Barth M G, Jenner G A. 2000. Rutile/melt partition coefficients for trace elements and an assessment of the influence of rutile on the trace element characteristics of subduction zone magmas. Geochim Cosmochim Acta, 64: 933–938

    Article  Google Scholar 

  • Foley S, Tiepolo M, Vannucci R. 2002. Growth of early continental crust controlled by melting of amphibolite in subduction zones. Nature, 417: 837–840

    Article  Google Scholar 

  • Frezzotti M, Selverstone J, Sharp Z, Compagnoni R. 2011. Carbonate dissolution during subduction revealed by diamond-bearing rocks from the Alps. Nat Geosci, 4: 703–706

    Article  Google Scholar 

  • Frezzotti M L, Ferrando S, Tecce F, Castelli D. 2012. Water content and nature of solutes in shallow-mantle fluids from fluid inclusions. Earth Planet Sci Lett, 351: 70–83

    Article  Google Scholar 

  • Fu B, Touret J L R, Zheng Y F. 2001. Fluid inclusions in coesite-bearing eclogites and jadeite quartzite at Shuanghe, Dabie Shan (China). J Metamorph Geol, 19: 531–547

    Article  Google Scholar 

  • Fu B, Touret J L, Zheng Y F, Jahn B M. 2003. Fluid inclusions in granulites, granulitized eclogites and garnet clinopyroxenites from the Dabie-Sulu terranes, eastern China. Lithos, 70: 293–319

    Article  Google Scholar 

  • Fumagalli P, Poli S. 2005. Experimentally determined phase relations in hydrous peridotites to 6.5 GPa and their consequences on the dynamics of subduction zones. J Petrol, 46: 555–578

    Article  Google Scholar 

  • Fumagalli P, Zanchetta S, Poli S. 2009. Alkali in phlogopite and amphibole and their effects on phase relations in metasomatized peridotites: A high-pressure study. Contrib Mineral Petrol, 158: 723–737

    Article  Google Scholar 

  • Gaetani G A, Grove T L. 1998. The influence of water on melting of mantle peridotite. Contrib Mineral Petrol, 131: 323–346

    Article  Google Scholar 

  • Gaetani G A, Grove T L. 2003. Experimental constraints on melt generation in the mantle wedge. In: Eiler J ed. Inside the Subduction Factory. Washington D C: AGU Geophysical Monograph Series. 107–134

    Google Scholar 

  • Gao J, John T, Klemd R, Xiong X M. 2007. Mobilization of Ti-Nb-Ta during subduction: Evidence from rutile–bearing dehydration segregations and veins hosted in eclogite, Tianshan, NW China. Geochim Cosmochim Acta, 71: 4974–4996

    Article  Google Scholar 

  • Gao X Y, Zheng Y F, Chen Y X. 2012. Dehydration melting of ultrahigh-pressure eclogite in the Dabie orogen: Evidence from multiphase solid inclusions in garnet. J Metamorph Geol, 30: 193–212

    Article  Google Scholar 

  • Gao X Y, Zheng Y F, Chen Y X, Hu Z. 2013. Trace element composition of continentally subducted slab-derived melt: Insight from multiphase solid inclusions in ultrahigh-pressure eclogite in the Dabie orogen. J Metamorph Geol, 31: 453–468

    Article  Google Scholar 

  • Gill J B. 1981. Geophysical Setting of Volcanism at Convergent Plate Boundaries, Orogenic Andesites and Plate Tectonics. Berlin: Springer. 44–63

    Google Scholar 

  • Goldblatt C, Claire M W, Lenton T M, Matthews A J, Watson A J, Zahnle K J. 2009. Nitrogen-enhanced greenhouse warming on early Earth. Nat Geosci, 2: 891–896

    Article  Google Scholar 

  • Green D H, Hibberson W O, Kovács I, Rosenthal A. 2010. Water and its influence on the lithosphere-asthenosphere boundary. Nature, 467: 448–451

    Article  Google Scholar 

  • Grove T L, Chatterjee N, Parman S W, Médard E. 2006. The influence of H2O on mantle wedge melting. Earth Planet Sci Lett, 249: 74–89

    Article  Google Scholar 

  • Grove T L, Elkins-Tanton L T, Parman S W, Chatterjee N, Müntener O, Gaetani G A. 2003. Fractional crystallization and mantle-melting controls on calc-alkaline differentiation trends. Contrib Mineral Petrol, 145: 515–533

    Article  Google Scholar 

  • Grove T L, Till C B, Krawczynski M. 2012. The role of H2O in subduction zone magmatism. Annu Rev Earth Planet Sci, 40: 413–439

    Article  Google Scholar 

  • Gorman P J, Kerrick D, Connolly J. 2006. Modeling open system metamorphic decarbonation of subducting slabs. Geochem Geophys Geosyst, 7, doi: 10.1029/2005GC001125

    Google Scholar 

  • Guillot S, Hattori K, Agard P, Schwartz S, Vidal O. 2009. Exhumation processes in oceanic and continental subduction contexts: A review. In: Lallemand S, Funiciello F, eds. Subduction Zone Geodynamics. Berlin: Springer-Verlag. 175–205

    Chapter  Google Scholar 

  • Guo S, Ye K, Chen Y, Liu J B, Mao Q, Ma Y G. 2012. Fluid-rock interaction and element mobilization in UHP metabasalt: Constraints from an omphacite-epidote vein and host eclogites in the Dabie orogen. Lithos, 136: 145–167

    Article  Google Scholar 

  • Hack A C, Thompson A B. 2011. Density and viscosity of hydrous magmas and related fluids and their role in subduction zone processes. J Petrol, 52:1333–1362

    Article  Google Scholar 

  • Hacker B R. 2008. H2O subduction beyond arcs. Geochem Geophs Geosyst, 9, doi: 10.1029/2007GC001707

    Google Scholar 

  • Hauri E H, Wagner T P, Grove T L. 1994. Experimental and natural partitioning of Th, U, Pb and other trace-elements between garnet, clinopyroxene and basaltic melts. Chem Geol, 117: 149–166

    Article  Google Scholar 

  • Hermann J, Martin L. 2012. CO2 analysis in high-pressure melts and implications for carbon recycling in subduction zones. EGU General Assembly Conference Abstracts. 3800

