Skip to main content
Log in

The fast method and convergence analysis of the fractional magnetohydrodynamic coupled flow and heat transfer model for the generalized second-grade fluid

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we first establish a new fractional magnetohydrodynamic (MHD) coupled flow and heat transfer model for a generalized second-grade fluid. This coupled model consists of a fractional momentum equation and a heat conduction equation with a generalized form of Fourier law. The second-order fractional backward difference formula is applied to the temporal discretization and the Legendre spectral method is used for the spatial discretization. The fully discrete scheme is proved to be stable and convergent with an accuracy of O(τ2 + Nr), where τ is the time step-size and N is the polynomial degree. To reduce the memory requirements and computational cost, a fast method is developed, which is based on a globally uniform approximation of the trapezoidal rule for integrals on the real line. The strict convergence of the numerical scheme with this fast method is proved. We present the results of several numerical experiments to verify the effectiveness of the proposed method. Finally, we simulate the unsteady fractional MHD flow and heat transfer of the generalized second-grade fluid through a porous medium. The effects of the relevant parameters on the velocity and temperature are presented and analyzed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anwar M S, Rasheed A. Joule heating in magnetic resistive flow with fractional Cattaneo-Maxwell model. J Braz Soc Mech Sci Eng, 2018, 40: 1–13

    Article  Google Scholar 

  2. Athar M, Kamran M, Imran M. On the unsteady rotational flow of a fractional second grade fluid through a circular cylinder. Meccanica, 2012, 47: 603–611

    Article  MathSciNet  Google Scholar 

  3. Baffet D, Hesthaven J S. High-order accurate adaptive kernel compression time-stepping schemes for fractional differential equations. J Sci Comput, 2017, 72: 1169–1195

    Article  MathSciNet  Google Scholar 

  4. Bharali A, Borkakati A K. The effect of Hall currents on MHD flow and heat transfer between two parallel porous plates. Appl Sci Res, 1982, 39: 155–165

    Article  Google Scholar 

  5. Cao Z, Zhao J H, Wang Z J, et al. MHD flow and heat transfer of fractional Maxwell viscoelastic nanofluid over a moving plate. J Mol Liq, 2016, 222: 1121–1127

    Article  Google Scholar 

  6. Caputo M, Mainardi F. A new dissipation model based on memory mechanism. Pure Appl Geophys, 1971, 91: 134–147

    Article  Google Scholar 

  7. Chatterjee D, Gupta S K. MHD flow and heat transfer behind a square cylinder in a duct under strong axial magnetic field. Int J Heat Mass Transf, 2015, 88: 1–13

    Article  Google Scholar 

  8. Chen H, Stynes M. Error analysis of a second-order method on fitted meshes for a time-fractional diffusion problem. J Sci Comput, 2019, 79: 624–647

    Article  MathSciNet  Google Scholar 

  9. Cortell R. Effects of viscous dissipation and radiation on the thermal boundary layer over a nonlinearly stretching sheet. Phys Lett A, 2008, 371: 631–636

    Article  Google Scholar 

  10. Cuesta E, Lubich C, Palencia C. Convolution quadrature time discretization of fractional diffusion-wave equations. Math Comp, 2006, 75: 673–696

    Article  MathSciNet  Google Scholar 

  11. Davidson P A. An Introduction to Magnetohydrodynamics. Cambridge: Cambridge University Press, 2001

    Book  Google Scholar 

  12. Diethelm K. The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo. Berlin: Springer, 2010

    Book  Google Scholar 

  13. EI-Aziz M A. Radiation effect on the flow and heat transfer over an unsteady stretching sheet. Int Commun Heat Mass Transf, 2009, 36: 521–524

    Article  Google Scholar 

  14. El-Shahed M. On the impulsive motion of flat plate in a generalized second grade fluid. Z Naturforsch A, 2004, 59: 829–837

    Article  Google Scholar 

  15. Ezzat M A. Thermoelectric MHD non-Newtonian fluid with fractional derivative heat transfer. Physica B, 2010, 405: 4188–4194

    Article  Google Scholar 

  16. Guo L, Zeng F H, Turner I, et al. Efficient multistep methods for tempered fractional calculus: Algorithms and simulations. SIAM J Sci Comput, 2019, 41: A2510–A2535

    Article  MathSciNet  Google Scholar 

  17. Imran M, Kamran M, Athar M, et al. Taylor-Couette flow of a fractional second grade fluid in an annulus due to a time-dependent couple. Nonlinear Anal Model Control, 2011, 16: 47–58

