Skip to main content

Advertisement

Log in

Alkali in phlogopite and amphibole and their effects on phase relations in metasomatized peridotites: a high-pressure study

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Subsolidus phase relations for a K-doped lherzolite are investigated in the model system K2O–Na2O–CaO–FeO–MgO–Al2O3–SiO2–H2O at 1.5–6.0 GPa and 680–1,000°C. Phlogopite is ubiquitous and coexists with Ca-amphibole up to 3.2 GPa and 900°C. High-pressure phlogopites show a peculiar mineral chemistry dependent on pressure: e.g., at 5.5 GPa and 680°C, excess of Si (up to 3.4 apfu) coupled with deficiency in Al (as low as 0.58 apfu) and K + Na (as low as 0.97 apfu), suggest a significant amount of a talc/10 Å phase component ([v]XIISi1K−1Al IV−1 , where [v]XII is interlayer vacancy). Mixed layering or solid solution relations between high-pressure phlogopites and the 10 Å phase, Mg3Si4O10(OH)2 nH2O, are envisaged. Phlogopite modal abundance, derived by weighted least squares, is maximum at high-pressure and relative low-temperature conditions and therefore along the slab–mantle interface (10.3 ± 0.7 wt.%, at 4.8 GPa, 680°C). In phlogopite-bearing systems, Ca-amphibole breaks down between 2.5 and 3.0 GPa, and 1,000°C, through the water conservative reaction 5(pa + 0.2 KNa−1) + 17en + 15phl = (10di + 4jd) + 5py + 12fo + 20(phl + 0.2 talc), governed by bulk composition and pressure-dependent variations of K/OH in K-bearing phases and as a result, it does not necessarily imply a release of fluid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Conceição RV, Green DH (2004) Derivation of potassic (shoshonitic) magmas by decompression melting of phlogopite + pargasite lherzolite. Lithos 72:209–229. doi:10.1016/j.lithos.2003.09.003

    Article  Google Scholar 

  • Connolly JAD, Cesare B (1993) C–O–H–S fluid composition and oxygen fugacity in graphitic metapelites. J Metamorph Geol 11:379–388. doi:10.1111/j.1525-1314.1993.tb00155.x

    Article  Google Scholar 

  • Droop GTR (1987) A general equation for estimating Fe3+ concentrations in ferromagnesian silicates and oxides from microprobe analyses, using stoichiometric criteria. Mineral Mag 51:431–435. doi:10.1180/minmag.1987.051.361.10

    Article  Google Scholar 

  • Dvir O, Kessel R (2008) The character and composition of fluid in equilibrium with peridotite in subduction zones. Geochim Cosmochim Acta 72(12S):A234

    Google Scholar 

  • Eugster HP, Skippen GB (1967) Igneous and metamorphic reactions involving gas equilibria. In: Abelson PH (ed) Researches in geochemistry. Geophysical laboratory, Carnegie Institution of Washington, Washington, pp 492–520

    Google Scholar 

  • Fumagalli P, Poli S (2005) Experimentally determined phase relations in hydrous peridotites to 6.5 GPa and their consequences on the dynamics of subduction zones. J Petrol 46:555–578. doi:10.1093/petrology/egh088

    Article  Google Scholar 

  • Fumagalli P, Stixrude L (2007) The 10 Å phase at high pressure by first principles calculations and implications for the petrology of subduction zones. Earth Planet Sci Lett 260:212–226. doi:10.1016/j.epsl.2007.05.030

    Article  Google Scholar 

  • Fumagalli P, Stixrude L, Poli S, Snyder D (2001) The 10 Å phase: a high-pressure high-pressure expandable sheet silicate stable during subduction of hydrated lithosphere. Earth Planet Sci Lett 186:125–141. doi:10.1016/S0012-821X(01)00238-2

    Article  Google Scholar 

  • Gouzo C, Itaya T, Takeshita H (2005) Interlayer cation vacancies of phengites in calcshists from the Piemonte zone, western Alps, Italy. J Mineral Petrol Sci 100:143–149. doi:10.2465/jmps.100.143