    Google Scholar 

  • Hermann J, Rubatto D. 2009. Accessory phase control on the trace element signature of sediment melts in subduction zones. Chem Geol, 265: 512–526

    Article  Google Scholar 

  • Hermann J, Rubatto D. 2014. Subduction of continental crust to mantle depth: Geochemistry of ultrahigh-pressure rocks. In: Holland H D, Turekian K K, eds. Treatise on Geochemistry. 2nd ed. Vol 4. 309–340

    Article  Google Scholar 

  • Hermann J, Spandler C J. 2008. Sediment melts at sub-arc depths: An experimental study. J Petrol, 49: 717–740

    Article  Google Scholar 

  • Hermann J, Rubatto D, Korsakov A, Shatsky V S. 2001. Multiple zircon growth during fast exhumation of diamondiferous, deeply subducted continental crust (Kokchetav Massif, Kazakhstan). Contrib Mineral Petrol, 141: 66–82

    Article  Google Scholar 

  • Hermann J, Spandler C, Hack A, Korsakov A V. 2006. Aqueous fluids and hydrous melts in high-pressure and ultra-high pressure rocks: Implications for element transfer in subduction zones. Lithos, 92: 399–417

    Article  Google Scholar 

  • Hermann J, Zheng Y F, Rubatto D. 2013. Deep fluids in subducted continental crust. Elements, 9: 281–287

    Article  Google Scholar 

  • Hirose K. 1997. Partial melt compositions of carbonated peridotite at 3 GPa and role of CO2 in alkali-basalt magma generation. Geophys Res Lett, 24: 2837–2840.

    Article  Google Scholar 

  • Hirose K, Kawamoto T. 1995. Hydrous partial melting of iherzolite at 1 GPa-the effect of H2O on the genesis of basaltic magmas. Earth Planet Sci Lett, 133: 463–473

    Article  Google Scholar 

  • Honma H, Itihara Y. 1981. Distribution of ammonium in minerals of metamorphic and granitic rocks. Geochim Cosmochim Acta, 45: 983–988

    Article  Google Scholar 

  • Huang F, Chen L J, Wu Z Q, Wang W. 2013. First-principles calculations of equilibrium Mg isotope fractionations between garnet, clinopyroxene, orthopyroxene, and olivine: Implications for Mg isotope thermometry. Earth Planet Sci Lett, 367: 61–70

    Article  Google Scholar 

  • Huang J, Xiao Y L, Gao Y J, Hou Z H, Wu W P. 2012a. Nb-Ta fractionation induced by fluid-rock interaction in subduction-zones: Constraints from UHP eclogites- and vein-hosted rutile from the Dabie orogen, Central-Eastern China. J Metamorph Geol, 30: 821–842

    Article  Google Scholar 

  • Huang J, Xiao Y L. 2015. Element mobility in mafic and felsic ultrahigh pressure metamorphic rocks from the South Dabie orogen, China: Insights into supercritical fluids in continental subduction zones. Int Geol Rev, 57: 1103–1129

    Article  Google Scholar 

  • Jarrard R D. 2003. Subduction fluxes of water, carbon dioxide, chlori ne, and potassium. Geochem Geophs Geosyst, 4, doi: 10.1029/200 2GC000392

    Google Scholar 

  • Jégo S, Dasgupta R. 2013. Fluid-present melting of sulfide-bearing ocean-crust: Experimental constraints on the transport of sulfur from subducting slab to mantle wedge. Geochim Cosmochim Acta, 110: 106–134

    Article  Google Scholar 

  • Jégo S, Dasgupta R. 2014. The fate of sulfur during fluid-present melting of subducting basaltic crust at variable oxygen fugacity. J Petrol, 55: 1019–1050

    Article  Google Scholar 

  • Jahn S, Wunder B. 2009. Lithium speciation in aqueous fluids at high P and T studied by ab initio molecular dynamics and consequences for Li-isotope fractionation between minerals and fluids. Geochim Cosmochim Acta, 73: 5428–5434

    Article  Google Scholar 

  • John T, Klemd R, Gao J, Garbe-Schönberg C D. 2008. Trace-element mobilization in slabs due to non steady-state fluid-rock interaction: Constraints from an eclogites-facies transport vein in blueschist (Tianshan, China). Lithos, 103: 1–24

    Article  Google Scholar 

  • John T, Schenk V. 2006. Interrelations between intermediate-depth earthquakes and fluid flow within subducting oceanic plates: Constraints from eclogite facies pseudotachylytes. Geology, 34: 557–560

    Article  Google Scholar 

  • Kawamoto T, Kanzaki M, Mibe K, Matsukage K N, Ono S. 2012. Separation of supercritical slab-fluids to form aqueous fluid and melt components in subduction zone magmatism. Proc Natl Acad Sci USA, 109: 18695–18700

    Article  Google Scholar 

  • Kawamoto T, Yoshikawa M, Kumagai Y, Mirabueno M H, Okuno M, Kobayashi T. 2013. Mantle wedge infiltrated with saline fluids from dehydration and decarbonation of subducting slab. Proc Natl Acad Sci USA, 110: 9663–9668

    Article  Google Scholar 

  • Kelemen P B, Rilling J L, Parmentier E, Mehl L, Hacker B R. 2003. Thermal structure due to solid-state flow in the mantle wedge beneath arcs. Inside the subduction factory. 293–311

    Chapter  Google Scholar 

  • Kelley K A, Plank T, Ludden J, Staudigel H. 2003. Composition of altered oceanic crust at ODP Sites 801 and 1149. Geochem Geophs Geosyst, 4, doi: 10.1029/2002GC000435

    Google Scholar 

  • Kennedy G, Wasserburg G, Heard H, Newton R. 1962. The upper three phase region in the system SiO2-H2O. Am J Sci, 260: 501–521

    Article  Google Scholar 

  • Kerrick D, Connolly J. 2001. Metamorphic devolatilization of subducted oceanic metabasalts: Implications for seismicity, arc magmatism and volatile recycling. Earth Planet Sci Lett, 189: 19–29

    Article  Google Scholar 

  • Kessel R, Schmidt M W, Ulmer P, Pettke T. 2005a. Trace element signature of subduction-zone fluids, melts and supercritical liquids at 120–180 km depth. Nature, 437: 724–727

