Skip to main content
Log in

Convergence analysis of the time-stepping numerical methods for time-fractional nonlinear subdiffusion equations

  • Original Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

In 1986, Dixon and McKee (Z Angew Math Mech 66:535–544, 1986) developed a discrete fractional Gronwall inequality, which can be seen as a generalization of the classical discrete Gronwall inequality. However, this generalized discrete Gronwall inequality and its variant (Al-Maskari and Karaa in SIAM J Numer Anal 57:1524–1544, 2019) have not been widely applied in the numerical analysis of the time-stepping methods for the time-fractional evolution equations. The main purpose of this paper is to show how to apply the generalized discrete Gronwall inequality to prove the convergence of a class of time-stepping numerical methods for time-fractional nonlinear subdiffusion equations, including the popular fractional backward difference type methods of order one and two, and the fractional Crank-Nicolson type methods. We obtain the optimal \(L^2\) error estimate in space discretization for multi-dimensional problems. The convergence of the fast time-stepping numerical methods is also proved in a simple manner. The present work unifies the convergence analysis of several existing time-stepping schemes. Numerical examples are provided to verify the effectiveness of the present method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Alikhanov, A.A.: A new difference scheme for the time fractional diffusion equation. J. Comput. Phys. 280, 424–438 (2015)

    MathSciNet  MATH  Google Scholar 

  2. Al-Maskari, M., Karaa, S.: Numerical approximation of semilinear subdiffusion equations with nonsmooth initial data. SIAM J. Numer. Anal. 57(3), 1524–1544 (2019)

    MathSciNet  MATH  Google Scholar 

  3. Baffet, D., Hesthaven, J.S.: A kernel compression scheme for fractional differential equations. SIAM J. Numer. Anal. 55(2), 496–520 (2017)

    MathSciNet  MATH  Google Scholar 

  4. Banjai, L., Fernández, M.L.: Efficient high order algorithms for fractional integrals and fractional differential equations. Numer. Math. 141, 289–317 (2019)

    MathSciNet  MATH  Google Scholar 

  5. Bao, W.Z., Cai, Y.Y.: Uniform error estimates of finite difference methods for the nonlinear Schrödinger equation with wave operator. SIAM J. Numer. Anal. 50(2), 492–521 (2012)

    MathSciNet  MATH  Google Scholar 

  6. Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods. Vol. 15 of Texts in Applied Mathematics, Springer, New York (2008)

  7. Brunner, H., Tang, T.: Polynomial spline collocation methods for the nonlinear Basset equation. Comput. Math. Appl. 18(5), 449–457 (1989)

    MathSciNet  MATH  Google Scholar 

  8. Cao, J.Y., Xu, C.J.: A high order schema for the numerical solution of the fractional ordinary differential equations. J. Comput. Phys. 238, 154–168 (2013)

    MathSciNet  MATH  Google Scholar 

  9. Chen, L.Z., Zhang, J., Zhao, J., Cao, W.X., Wang, H., Zhang, J.W.: An accurate and efficient algorithm for the time-fractional molecular beam epitaxy model with slope selection. Comput. Phys. Commun. 245, Art. 106842 (2019)

  10. Cuesta, E., Lubich, C., Palencia, C.: Convolution quadrature time discretization of fractional diffusion-wave equations. Math. Comp. 75, 673–696 (2006)

    MathSciNet  MATH  Google Scholar 

  11. Diethelm, K., Ford, J.M., Ford, N.J., Weilbeer, M.: Pitfalls in fast numerical solvers for fractional differential equations. J. Comput. Appl. Math. 186(2), 482–503 (2006)

    MathSciNet  MATH  Google Scholar 

  12. Dixon, J., McKee, S.: Weakly singular discrete Gronwall inequalities. Z. Angew. Math. Mech. 66(11), 535–544 (1986)

    MathSciNet  MATH  Google Scholar 

  13. Du, Q., Yang, J., Zhou, Z.: Time-fractional Allen-Cahn equations: analysis and numerical methods. J. Sci. Comput. 85, Art. 42 (2020)