    Google Scholar 

  • Green DH (1973) Experimental melting studies on a model upper mantle composition at high pressure under water-saturated and water-undersaturated. Earth Planet Sci Lett 19:37–53. doi:10.1016/0012-821X(73)90176-3

    Article  Google Scholar 

  • Grove TL, Chatterjee N, Parman SW, Médard E (2006) The influence of H2O on mantle wedge melting. Earth Planet Sci Lett 249:74–89. doi:10.1016/j.epsl.2006.06.043

    Article  Google Scholar 

  • Hamilton DL, Henderson CMB (1968) The preparation of silicate composition by gelling method. Mineral Mag 36:832–838. doi:10.1180/minmag.1968.036.282.11

    Article  Google Scholar 

  • Hermann J (2002) Experimental constraints on phase relations in subducted continental crust. Contrib Mineral Petrol 143:219–235. doi:10.1007/s00410-001-0336-3

    Article  Google Scholar 

  • Hermann J, O’Neill HSC, Berry AJ (2005) Titanium solubility in olivine in the system TiO2–MgO–SiO2: no evidence for an ultra-deep origin of Ti-bearing olivine. Contrib Mineral Petrol 148:746–760. doi:10.1007/s00410-004-0637-4

    Article  Google Scholar 

  • Katayama I, Parkinson CD, Okamoto K, Nakajima Y, Maruyama S (2000) Supersilicic clinopyroxene and silica exsolution in UHPM eclogite and pelitic gneiss from the Kokchetav Massif, Kazakhstan. Am Mineral 85:1368–1374

    Google Scholar 

  • Klemme S (2004) The influence of Cr on the garnet-spinel transition in the Earth’s mantle: experiments in the system MgO–Cr2O3–SiO2 and thermodynamic modelling. Lithos 77:639–646. doi:10.1016/j.lithos.2004.03.017

    Article  Google Scholar 

  • Klemme S, O’Neill HS (2000) The near-solidus transition from garnet lherzolite to spinel lherzolite. Contrib Mineral Petrol 138:237–248. doi:10.1007/s004100050560

    Article  Google Scholar 

  • Kogure T, Miyawaky R, Banno Y (2005) The true structure of wonesite, an interlayer-deficient trioctahedral sodium mica. Am Mineral 90:725–731. doi:10.2138/am.2005.1791

    Article  Google Scholar 

  • Konzett J, Fei Y (2000) Transport and storage of potassium in the Earth’s upper mantle and transition zone: an experimental study to 23 GPa in simplified and natural bulk compositions. J Petrol 41:583–603. doi:10.1093/petrology/41.4.583

    Article  Google Scholar 

  • Konzett J, Ulmer P (1999) The stability of hydrous potassic phases in lherzolitic mantle: an experimental study to 9.5 GPa in simplified and natural bulk compositions. J Petrol 40:629–652. doi:10.1093/petrology/40.4.629

    Article  Google Scholar 

  • Konzett J, Sweeney RJ, Thompson AB, Ulmer P (1997) Potassium amphibole stability in the upper mantle: an experimental study in a peralkaline KNCMASH System to 8.5 GPa. J Petrol 38:537–568. doi:10.1093/petrology/38.5.537

    Article  Google Scholar 

  • Kushiro I (1970) Stabiliy of amphiboles and phlogopite in the upper mantle. Carnegie Inst Wash Yearb 68:245–247

    Google Scholar 

  • Kushiro I, Syono Y, Akimoto S (1967) Stability of phlogopite at high pressures and possible presence of phlogopite in the Earth’s upper mantle. Earth Planet Sci Lett 3:197–203. doi:10.1016/0012-821X(67)90036-2

    Article  Google Scholar 

  • Kushiro I, Syono Y, Akimoto S (1968) Melting of peridotite nodule at high pressures and high water pressures. J Geophys Res 73:6023–6029. doi:10.1029/JB073i018p06023