    Article  Google Scholar 

  • Kessel R, Ulmer P, Pettke T, Schmidt M, Thompson A. 2005b. The water-basalt system at 4 to 6 GPa: Phase relations and second critical endpoint in a K-free eclogite at 700 to 1400°C. Earth Planet Sci Lett, 237: 873–892

    Article  Google Scholar 

  • Klemme S, Prowatke S, Hametner K, Günther D. 2005. Partitioning of trace elements between rutile and silicate melts: Implications for subduction zones. Geochim Cosmochim Acta, 69: 2361–2371

    Article  Google Scholar 

  • Klimm K, Blundy J D, Green T H. 2008. Trace element partitioning and accessory phase saturation during H2O-saturated melting of basalt with implications for subduction zone chemical fluxes. J Petrol, 49: 523–553

    Article  Google Scholar 

  • Krawczynski. 2011. Experimental studies of melting and crystallization processes in planetary interiors. Doctoral Dissertation. Massachusetts Institute of Technology. 202

  • Krawczynski M J, Grove T L, Behrens H. 2012. Amphibole stability in primitive arc magmas: Effects of temperature, H2O content, and oxygen fugacity. Contrib Mineral Petrol, 164: 317–339

    Article  Google Scholar 

  • Kushiro K. 1990. Partial melting of mantle wedge and evolution of island arc crust. J Geophys Res, 95: 15929–15939

    Article  Google Scholar 

  • Labrousse L, Prouteau G, Ganzhorn A C. 2011. Continental exhumation triggered by partial melting at ultrahigh pressure. Geology, 39: 1171–1174

    Article  Google Scholar 

  • Li W Y, Teng F Z, Ke S, Rudnick R L, Gao S, Wu F Y, Chappell B W. 2010. Heterogeneous magnesium isotopic composition of the upper continental crust. Geochim Cosmochim Acta, 74: 6867–6884

    Article  Google Scholar 

  • Li W Y, Teng F Z, Xiao Y L, Huang J. 2011. High-temperature intermineral magnesium isotope fractionation in eclogite from the Dabie orogen, China. Earth Planet Sci Lett, 304: 224–230

    Article  Google Scholar 

  • Li W Y, Teng F Z, Xiao Y, Huang J. 2014. Limited magnesium isotope fractionation during metamorphic dehydration in metapelites from the Onawa contact aureole, Maine. Geochem Geophys Geosyst, 15: 408–415

    Article  Google Scholar 

  • Li X P, Zheng Y F, Wu Y B, Chen F, Gong B, Li Y L. 2004. Low-T eclogite in the Dabie terrane of China: Petrological and isotopic constraints on fluid activity and radiometric dating. Contrib Mineral Petrol, 148: 443–470

    Article  Google Scholar 

  • Liu F L, Robinson P T, Liu P H. 2012. Multiple partial melting events in the Sulu UHP terrane: zircon U-Pb dating of granitic leucosomes within amphibolite and gneiss. J Metamorph Geol, 30: 887–906

    Article  Google Scholar 

  • Liu L, Xiao Y L, Aulbach S, Li D Y, Hou Z H. 2014. Vanadium and niobium behavior in rutile as a function of oxygen fugacity: Evidence from natural samples. Contrib Mineral Petrol, 167: 1026

    Article  Google Scholar 

  • Liu X W, Jin Z M, Green H W. 2007. Clinoenstatite exsolution in diopsidic augite of Dabieshan: Garnet peridotite from depth of 300 km. Am Mineral, 92: 546–552

    Article  Google Scholar 

  • Liu Y C, Gu X F, Rolfo F, Chen Z Y. 2011. Ultrahigh-pressure metamorphism and multistage exhumation of eclogite of the Luotian dome, North Dabie Complex Zone (central China): Evidence from mineral inclusions and decompression textures. J Asian Earth Sci, 42: 607–617

    Article  Google Scholar 

  • López Sánchez-Vizcaíno V, Gómez-Pugnaire M T, Garrido C J, Padrón-Navarta J A, Mellini M. 2009. Breakdown mechanisms of titanclinohumite in antigorite serpentinite (Cerro del Almirez massif, S. Spain): A petrological and TEM study. Lithos, 107: 216–226

    Article  Google Scholar 

  • Malaspina N, Hermann J, Scambelluri M. 2009. Fluid/mineral interaction in UHP garnet peridotite. Lithos, 107: 38–52

    Article  Google Scholar 

  • Malaspina N, Hermann J, Scambelluri M, Compagnoni R. 2006. Multistage metasomatism in ultrahigh-pressure mafic rocks from the North Dabie Complex (China). Lithos, 90: 19–42

    Article  Google Scholar 

  • Malaspina N, Tumiati S. 2012. The role of C-O-H and oxygen fugacity in subduction-zone garnet peridotites. Eur J Mineral, 24: 607–618

    Article  Google Scholar 

  • Mallmann G, O’Neill H S C. 2009. The crystal/melt partitioning of V during mantle melting as a function of oxygen fugacity compared with some other Elements (Al, P, Ca, Sc, Ti, Cr, Fe, Ga, Y, Zr and Nb). J Petrol, 50: 1765–1794

    Article  Google Scholar 

  • Manning C E. 1994. The solubility of quartz in H2O in the lower crust and upper-mantle. Geochim Cosmochim Acta, 58: 4831–4839

    Article  Google Scholar 

  • Manning C E. 2004. The chemistry of subduction-zone fluids. Earth Planet Sci Lett, 223: 1–16

    Article  Google Scholar 

  • Manning C E, Shock E L, Sverjensky D. 2013. The chemistry of carbon in aqueous fluids at crustal and uppermantle conditions: Experimental and theoretical constraints. Rev Mineral Geochem, 75: 109–148

    Article  Google Scholar 

  • Marschall H R, Dohmen R, Ludwig T. 2013. Diffusion-induced fractionation of niobium and tantalum during continental crust formation. Earth Planet Sci Lett, 375: 361–371

    Article  Google Scholar 

  • Marschall H R, Schumacher J. 2012. Arc magmas sourced from melange diapirs in subduction zones. Nat Geosci, 5: 862–867

    Article  Google Scholar 

  • Marschall H R, von Strandmann P A P, Seitz H M, Elliott T, Niu Y L. 2007. The lithium isotopic composition of orogenic eclogites and deep subducted slabs. Earth Planet Sci Lett, 262: 563–580