  14. Fernández, M.L., Lubich, C., Schädle, A.: Adaptive, fast, and oblivious convolution in evolution equations with memory. SIAM J. Sci. Comput. 30(2), 1015–1037 (2008)

    MathSciNet  MATH  Google Scholar 

  15. González, C., Palencia, C.: Stability of Runge-Kutta methods for abstract timedependent parabolic problems: the Hölder case. Math. Comp. 68(225), 73–89 (1999)

    MathSciNet  MATH  Google Scholar 

  16. Guo, L., Zeng, F.H., Turner, I., Burrage, K., Karniadakis, G.E.: Efficient multistep methods for tempered fractional calculus: Algorithms and simulations. SIAM J. Sci. Comput. 41(4), A2510–A2535 (2019)

    MathSciNet  MATH  Google Scholar 

  17. Jiang, S.D., Zhang, J.W., Zhang, Q., Zhang, Z.Z.: Fast evaluation of the Caputo fractional derivative and its applications to fractional diffusion equations. Commun. Comput. Phys. 21(3), 650–678 (2017)

    MathSciNet  MATH  Google Scholar 

  18. Jin, B.T., Li, B.Y., Zhou, Z.: Correction of high-order BDF convolution quadrature for fractional evolution equations. SIAM J. Sci. Comput. 39(6), A3129–A3152 (2017)

    MathSciNet  MATH  Google Scholar 

  19. Jin, B.T., Li, B.Y., Zhou, Z.: Numerical analysis of nonlinear subdiffusion equations. SIAM J. Numer. Anal. 56(1), 1–23 (2018)

    MathSciNet  MATH  Google Scholar 

  20. Jin, B.T., Li, B.Y., Zhou, Z.: An analysis of the Crank-Nicolson method for subdiffusion. IMA J. Numer. Anal. 38(1), 518–541 (2018)

    MathSciNet  MATH  Google Scholar 

  21. Le, K.N., McLean, W., Mustapha, K.: Numerical solution of the time-fractional Fokker-Planck equation with general forcing. SIAM J. Numer. Anal. 54(3), 1763–1784 (2016)

    MathSciNet  MATH  Google Scholar 

  22. Li, B.Y., Sun, W.W.: Unconditional convergence and optimal error estimates of a Galerkin-mixed FEM for incompressible miscible flow in porous media. SIAM J. Numer. Anal. 51(4), 1959–1977 (2013)

    MathSciNet  MATH  Google Scholar 

  23. Li, C.P., Yi, Q., Chen, A.: Finite difference methods with non-uniform meshes for nonlinear fractional differential equations. J. Comput. Phys. 316, 614–631 (2016)

    MathSciNet  MATH  Google Scholar 

  24. Li, D.F., Liao, H.L., Sun, W.W., Wang, J.L., Zhang, J.W.: Analysis of L1-Galerkin FEMs for time-fractional nonlinear parabolic problems. Commun. Comput. Phys. 24(1), 86–103 (2018)

    MathSciNet  MATH  Google Scholar 

  25. Li, D.F., Zhang, J.W., Zhang, Z.Z.: Unconditionally optimal error estimates of a linearized Galerkin method for nonlinear time fractional reactionsubdiffusion equations. J. Sci. Comput. 76, 848–866 (2018)

    MathSciNet  MATH  Google Scholar 

  26. Li, H.W., Wu, X.N., Zhang, J.W.: Numerical solution of the time-fractional sub-diffusion equation on an unbounded domain in two-dimensional space. East Asian J. Appl. Math. 7(3), 439–454 (2017)

    MathSciNet  MATH  Google Scholar 

  27. Li, J.R.: A fast time stepping method for evaluating fractional integrals. SIAM J. Sci. Comput. 31(6), 4696–4714 (2010)

    MathSciNet  MATH  Google Scholar 

  28. Liao, H.L., Li, D.F., Zhang, J.W.: Sharp error estimate of the nonuniform L1 formula for linear reaction-subdiffusion equations. SIAM J. Numer. Anal. 56(2), 1112–1133 (2018)