    Article  Google Scholar 

  • Leake BE, Wolley AR, Arps CES, Birch WD, Gilbert MC, Grice JD, Hawthorne FC, Kato A, Kisch HJ, Krivovichev VG, Linthout K, Laird JO, Mandarino JA, Maresch WV, Nickel EH, Rock NMS, Schumacher JC, Smith DC, Stephenson NCN, Ungaretti L, Whittaker EJW, Youzhi G (1997) Nomenclature of amphiboles; report of the subcommitte on amphibole of the International Mineralogical Association, Commission on New Minerals and Mineral. Can Mineral 35:219–246

    Google Scholar 

  • Luth RW (1997) Experimental study of the system phlogopite-diopside from 3.5 to 17 GPa. Am Mineral 82:1198–1209

    Google Scholar 

  • Mengel K, Green DH (1989) Stability of amphibole and phlogopite in metasomatized peridotite under water-saturated and water-undersaturated conditions. In: Kimberlites and related rocks. Geological Society of Australia Special Publication 14, pp 571–581

  • Millhollen GK, Irving AJ, Wyllie PJ (1974) Melting interval of peridotite with 5.7 per cent water to 30 kbar. J Geol 82:575–587

    Article  Google Scholar 

  • Modreski PJ, Boettcher AL (1973) Phase relationships of phlogopite in the system KrO–MgO–CaO–Al2O3–SiO2–H2O to 35 kilobars: a better model for micas in the interior of the Earth. Am J Sci 273:385–414

    Google Scholar 

  • Mysen BO, Boettcher AL (1975a) Melting of hydrous mantle: I. Phase relations of natural peridotite at high pressures and temperatures with controlled activities of water, carbon dioxide and hydrogen. J Petrol 16:520–548

    Google Scholar 

  • Mysen BO, Boettcher AL (1975b) Melting of hydrous mantle: II. Geochemistry of crystals and liquids formed by anatexis of mantle peridotite at high temperatures as a function of controlled activities of water, and carbon dioxide. J Petrol 16:549–593

    Google Scholar 

  • Niida K, Green DH (1999) Stability and chemical composition of pargasitic amphibole in MORB pyrolite under upper mantle conditions. Contrib Mineral Petrol 135:18–40. doi:10.1007/s004100050495

    Article  Google Scholar 

  • Nixon PH (ed) (1987) Mantle xenoliths. Wiley, New York

    Google Scholar 

  • Ohtani E, Toma M, Litasov K, Kubo T, Suzuki A (2001) Stability of dense hydrous magnesium silicate phases and water storage capacity in the transition zone and lower mantle. Phys Earth Planet Inter 124:105–117. doi:10.1016/S0031-9201(01)00192-3

    Article  Google Scholar 

  • Ovchinnikov NO, Nikitina LP, Babushkina MS, Yakovleva AK, Yakovlev Yu N, Chernova OG, Redfern SAT (2002) Structural states of micas in amphibolites of the KSDB-3 deep borehole and their surface equivalents. Mineral Mag 66:491–512. doi:10.1180/0026461026640044

    Article  Google Scholar 

  • Rampone E, Morten L (2001) Records of crustal metasomatism in the garnet peridotites of the Ulten Zone (Upper Austroalpine, Eastern Alps). J Petrol 42:207–219. doi:10.1093/petrology/42.1.207

    Article  Google Scholar 

  • Ryabchikov ID, Boettcher L (1980) Experimental evidence at high pressure for potassic metasomatism in the mantle of the Earth. Am Mineral 65:915–919

    Google Scholar 

  • Schmidt MW, Poli S (1998) Experimentally based water budgets for dehydrating slabs and consequences for arc magma generation. Earth Planet Sci Lett 163:361–379. doi:10.1016/S0012-821X(98)00142-3

    Article  Google Scholar 

  • Schneider ME, Eggler DH (1986) Fluids in equilibrium with peridotite minerals; implications for mantle metasomatism. Geochim Cosmochim Acta 50:711–724. doi:10.1016/0016-7037(86)90347-9

    Article  Google Scholar 

  • Spear FS, Hazen RM, Rumble DIII (1981) Wonesite: a new rock-forming silicate from the Post Pond Volcanics, Vermont. Am Mineral 66:100–105