    Article  Google Scholar 

  • Martin L, Hermann J, Gauthiez-Putallaz L, Whitney D, Vitale Brovarone A, Fornash K, Evans N. 2014. Lawsonite geochemistry and stability— Implication for trace element and water cycles in subduction zones. J Metamorph Geol, 32: 455–478

    Article  Google Scholar 

  • McCammon C. 2005. The paradox of mantle redox. Science, 308: 807–808

    Article  Google Scholar 

  • Médard E, Grove T L. 2006. Early hydrous melting and degassing of the Martian interior. J Geophys Re, 111, doi: 10.1029/2006JE002742

    Google Scholar 

  • Mibe K, Chou I M, Bassett W. 2008. In situ Raman spectroscopic investigation of the structure of subduction-zone fluids. J Geophys Res, 113, doi: 10.1029/2007JB005179

    Google Scholar 

  • Mibe K, Fujii T, Yasuda A. 2002. Composition of aqueous fluid coexisting with mantle minerals at high pressure and its bearing on the differentiation of the Earth’s mantle. Geochim Cosmochim Acta, 66: 2273–2285

    Article  Google Scholar 

  • Mibe K, Kawamoto T, Matsukage K N, Fei Y, Ono S. 2011. Slab melting versus slab dehydration in subduction-zone magmatism. Proc Natl Acad Sci USA, 108: 8177–8182

    Article  Google Scholar 

  • Münker C, Pfänder J A, Weyer S, Büchl A, Kleine T, Mezger K. 2003. Evolution of planetary cores and the earth-moon system from Nb/Ta systematics. Science 301, 84–87

    Article  Google Scholar 

  • Padrón-Navarta J A, Sánchez-Vizcaíno V L, Garrido C J, Gómez-Pugnaire M T. 2011. Metamorphic record of high-pressure dehydration of antigorite serpentinite to chlorite harzburgite in a subduction setting (Cerro del Almirez, Nevado-Filábride Complex, Southern Spain). J Petrol, 52: 2047–2078

    Article  Google Scholar 

  • Pfänder J A, Münker C, Stracke A, Mezger K. 2007. Nb/Ta and Zr/Hf in ocean island basalts—Implications for crust-mantle differentiation and the fate of Niobium. Earth Planet Sci Lett, 254: 158–172

    Article  Google Scholar 

  • Paillat O, Elphick S, Brown W. 1992. The solubility of water in NaAlSi3O8 melts—A reexamination of AB-H2O phase-relationships and critical-behavior at high-pressures. Contrib Mineral Petrol, 112: 490–500.

    Article  Google Scholar 

  • Pan D, Spanu L, Harrison B, Sverjensky D A, Galli G. 2013. Dielectric properties of water under extreme conditions and transport of carbonates in the deep Earth. Proc Natl Acad Sci USA, 110: 6646–6650

    Article  Google Scholar 

  • Parkinson I J, Arculus R J. 1999. The redox state of subduction zones: Insights from arc-peridotites. Chem Geol, 160: 409–423

    Article  Google Scholar 

  • Parman S W, Grove T L. 2004. Harzburgite melting with and without H2O: Experimental data and predictive modeling. J Geophys Res, 109, doi: 10.1029/2003JB002566

    Google Scholar 

  • Pawley A. 2003. Chlorite stability in mantle peridotite: The reaction clinochlore+ enstatite=forsterite+pyrope+H2O. Contrib Mineral Petrol, 144: 449–456.

    Article  Google Scholar 

  • Peacock S M. 1990. Fluid Processes in Subduction Zones. Science, 248: 329–337

    Article  Google Scholar 

  • Plank T, Langmuir C H. 1998. The chemical composition of subducting sediment and its consequences for the crust and mantle. Chem Geol, 145: 325–394

    Article  Google Scholar 

  • Plank T, Cooper L B, Manning C E. 2009. Emerging geothermometers for estimating slab surface temperatures. Nat Geosci, 2: 611–615

    Article  Google Scholar 

  • Poli S, Franzolin E, Fumagalli P, Crottini A. 2009. The transport of carbon and hydrogen in subducted oceanic crust: An experimental study to 5 GPa. Earth Planet Sci Lett, 278: 350–360

    Article  Google Scholar 

  • Prouteau G, Scaillet B. 2013. Experimental constraints on sulphur behaviour in subduction zones: Implications for TTG and adakite production and the global sulphur cycle since the Archean. J Petrol, 54:183–213

    Article  Google Scholar 

  • Prouteau G, Scaillet B, Pichavant M, Maury R. 2001. Evidence for mantle metasomatism by hydrous silicic melts derived from subducted oceanic crust. Nature, 410: 197–200

    Article  Google Scholar 

  • Rapp R P, Watson E B. 1995. Dehydration melting of metabasalt at 8–32 kbar: Implications for continental growth and crust-mantle recycling. J Petrol, 36: 891–931

    Article  Google Scholar 

  • Rapp R P, Shimizu N, Norman M D. 2003. Growth of early continental crust by partial melting of eclogite. Nature, 425: 605–609

    Article  Google Scholar 

  • Richter F. 2003. Isotope fractionation by chemical diffusion between molten basalt and rhyolite. Geochim Cosmochim Acta, 67: 3905–3923

    Article  Google Scholar 

  • Richter F M, McKenzie D P. 1978. Simple plate models of mantle convection. J Geophys, 44: 441–471

    Google Scholar 

  • Rudnick R L, Barth M, Horn I, McDonough W F. 2000. Rutile-bearing refractory eclogites: Missing link between continents and depleted mantle. Science, 287: 278–281

    Article  Google Scholar 

  • Saffer D M, Tobin H J. 2011. Hydrogeology and mechanics of subduction zone forearcs: Fluid flow and pore pressure. Annu Rev Earth Planet Sci, 39: 157–186

    Article  Google Scholar 

  • Scambelluri M, Piccardo G B, Philippot P, Robbiano A, Negretti L. 1997. High salinity fluid inclusions formed from recycled seawater in deeply subducted alpine serpentinite. Earth Planet Sci Lett, 148: 485–499