    Article  MathSciNet  Google Scholar 

  18. Jiang S D, Zhang J W, Zhang Q, et al. Fast evaluation of the Caputo fractional derivative and its applications to fractional diffusion equations. Commun Comput Phys, 2017, 21: 650–678

    Article  MathSciNet  Google Scholar 

  19. Jiang X Y, Zhang H, Wang S W. Unsteady magnetohydrodynamic flow of generalized second grade fluid through porous medium with Hall effects on heat and mass transfer. Phys Fluids, 2020, 32: 113105

    Article  Google Scholar 

  20. Jiang Y J, Xu X J. A monotone finite volume method for time fractional Fokker-Planck equations. Sci China Math, 2019, 62: 783–794

    Article  MathSciNet  Google Scholar 

  21. Li D F, Wu C D, Zhang Z M. Linearized Galerkin FEMs for nonlinear time fractional parabolic problems with non-smooth solutions in time direction. J Sci Comput, 2019, 80: 403–419

    Article  MathSciNet  Google Scholar 

  22. Liao H L, Tang T, Zhou T. A second-order and nonuniform time-stepping maximum-principle preserving scheme for time-fractional Allen-Cahn equations. J Comput Phys, 2020, 414: 109473

    Article  MathSciNet  Google Scholar 

  23. Liu Y, Du Y W, Li H, et al. Some second-order θ schemes combined with finite element method for nonlinear fractional cable equation. Numer Algorithms, 2019, 80: 533–555

    Article  MathSciNet  Google Scholar 

  24. Liu Y Q, Guo B L. Coupling model for unsteady MHD flow of generalized Maxwell fluid with radiation thermal transform. Appl Math Mech (English Ed), 2016, 37: 137–150

    Article  MathSciNet  Google Scholar 

  25. Lubich C. Discretized fractional calculus. SIAM J Math Anal, 1986, 17: 704–719

    Article  MathSciNet  Google Scholar 

  26. Mahmood A, Fetecau C, Khan N A, et al. Some exact solutions of the oscillatory motion of a generalized second grade fluid in an annular region of two cylinders. Acta Mech Sin, 2010, 26: 541–550

    Article  MathSciNet  Google Scholar 

  27. Mainardi F. Applications of fractional calculus in mechanics. Transf Methods Spec Funct, 1998, 96: 309–334

    MathSciNet  Google Scholar 

  28. McLean W. Regularity of solutions to a time-fractional diffusion equation. ANZIAM J, 2010, 52: 123–138

    Article  MathSciNet  Google Scholar 

  29. McLean W. Exponential sum approximations for tβ. In: Contemporary Computational Mathematics—A Celebration of the 80th Birthday of Ian Sloan. Cham: Springer, 2018, 911–930

    Chapter  Google Scholar 

  30. Podlubny I. Fractional Differential Equations. London: Academic Press, 1998

    Google Scholar 

  31. Quarteroni A, Valli A. Numerical Approximation of Partial Differential Equations. Berlin: Springer, 1994

    Book  Google Scholar 

  32. Quintana-Murillo J, Yuste S B. A finite difference method with non-uniform timesteps for fractional diffusion and diffusion-wave equations. Eur Phys J Spec Topics, 2013, 222: 1987–1998

    Article  Google Scholar 

  33. Sajid M, Javed T, Hayat T. MHD rotating flow of a viscous fluid over a shrinking surface. Nonlinear Dynam, 2007, 51: 259–265

    Article  Google Scholar 

  34. Sakamoto K, Yamamoto M. Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems. J Math Anal Appl, 2011, 382: 426–447

    Article  MathSciNet  Google Scholar 

  35. Shen J, Tang T, Wang L L. Spectral Methods: Algorithms, Analysis and Applications. Springer Series in Computational Mathematics, vol. 41. Berlin: Springer, 2011

    Book  Google Scholar 

  36. Siddheshwar P G, Mahabaleswar U S. Effects of radiation and heat source on MHD flow of a viscoelastic liquid and heat transfer over a stretching sheet. Int J Nonlinear Mech, 2005, 40: 807–820

    Article  Google Scholar 

  37. Sinha A, Shit G C. Oscillatory blood flow through a capillary in presence of thermal radiation. Int J Biomath, 2015, 8: 1550014

    Article  MathSciNet  Google Scholar 

  38. Slonimsky G L. On the law of deformation of highly elastic polymeric bodies. Dokl Akad Nauk BSSR, 1961, 140: 343–346

    Google Scholar 

  39. Stynes M. Too much regularity may force too much uniqueness. Fract Calc Appl Anal, 2016, 19: 1554–1562

    Article  MathSciNet  Google Scholar 

  40. Stynes M, O’Riordanz E, Graciax J L. Error analysis of a finite difference method on graded meshes for a time-fractional diffusion equation. SIAM J Numer Anal, 2017, 55: 1057–1079