    MathSciNet  MATH  Google Scholar 

  29. Liao, H.L., McLean, W., Zhang, J.W.: A discrete Grönwall inequality with applications to numerical schemes for subdiffusion problems. SIAM J. Numer. Anal. 57(1), 218–237 (2019)

    MathSciNet  MATH  Google Scholar 

  30. Liao, H.L., Yan, Y.G., Zhang, J.W.: Unconditional convergence of a fast two-level linearized algorithm for semilinear subdiffusion equations. J. Sci. Comput. 80, 1–25 (2019)

    MathSciNet  MATH  Google Scholar 

  31. Lin, Y.M., Xu, C.J.: Finite difference/spectral approximations for the timefractional diffusion equation. J. Comput. Phys. 225, 1533–1552 (2007)

    MathSciNet  MATH  Google Scholar 

  32. Lubich, C.: Discretized fractional calculus. SIAM J. Math. Anal. 17(3), 704–719 (1986)

    MathSciNet  MATH  Google Scholar 

  33. Luchko, Y.: Initial-boundary-value problems for the one-dimensional timefractional diffusion equation. Fract. Calc. Appl. Anal. 15(1), 141–160 (2012). https://doi.org/10.2478/s13540-012-0010-7

    Article  MathSciNet  MATH  Google Scholar 

  34. Multiprecision Computing Toolbox. Advanpix, Tokyo. Advanpix, http://www.advanpix.com

  35. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  36. Shen, J., Tang, T., Wang, L.L.: Spectral Methods: Algorithms, Analysis and Applications. Springer Ser. Comput. Math., Vol. 41, Springer, Heidelberg (2011)

  37. Stynes, M., O’Riordan, E., Gracia, J.L.: Error analysis of a finite difference method on graded meshes for a time-fractional diffusion equation. SIAM J. Numer. Anal. 55(2), 1057–1079 (2017)

    MathSciNet  MATH  Google Scholar 

  38. Sun, J., Nie, D.X., Deng, W.H.: Fast algorithms for convolution quadrature of Riemann-Liouville fractional derivative. Appl. Numer. Math. 145, 384–410 (2019)

    MathSciNet  MATH  Google Scholar 

  39. Sun, Z.Z., Wu, X.N.: A fully discrete difference scheme for a diffusionwave system. Appl. Numer. Math. 56(2), 193–209 (2006)

    MathSciNet  Google Scholar 

  40. Tian, W.Y., Zhou, H., Deng, W.H.: A class of second order difference approximations for solving space fractional diffusion equations. Math. Comp. 84(294), 1703–1727 (2015)

    MathSciNet  MATH  Google Scholar 

  41. Trefethen, L., Weideman, J.: The exponentially convergent trapezoidal rule. SIAM Review 56(3), 385–458 (2014)

    MathSciNet  MATH  Google Scholar 

  42. Wang, D.L., Zou, J.: Dissipativity and contractivity analysis for fractional functional differential equations and their numerical approximations. SIAM J. Numer. Anal. 57(3), 1445–1470 (2019)

    MathSciNet  MATH  Google Scholar 

  43. Wang, K., Zhou, Z.: High-order time stepping schemes for semilinear subdiffusion equations. SIAM J. Numer. Anal. 58(6), 3226–3250 (2020)

    MathSciNet  MATH  Google Scholar 

  44. Wang, Y.Y., Yan, Y.B., Yang, Y.: Two high-order time discretization schemes for subdiffusion problems with nonsmooth data. Fract. Calc. Appl. Anal. 23(5), 1349–1380 (2020). https://doi.org/10.1515/fca-2020-0067

    Article  MathSciNet  MATH  Google Scholar 

  45. Yan, Y.B., Khan, M., Ford, N.J.: An analysis of the modified L1 scheme for time-fractional partial differential equations with nonsmooth data. SIAM J. Numer. Anal. 56(1), 210–227 (2018)