    Article  Google Scholar 

  • Schmidt M W, Poli S. 1998. Experimentally based water budgets for dehydrating slabs and consequences for arc magma generation. Earth Planet Sci Lett, 163: 361–379

    Article  Google Scholar 

  • Schmidt M W, Vielzeuf D, Auzanneau E. 2004. Melting and dissolution of subducting crust at high pressures: The key role of white mica. Earth Planet Sci Lett, 228: 65–84

    Article  Google Scholar 

  • Sheng Y M, Xia Q K, Dallai L, Yang X Z, Hao Y T. 2007. H2O contents and D/H ratios of nominally anhydrous minerals from ultrahigh-pressure eclogites of the Dabie orogen, eastern China. Geochim Cosmochim Acta, 71: 2079–2103

    Article  Google Scholar 

  • Shreve R L, Cloos M. 1986. Dynamics of sediment subduction, mélange formation, and prism accretion. J Geophys Res, 91: 10229–10245

    Article  Google Scholar 

  • Simon A C, Ripley E M. 2011. The role of magmatic sulfur in the formation of ore deposits. Rev Mineral Geochem, 73: 513–578

    Article  Google Scholar 

  • Simons K K, Harlow G E, Brueckner H K, Goldstein S L, Sorensen S S, Hemming N G, Langmuir C H. 2010. Lithium isotopes in Guatemalan and Franciscan HP-LT rocks: Insights into the role of sediment-derived fluids during subduction. Geochim Cosmochim Acta, 74: 3621–3641

    Article  Google Scholar 

  • Sinogeikin S V, Schilling F R, Bass J D. 2000. Single crystal elasticity of lawsonite. Am Mineral, 85: 1834–1837

    Article  Google Scholar 

  • Sisson T W, Grove T L. 1993. Temperatures and H2O contents of low-MgO high-alumina basalts. Contrib Mineral Petrol, 113: 167–184

    Article  Google Scholar 

  • Sisson T W, Layne G D. 1993. H2O in basalt and basaltic andesite glass inclusions from 4 subduction-related volcanos. Earth Planet Sci Lett, 117: 619–635

    Article  Google Scholar 

  • Skora S, Blund J. 2010. High-pressure hydrous phase relations of radiolarian clay and implications for the involvement of subducted sediment in arc magmatism. J Petrol, 51: 2211–2243

    Article  Google Scholar 

  • Smith D C. 1984. Coesite in clinopyroxene in the Caledonides and its implications for geodynamics. Nature, 310: 641–644

    Article  Google Scholar 

  • Sobolev N V, Shatsky V S. 1990. Diamond inclusions in garnets from metamorphic rocks: A new environment for diamond formation. Nature, 343: 742–746

    Article  Google Scholar 

  • Spandler C, Pirard C. 2013. Element recycling from subducting slabs to arc crust: A review. Lithos, 170: 208–223

    Article  Google Scholar 

  • Spandler C, Hermann J. 2006. High-pressure veins in eclogite from New Caledonia and their significance for fluid migration in subduction zones. Lithos, 89: 135–153

    Article  Google Scholar 

  • Spandler C, Mavrogenes J, Hermann J. 2007. Experimental constraints on element mobility from subducted sediments using high-P synthetic fluid/ melt inclusions. Chem Geol, 239: 228–249

    Article  Google Scholar 

  • Spandler C, Pettke T, Rubatto D. 2011. Internal and external fluid sources for eclogite-facies veins in the Monviso Meta-ophiolite, Western Alps: Implications for fluid flow in subduction zones. J Petrol, 52: 1207–1236

    Article  Google Scholar 

  • Stalder R, Ulmer P, Thompson A, Günther D. 2001. High pressure fluids in the system MgO-SiO2-H2O under upper mantle conditions. Contrib Mineral Petrol, 140: 607–618

    Article  Google Scholar 

  • Sun H, Xiao Y L, Gao Y J, Lai J Q, Hou Z H, Wang Y Y. 2013. Fluid and melt inclusions in the Mesozoic Fangcheng basalt from North China Craton: Implications for magma evolution and fluid/melt-peridotite reaction. Contrib Mineral Petrol, 165: 885–901

    Article  Google Scholar 

  • Sutton S, Karner J, Papike J, Delaney J, Shearer C, Newville M, Eng P, Rivers M, Dyar M. 2005. Vanadium K edge XANES of synthetic and natural basaltic glasses and application to microscale oxygen barometry. Geochim Cosmochim Acta, 69: 2333–2348

    Article  Google Scholar 

  • Syracuse E M, van Keken P, Abers G A. 2010. The global range of subduction zone thermal models. Phys Earth Planet Inter, 183: 73–90

    Article  Google Scholar 

  • Tang Y J, Zhang H F, Deloule E, Su B X, Ying J F, Xiao Y, Hu Y. 2012. Slab-derived lithium isotopic signatures in mantle xenoliths from northeastern North China Craton. Lithos, 149: 79–90

    Article  Google Scholar 

  • Tatsumi Y, Eggins S. 1995. Subduction Zone Magmatism, 1. Cambridge: Blackwell Science

  • Tatsumi Y, Hamilton D, Nesbitt R. 1986. Chemical characteristics of fluid phase released from a subducted lithosphere and origin of arc magmas: Evidence from high-pressure experiments and natural rocks. J Volcanol Geotherm Res, 29: 293–309

    Article  Google Scholar 

  • Teng F Z, Li W Y, Ke S, Marty B, Dauphas N, Huang S, Wu F Y, Pourmand A. 2010. Magnesium isotopic composition of the Earth and chondrites. Geochim Cosmochim Acta, 74: 4150–4166

    Article  Google Scholar 

  • Thorkelson D J, Breitsprecher K. 2005. Partial melting of slab window margins: Genesis of adakitic and non-adakitic magmas. Lithos, 79: 25–41

    Article  Google Scholar 

  • Tiepolo M, Vannucci R, Oberti R, Foley S, Bottazzi P, Zanetti A. 2000. Nb and Ta incorporation and fractionation in titanian pargasite and kaersutite: Crystal-chemical constraints and implications for natural systems. Earth Planet. Sci Lett, 176: 185–201

    Article  Google Scholar 

  • Till C B, Grove T L, Withers A C. 2012. The beginnings of hydrous mantle wedge melting. Contrib Mineral Petrol, 163: 669–688