    Article  MathSciNet  Google Scholar 

  41. Sun J, Nie D X, Deng W H. Fast algorithms for convolution quadrature of Riemann-Liouville fractional derivative. Appl Numer Math, 2019, 145: 384–410

    Article  MathSciNet  Google Scholar 

  42. Sun Z Z, Wu X N. A fully discrete difference scheme for a diffusion-wave system. Appl Numer Math, 2006, 56: 193–209

    Article  MathSciNet  Google Scholar 

  43. Tan W T, Masuoka T. Stokes’ first problem for a second grade fluid in a porous half-space with heated boundary. Int J Nonlinear Mech, 2005, 40: 515–522

    Article  Google Scholar 

  44. Tan W T, Xu M Y. The impulsive motion of flat plate in a generalized second grade fluid. Mech Res Commun, 2002, 29: 3–9

    Article  MathSciNet  Google Scholar 

  45. Tan W T, Xu M Y. Unsteady flows of a generalized second grade fluid with the fractional derivative model between two parallel plates. Acta Mech Sin, 2004, 20: 471–476

    Article  MathSciNet  Google Scholar 

  46. Trefethen L N, Weideman J A C. The exponentially convergent trapezoidal rule. SIAM Rev, 2014, 56: 385–458

    Article  MathSciNet  Google Scholar 

  47. Wang Y F, Du L L, Li S. Blowup mechanism for viscous compressible heat-conductive magnetohydrodynamic flows in three dimensions. Sci China Math, 2015, 58: 1677–1696

    Article  MathSciNet  Google Scholar 

  48. Yin B L, Liu Y, Li H. A class of shifted high-order numerical methods for the fractional mobile/immobile transport equations. Appl Math Comput, 2020, 368: 124799

    MathSciNet  Google Scholar 

  49. Zeng F H, Li C P, Liu F W, et al. The use of finite difference/element approaches for solving the time-fractional subdiffusion equation. SIAM J Sci Comput, 2013, 35: A2976–A3000

    Article  MathSciNet  Google Scholar 

  50. Zeng F H, Turner I, Burrage K. A stable fast time-stepping method for fractional integral and derivative operators. J Sci Comput, 2018, 77: 283–307

    Article  MathSciNet  Google Scholar 

  51. Zeng F H, Zhang Z Q, Karniadakis G E. Second-order numerical methods for multi-term fractional differential equations: Smooth and non-smooth solutions. Comput Methods Appl Mech Engrg, 2017, 327: 478–502

    Article  MathSciNet  Google Scholar 

  52. Zhang H, Jiang X Y, Liu F W. Error analysis of nonlinear time fractional mobile/immobile advection-diffusion equation with weakly singular solutions. Fract Calc Appl Anal, 2021, 24: 202–224

    Article  MathSciNet  Google Scholar 

  53. Zhang H, Zeng F H, Jiang X Y, et al. Convergence analysis of the time-stepping numerical methods for time-fractional nonlinear subdiffusion equations. Fract Calc Appl Anal, 2022, 25: 453–487

    Article  MathSciNet  Google Scholar 

  54. Zhang Y, Jiang J X, Bai Y. MHD flow and heat transfer analysis of fractional Oldroyd-B nanofluid between two coaxial cylinders. Comput Math Appl, 2019, 78: 3408–3421

    Article  MathSciNet  Google Scholar 

  55. Zhang Y N, Sun Z Z, Liao H L. Finite difference methods for the time fractional diffusion equation on non-uniform meshes. J Comput Phys, 2014, 265: 195–210

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by the Project of the National Key R&D Program (Grant No. 2021YFA1000202), National Natural Science Foundation of China (Grant Nos. 12120101001, 12001326 and 12171283), Natural Science Foundation of Shandong Province (Grant Nos. ZR2021ZD03, ZR2020QA032 and ZR2019ZD42), China Postdoctoral Science Foundation (Grant Nos. BX20190191 and 2020M672038) and the Startup Fund from Shandong University (Grant No. 11140082063130).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chi, X., Zhang, H. & Jiang, X. The fast method and convergence analysis of the fractional magnetohydrodynamic coupled flow and heat transfer model for the generalized second-grade fluid. Sci. China Math. 67, 919–950 (2024). https://doi.org/10.1007/s11425-021-2063-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-021-2063-0

Keywords

MSC(2020)

Navigation