    MathSciNet  MATH  Google Scholar 

  46. Yang, Y.B., Zeng, F.H.: Numerical analysis of linear and nonlinear timefractional subdiffusion equations. Commun. Appl. Math. Comput. 1(4), 621–637 (2019)

    MathSciNet  MATH  Google Scholar 

  47. Yin, B.L., Liu, Y., Li, H., Zhang, Z.Z.: Finite element methods based on two families of second-order numerical formulas for the fractional cable model with smooth solutions. J. Sci. Comput. 84, Art. 2 (2020)

  48. Zeng, F.H., Li, C.P., Liu, F.W., Turner, I.: Numerical algorithms for time-fractional subdiffusion equation with second-order accuracy. SIAM J. Sci. Comput. 37(1), A55–A78 (2015)

    MathSciNet  MATH  Google Scholar 

  49. Zeng, F.H., Turner, I., Burrage, K., Karniadakis, G.E.: A new class of semi-implicit methods with linear complexity for nonlinear fractional differential equations. SIAM J. Sci. Comput. 40(5), A2986–A3011 (2018)

    MathSciNet  MATH  Google Scholar 

  50. Zeng, F.H., Zhang, Z.Q., Karniadakis, G.E.: Second-order numerical methods for multi-term fractional differential equations: Smooth and non-smooth solutions. Comput. Methods Appl. Mech. Engrg. 327, 478–502 (2017)

    MathSciNet  MATH  Google Scholar 

  51. Zhang, H., Jiang, X.Y., Liu, F.W.: Error analysis of nonlinear time fractional mobile/immobile advection-diffusion equation with weakly singular solutions. Fract. Calc. Appl. Anal. 24(1), 202–224 (2021). https://doi.org/10.1515/fca-2021-0009

    Article  MathSciNet  MATH  Google Scholar 

  52. Zhu, H.Y., Xu, C.J.: A fast high order method for the time-fractional diffusion equation. SIAM J. Numer. Anal. 57(6), 2829–2849 (2019)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work has been supported by the National Natural Science Foundation of China (12001326, 12171283, 12120101001), Natural Science Foundation of Shandong Province (ZR2021ZD03, ZR2020QA032, ZR2019ZD42), China Postdoctoral Science Foundation (BX20190191, 2020M672038), the startup fund from Shandong University (11140082063130). GEK would like to acknowledge support by the MURI/ARO on Fractional PDEs for Conservation Laws and Beyond: Theory, Numerics and Applications (W911NF-15-1-0562).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fanhai Zeng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A. Proof of \(c_n\ge 0\) for the BN-\(\theta \) method

The BN-\(\theta \) method reduces to the FBDF-2 method for \(\theta =0\) and to the GNGF-2 for \(\theta = 1/2\). In this section, we prove \(c_n\ge 0\) for the BN-\(\theta \) method when \(0\le \theta \le 1/2\).

Firstly, we give the proof of the following lemma.

Lemma A.1

For \(a^{(-\alpha )}_n=\frac{\varGamma (n+\alpha )}{\varGamma (\alpha )\varGamma (n+1)}\) and \(0< \alpha < 1\), we have

$$\begin{aligned} \left( \frac{1+\alpha }{2}\right) ^j a_{n-j}^{(-\alpha )}\le & {} a_{n}^{(-\alpha )},\quad 0\le j \le n-1, \end{aligned}$$
(8.1)
$$\begin{aligned} a_{n}^{(-\alpha -1)}-a_{n}^{(-\alpha )}\le & {} (1+\alpha )\left( \frac{2+\alpha }{2}\right) ^{n-2},\quad n\ge 0. \end{aligned}$$
(8.2)