    Article  Google Scholar 

  • Tomlinson E L, Mueller W, Eimf. 2009. Coexisting fluid (LA-ICP-MS) and silicate (SIMS) inclusions in fibrous diamonds. Earth Planet Sci Lett, 279: 362–372

    Article  Google Scholar 

  • Trommsdorff V, Sánchez-Vizcaíno V L, Gomez-Pugnaire M, Müntener O. 1998. High pressure breakdown of antigorite to spinifex-textured olivine and orthopyroxene, SE Spain. Contrib Mineral Petrol, 132: 139–148

    Article  Google Scholar 

  • Tsay A, Zajacz Z, Sanchez-Valle C. 2014. Efficient mobiliztion and fractionation of rare-earth elements by aqueous fluids upon slab dehydration. Earth Planet Sci Lett, 398: 101–112

    Article  Google Scholar 

  • Tsujimori T, Ernst W. 2013. Lawsonite blueschists and lawsonite eclogites as proxies for palaeo-subduction zone processes: A review. J Metamorph Geol, 32: 437–454

    Article  Google Scholar 

  • Tsujimori T, Sisson V B, Liou J G, Harlow G E, Sorensen S S. 2006. Very-low-temperature record of the subduction process: A review of worldwide lawsonite eclogites. Lithos, 92: 609–624

    Article  Google Scholar 

  • Ulmer P, Trommsdorff V. 1995. Serpentine stability to mantle depths and subduction-related magmatism. Science, 268: 858–861

    Article  Google Scholar 

  • van Keken P E, Kiefer B, Peacock S M. 2002. High-resolution models of subduction zones: Implications for mineral dehydration reactions and the transport of water into the deep mantle. Geochem Geophy Geosy, 3, doi: 10.1029/2001GC000256

    Google Scholar 

  • Vlastélic I, Koga K, Chauvel C, Jacques G, Télouk P. 2009. Survival of lithium isotopic heterogeneities in the mantle supported by HIMU-lavas from Rurutu Island, Austral Chain. Earth Planet Sci Lett, 286: 456–466

    Article  Google Scholar 

  • Vigouroux N, Wallace P J, Williams-Jones G, Kelley K, Kent A J, Williams-Jones A E. 2012. The sources of volatile and fluid-mobile elements in the Sunda arc: A melt inclusion study from Kawah Ijen and Tambora volcanoes, Indonesia. Geochem Geophys Geosyst, doi: 10.1029/2012GC004192

  • Wallace P J. 2005. Volatiles in subduction zone magmas: Concentrations and fluxes based on melt inclusion and volcanic gas data. J Volcanol Geotherm Res, 140: 217–240

    Article  Google Scholar 

  • Wallace P J, Edmonds M. 2011. The sulfur budget in magmas: Evidence from melt inclusions, submarine glasses, and volcanic gas emissions. Rev Mineral Geochem, 73: 215–246

    Article  Google Scholar 

  • Wallis S, Tsuboi M, Suzuki K, Fanning M, Jiang L, Tanaka T. 2005. Role of partial melting in the evolution of the Sulu (eastern China) ultra high-pressure terrane. Geology, 33: 129–132

    Article  Google Scholar 

  • Wang S J, Teng F Z, Li S G, Hong J A. 2014. Magnesium isotopic systematic of mafic rocks during continental subduction. Geochim Cosmochim Acta, 143: 34–48

    Article  Google Scholar 

  • Wang S J, Teng F Z, Williams H M, Li S G. 2012. Magnesium isotopic variations in cratonic eclogites: Origins and implications. Earth Planet Sci Lett, 359: 219–226

    Article  Google Scholar 

  • Webster J D, Botcharnikov R E. 2011. Distribution of sulfur between melt and fluid in SOHC-Cl-bearing magmatic systems at shallow crustal pressures and temperatures. Rev Mineral Geochem, 73: 247–283

    Article  Google Scholar 

  • Wei C, Clarke G. 2011. Calculated phase equilibria for MORB compositions: A reappraisal of the metamorphic evolution of lawsonite eclogite. J Metamorph Geol, 29: 939–952

    Article  Google Scholar 

  • Whitney D L, Davis, P B. 2006. Why is lawsonite eclogite so rare? Metamorphism and preservation of lawsonite eclogite, Sivrihisar, Turkey. Geology, 34: 473–476

    Google Scholar 

  • Wunder B, Meixner A, Romer R L, Heinrich W. 2006. Temperature-dependent isotopic fractionation of lithium between clinopyroxene and high-pressure hydrous fluids. Contrib Mineral Petrol, 151: 112–120

    Article  Google Scholar 

  • Wunder B, Melzer S. 2003. Experimental evidence on phlogopitic mantle metasomatism induced by phengite dehydration. Eur J Mineral, 15: 641–647

    Article  Google Scholar 

  • Wunder B, Meixner A, Romer R L, Feenstra A, Schettler G, Heinrich W. 2007. Lithium isotope fractionation between Li-bearing staurolite, Li-mica and aqueous fluids: An experimental study. Chem Geol, 238: 277–290

    Article  Google Scholar 

  • Wunder B, Schreyer W. 1997. Antigorite: High-pressure stability in the system MgO-SiO2-H2O (MSH). Lithos, 41: 213–227

    Article  Google Scholar 

  • Wykes J L, Mavrogenes J A. 2005. Hydrous sulfide melting: Experimental evidence for the solubility of H2O in sulfide melts. Econ Geol, 100: 157–164

    Article  Google Scholar 

  • Wyllie P J, Sekine T. 1982. The formation of mantle phlogopite in subduction zone hybridization. Contrib Mineral Petrol, 79: 375–380

    Article  Google Scholar 

  • Xia Q X, Zheng Y F, Hu Z C. 2010. Trace elements in zircon and coexisting minerals from low-T/UHP metagranite in the Dabie orogen: Implications for action of supercritical fluid during continental subduction-zone metamorphism. Lithos 114, 385–412

    Article  Google Scholar 

  • Xia Q X, Zheng Y F, Zhou L G. 2008. Dehydration and melting during continental collision: Constraints from element and isotope geochemistry of low-T/UHP granitic gneiss in the Dabie orogen. Chem Geol, 247, 36–65