    Google Scholar 

  • Stalder R, Ulmer P, Gunther D (2002) Fluids in the system forsterite–phlogopite–H2O at 60 kbar. Schweiz Mineral Petrogr Mitt 82:15–24

    Google Scholar 

  • Sudo A, Tatsumi Y (1990) Phlogopite and K-amphibole in the upper mantle: implication for magma genesis in subduction zones. Geophys Res Lett 17:29–32. doi:10.1029/GL017i001p00029

    Article  Google Scholar 

  • Tatsumi Y, Eggins S (1995) In: Hoffman PF, Jeanloz R, Knoll AH (eds) Subduction zone magmatism. Blackwell Science, Oxford

  • Trønnes RG (2002) Stability range and decomposition of potassic richterite and phlogopite end members at 5–15 GPa. Mineral Petrol 74:129–148. doi:10.1007/s007100200001

    Article  Google Scholar 

  • Ulmer P, Trommsdorff V (1999) Phase relations of hydrous mantle subducting to 300 km. In: Fei Y-W, Bertka C, Mysen BO (eds) Mantle petrology: field observations and high pressure experimentation: a Tribute to Francis R. (Joe) Boyd. The Geochemical Society, special Publication No. 6, pp 259–281

  • van Roermund HLM, Carlswell DA, Drury MR, Heijboer TC (2002) Microdiamonds in a megacrysts garnet websterite pod from Bardane on the island of Fjørtoft, wesytren Norway: Evidence for diamond formation in mantle rocks during deep continental subduction. Geology 30:959–962. doi:10.1130/0091-7613(2002)030<0959:MIAMGW>2.0.CO;2

    Article  Google Scholar 

  • Wallace ME, Green DH (1991) The effect of bulk rock composition on the stability of amphibole in the Upper Mantle. Mineral Petrol 44:1–19. doi:10.1007/BF01167097

    Article  Google Scholar 

  • Wendlandt RF, Eggler DH (1980) The origins of potassic magmas: 2. Stability of phlogopite in natural spinel lherzolite and in the system KAlSiO4-MgO-SiO2-H2O-CO2 at high pressures and high temperatures. Am J Sci 280:421–458

    Google Scholar 

  • Wunder B, Melzer S (2002) Interlayer vacancy characterization of synthetic phlogopitic micas by IR spectroscopy. Eur J Mineral 14:1129–1138. doi:10.1127/0935-1221/2002/0014-1129

    Article  Google Scholar 

  • Wyllie PJ, Sekine T (1982) The formation of mantle phlogopite in subduction zone hybridization. Contrib Mineral Petrol 79:375–380. doi:10.1007/BF01132067

    Article  Google Scholar 

  • Zhang RY, Li T, Rumble D, Yui TF, Li L, Yang JS, Pan Y, Liou JG (2007) Multiple metasomatism in Sulu ultrahigh-P garnet peridotite constrained by petrological and geochemical investigations. J Metamorph Geol 25:149–264. doi:10.1111/j.1525-1314.2006.00683.x

    Article  Google Scholar 

Download references

Acknowledgments

We are indebted to J. Konzett and to an anonymous referee for their constructive reviews. Discussions with J. Hermann and C. Lithgow-Bertelloni allowed us to improve earlier versions of the manuscript. We wish to thank Andrea Risplendente for assistance at the microprobe and Giacomo Aletti for assistance in Monte Carlo simulations. The experimental and analytical work in Milan was partly funded by MIUR-PRIN 2007NCN7EZ_002 and EU MRTN-CT-2006-035957-c2c.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Fumagalli.

Additional information

Communicated by J. Hoefs.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLS 192 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fumagalli, P., Zanchetta, S. & Poli, S. Alkali in phlogopite and amphibole and their effects on phase relations in metasomatized peridotites: a high-pressure study. Contrib Mineral Petrol 158, 723–737 (2009). https://doi.org/10.1007/s00410-009-0407-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-009-0407-4

Keywords

Navigation