    Article  Google Scholar 

  • Xiao Y, Teng F Z, Zhang H F, Yang W. 2013. Large magnesium isotope fractionation in peridotite xenoliths from eastern North China craton: Product of melt-rock interaction. Geochim Cosmochim Acta, 115: 241–261

    Article  Google Scholar 

  • Xiao Y L, Hoefs J, Hou Z H, Simon K, Zhang Z M. 2001. Geochemical constraints of the eclogite and granulite facies metamorphism as recognized in the Raobazhai complex from North Dabie Shan, China. J Metamorph Geol, 19: 3–19

    Article  Google Scholar 

  • Xiao Y L, Romer R L, Hoefs J, Meixner A. 2007. Li and B isotope characteristics of ultrahigh-pressure metamorphic rocks from Sulu, China. Geochim Cosmochim Acta, 71: A1132

    Google Scholar 

  • Xiao Y L, Hoefs J, Hou Z H, Simon K, Zhang Z M. 2011b. Fluid/rock interaction and mass transfer in continental subduction zones: Constraints from trace elements and isotopes (Li, B, O, Sr, Nd, Pb) in UHP rocks from the Chinese Continental Scientific Drilling Program, Sulu, East China. Contrib Mineral Petrol, 162: 797–819

    Article  Google Scholar 

  • Xiao Y L, Hoefs J, van den Kerkhof A M, Fiebig J, Zheng Y F. 2000. Fluid history of UHP metamorphism in Dabie Shan, China: A fluid inclusion and oxygen isotope study on the coesite-bearing eclogite from Bixiling. Contrib Mineral Petrol, 139: 1–16

    Article  Google Scholar 

  • Xiao Y L, Hoefs J, van den Kerkhof A M, Simon K, Fiebig J, Zheng Y F. 2002. Fluid evolution during HP and UHP metamorphism in Dabie Shan, China: Constraints from mineral chemistry, fluid inclusions and stable isotopes. J Petrol, 43: 1505–1527.

    Article  Google Scholar 

  • Xiao Y L, Hoefs J, Kronz A. 2005. Compositionally zoned Cl-rich amphiboles from North Dabie Shan, China: Monitor of high-pressure metamorphic fluid/rock interaction processes. Lithos, 81: 279–295

    Article  Google Scholar 

  • Xiao Y L, Huang J, Liu L, Li D Y. 2011a. Rutile: An important" reservoir" for geochemical information. Acta Petrol Sin 27, 398–416.

    Google Scholar 

  • Xiao Y L, Zhang Z M, Hoefs J, van den Kerkhof A. 2006a. Ultrahigh-pressure metamorphic rocks from the Chinese Continental Scientific Drilling Project: II Oxygen isotope and fluid inclusion distributions through vertical sections. Contrib Mineral Petrol, 152: 443–458

    Article  Google Scholar 

  • Xiao Y L, Sun W D, Hoefs J, Simon K, Zhang Z M, Li S G, Hofmann A W. 2006b. Making continental crust through slab melting: Constraints from niobium-tantalum fractionation in UHP metamorphic rutile. Geochim Cosmochim Acta, 70: 4770–4782

    Article  Google Scholar 

  • Xiong X L, Adam J, Green T H. 2005. Rutile stability and rutile/melt HFSE partitioning during partial melting of hydrous basalt: Implications for TTG genesis. Chem Geol, 218: 339–359

    Article  Google Scholar 

  • Xiong X L, Keppler H, Audétat A, Ni H W, Sun W D, Li Y. 2011. Partitioning of Nb and Ta between rutile and felsic melt and the fractionation of Nb/Ta during partial melting of hydrous metabasalt. Geochim Cosmochim Acta, 75, 1673–1692

    Article  Google Scholar 

  • Xu S T, Okay A I, Ji S Y, Sengor A M C, Su W, Liu Y C, Jiang L L. 1992. Diamond from the Dabieshan metamorphic rocks and its implication for tectonic setting. Science, 256: 80–82

    Article  Google Scholar 

  • Yang W, Teng F Z, Zhang H F. 2009. Chondritic magnesium isotopic composition of the terrestrial mantle: A case study of peridotite xenoliths from the North China craton. Earth Planet Sci Lett, 288: 475–482

    Article  Google Scholar 

  • Yang W, Teng F Z, Zhang H F, Li S G. 2012b. Magnesium isotopic systematic of continental basalts from the North China craton: Implications for tracing subducted carbonate in the mantle. Chem Geol, 328: 185–194

    Article  Google Scholar 

  • Yang J J, Powell R. 2008. Ultrahigh-pressure garnet peridotites from the devolatilization of sea-floor hydrated ultramafic rocks. J Metamorph Geol, 26:695–716

    Article  Google Scholar 

  • Yang Q L, Zhao Z F, Zheng Y F. 2012. Slab-mantle interaction in continental subduction channel: Geochemical evidence from Mesozoic gabbroic intrusives in southeastern North China. Lithos, 155: 442–460

    Article  Google Scholar 

  • Yaxley G M, Green D H. 1998. Reactions between eclogite and peridotite: Mantle refertilisation by subduction of oceanic crust. Schweizerische Mineralogische Und Petrographische Mitteilungen, 78: 243–255

    Google Scholar 

  • Ye K, Cong B, Ye D. 2000. The possible subduction of continental material to depths greater than 200 km. Nature, 407: 734–736

    Article  Google Scholar 

  • Yogodzinski G, Lees J, Churikova T, Dorendorf F, Wöerner G, Volynets O. 2001. Geochemical evidence for the melting of subducting oceanic lithosphere at plate edges. Nature, 409: 500–504

    Article  Google Scholar 

  • Zack T, Kronz A, Foley S F, et al. 2002. Trace element abundances in rutiles from eclogites and associated garnet mica schists. Chem Geol, 184, 97–122

    Article  Google Scholar 

  • Zack T, Tomascak P B, Rudnick R L, Dalpé C, McDonough W F. 2003. Extremely light Li in orogenic eclogites: The role of isotope fractionation during dehydration in subducted oceanic crust. Earth Planet Sci Lett, 208: 279–290

    Article  Google Scholar 

  • Zack T, Moraes R, Kronz A, 2004. Temperature dependence of Zr in rutile: Empirical calibration of a rutile thermometer. Contrib Mineral Petrol, 148: 471–488

    Article  Google Scholar 

  • Zanetti A, Mazzucchelli M, Rivalenti G, Vannucci R. 1999. The Finero phlogopite-peridotite massif: An example of subduction-related metasomatism. Contrib Mineral Petrol, 134: 107–122

    Article  Google Scholar 

  • Zhang H F, Sun M, Zhou X H, Fan W M, Zhai M G, Yin J F. 2002. Mesozoic lithosphere destruction beneath the North China Craton: Evidence from major-, trace-element and Sr-Nd-Pb isotope studies of Fangcheng basalts. Contrib Mineral Petrol 144: 241–254

    Article  Google Scholar 

  • Zhang H F, Sun M, Zhou X H, Zhou M F, Fan W M, Zheng J P. 2003. Secular evolution of the lithosphere beneath the eastern North China Craton: Evidence from Mesozoic basalts and high-Mg andesites. Geochim Cosmochim Acta, 67: 4373–4387

    Article  Google Scholar 

  • Zhang H F, Sun Y L, Tang Y J, Xiao Y, Zhang W H, Zhao X M, Santosh M, Menzies M A. 2012. Melt-peridotite interaction in the Pre-Cambrian mantle beneath the western North China Craton: Petrology, geochemistry and Sr, Nd and Re isotopes. Lithos, 149: 100–114

    Article  Google Scholar 

  • Zhang R Y, Liou J G, Yang J S, Yui T F. 2000. Petrochemical constraints for dual origin of garnet peridotites from the Dabie-Sulu UHP terrane, eastern-central China. J Metamorph Geol, 18: 149–166

    Article  Google Scholar 

  • Zhang R Y, Li T, Rumble D, Yui T F, Li L, Yang J S, Pan Y, Liou J G. 2007. Multiple metasomatism in Sulu ultrahigh-P garnet peridotite constrained by petrological and geochemical investigations. J Metamorph Geol, 25: 149–164

    Article  Google Scholar 

  • Zhang Z M, Shen K, Sun W D, Liu Y S, Liou J, Shi C, Wang J L. 2008. Fluids in deeply subducted continental crust: Petrology, mineral chemistry and fluid inclusion of UHP metamorphic veins from the Sulu orogen, eastern China. Geochim Cosmochim Acta, 72: 3200–3228

    Article  Google Scholar 

  • Zhang Z M, Dong X, Liou J Q, Liu F, Wang W, Yui F. 2011. Metasomatism of garnet peridotite from Jiangzhuang, southern Sulu UHP belt: Constraints on the interactions between crust and mantle rocks during subduction of continental lithosphere. J Metamorph Geol, 29: 917–937

    Article  Google Scholar 

  • Zhao Z F, Zheng Y F, Chen R X, Xia Q X, Wu Y B. 2007. Element mobility in mafic and felsic ultrahigh-pressure metamorphic rocks during continental collision. Geochim Cosmochim Acta, 71, 5244–5266

    Article  Google Scholar 

  • Zhao Z F, Dai L Q, Zheng Y F. 2013. Postcollisional mafic igneous rocks record crust-mantle interaction during continental deep subduction. Sci Rep, 3, doi: 10.1038/srep03413

    Google Scholar 

  • Zheng J P, Zhang R Y, Griffin W L, Liou J Q, O’Reilly S Y. 2005. Heterogeneous and metasomatized mantle recorded by trace elements in minerals of the Donghai garnet peridotites, Sulu UHP terrane, China. Chem Geol, 221: 243–259

    Article  Google Scholar 

  • Zheng J P, Griffin W L, O'Reilly S Y, Zhang M, Pearson N. 2006a. Zircons in mantle xenoliths record the Triassic Yangtze-North China continental collision. Earth Planet Sci Lett, 247: 130–142

    Article  Google Scholar 

  • Zheng J P, Griffin W L, O’Reilly S Y, Yang J, Zhang R Y. 2006b. A refractory mantle protolith in younger continental crust, east-central China: Age and composition of zircon in the Sulu ultrahigh-pressure peridotite. Geology, 34: 705–708

    Article  Google Scholar 

  • Zheng J P, Sun M, Griffin W L, Zhou M F, Zhao G C, Robinson P, Tang H Y, Zhang Z H. 2008. Age and geochemistry of contrasting peridotite types in the Dabie UHP belt, eastern China: Petrogenetic and geodynamic implications. Chem Geol, 247: 282–304

    Article  Google Scholar 

  • Zheng Y F. 2009. Fluid regime in continental subduction zones: Petrological insights from ultrahigh-pressure metamorphic rocks. J Geol Soc, 166: 763–782

    Article  Google Scholar 

  • Zheng Y F, Fu B, Gong B, Li L. 2003. Stable isotope geochemistry of ultrahigh pressure metamorphic rocks from the Dabie-Sulu orogen in China: Implications for geodynamics and fluid regime. Earth-Sci Rev, 62: 105–161

    Article  Google Scholar 

  • Zheng Y F, Chen R X., Zhao Z F., 2009. Chemical geodynamics of continental subduction-zone metamorphism: Insights from studies of the Chinese Continental Scientific Drilling (CCSD) core samples. Tectonophysics, 475: 327–358

    Article  Google Scholar 

  • Zheng Y F, Xia Q X, Chen R X, Gao X Y. 2011. Partial melting, fluid supercriticality and element mobility in ultrahigh-pressure metamorphic rocks during continental collision. Earth-Sci Rev, 107: 342–374

    Article  Google Scholar 

  • Zheng Y F. 2012. Metamorphic chemical geodynamics in continental subduction zones. Chem Geol, 328: 5–48

    Article  Google Scholar 

  • Zheng Y F, Hermann J. 2014. Geochemistry of continental subductionzone fluids. Earth Planets Space, 66: 93, doi: 10.1186/1880-5981-66-93

    Article  Google Scholar 

  • Zheng Y F, Zhao Z F, Chen Y X. 2013. Continental subduction channel processes: Plate interface interaction during continental collision. Chin Sci Bull, 58: 2233–2239

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to YiLin Xiao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, Y., Sun, H., Gu, H. et al. Fluid/melt in continental deep subduction zones: Compositions and related geochemical fractionations. Sci. China Earth Sci. 58, 1457–1476 (2015). https://doi.org/10.1007/s11430-015-5149-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-015-5149-8

Navigation