Proof

From \(a^{(-\alpha )}_n=\frac{\varGamma (n+\alpha )}{\varGamma (\alpha )\varGamma (n+1)}\), we obtain \(a_{n}^{(-\alpha -1)}-a_{n}^{(-\alpha )} =\frac{n}{\alpha }a_{n}^{(-\alpha )}\) and

$$\begin{aligned} \frac{a^{(-\alpha )}_{n+1}}{a^{(-\alpha )}_n}= & {} \frac{n+\alpha }{n+1}\ge \frac{1+\alpha }{2}, \quad n \ge 1, \end{aligned}$$
(8.3)
$$\begin{aligned} \frac{a_{n+1}^{(-\alpha -1)}-a_{n+1}^{(-\alpha )}}{a_{n}^{(-\alpha -1)}-a_{n}^{(-\alpha )}}= & {} \frac{n+\alpha }{n}\le \frac{2+\alpha }{2},\quad n\ge 2. \end{aligned}$$
(8.4)

Eq. (8.3) implies \( \frac{a^{(-\alpha )}_{n}}{a^{(-\alpha )}_{n-j}} =\prod _{k=n-j}^{n-1}\frac{a^{(-\alpha )}_{k+1}}{a^{(-\alpha )}_k} \ge \left( \frac{1+\alpha }{2}\right) ^j\), which completes the proof of (8.1). Obviously, (8.2) holds for \(n=0,1\). From (8.4), we obtain \(a_{n}^{(-\alpha -1)}-a_{n}^{(-\alpha )} \le \left( \frac{2+\alpha }{2}\right) ^{n-2}(a_{2}^{(-\alpha -1)}-a_{2}^{(-\alpha )}) =(\alpha +1)\left( \frac{2+\alpha }{2}\right) ^{n-2}\). The proof complete. \(\square \)

For \( 0\le \theta \le 1/2\), we have the following properties:

$$\begin{aligned} f_1(\theta )= & {} \frac{\theta }{1+\theta \alpha }+ \frac{1-2\theta }{3-2\theta } \le f_1(({2+2\alpha })^{-1})= \frac{1+\alpha }{2+3\alpha }, \end{aligned}$$
(8.5)
$$\begin{aligned} f_2(\theta )= & {} 3\theta ^2\left( \frac{1-2\theta }{3-2\theta }\right) + \left( \frac{\theta }{1+\theta }\right) ^3 +\left( \frac{1-2\theta }{3-2\theta }\right) ^3 <\frac{8}{100},\end{aligned}$$
(8.6)
$$\begin{aligned} f_3(\theta )= & {} 4\theta \left( \frac{1-2\theta }{3-2\theta }\right) ^2+ \left( \frac{\theta }{1+\theta }\right) ^3 +\left( \frac{1-2\theta }{3-2\theta }\right) ^3<\frac{8}{100},\end{aligned}$$
(8.7)
$$\begin{aligned} f_4(\theta )= & {} {\theta } \frac{1-2\theta }{3-2\theta }+\frac{3}{8}\bigg [\frac{\theta ^2}{(1+\theta )^2} +\left( \frac{1-2\theta }{3-2\theta }\right) ^2\bigg ]<\frac{9}{100},\end{aligned}$$
(8.8)
$$\begin{aligned} \rho _1= & {} \frac{1-2\theta }{3-2\theta }\le \frac{1}{3},\qquad \rho _2=\frac{\alpha \theta }{1+\alpha \theta }\le \frac{\alpha }{2+\alpha }, \end{aligned}$$
(8.9)

where we used

$$\begin{aligned} \begin{aligned}&\max _{0\le \theta \le 1/2} f_1(\theta )= f_1(({2+2\alpha })^{-1}) ,\qquad \quad \max _{0\le \theta \le 1/2} f_2(\theta )\approx f_2(0.3769)\approx 0.0685, \\&\max _{0\le \theta \le 1/2} f_3(\theta )\approx f_3(0.1681)\approx 0.0602, \quad \max _{0\le \theta \le 1/2} f_4(\theta )\approx f_4(0.2811)\approx 0.0806. \end{aligned} \end{aligned}$$

Proof

From (2.19) and (4.2), we have \(c_n= 2b_0{a}^{(-\alpha )}_n -\sum _{j=0}^{n}{b}_j{a}^{(-\alpha )}_{n-j},\) where \(b_n\) is given by (4.3).

Step 1) Prove \(c_n\ge 0\) for \(n\ge 3\). Let

$$\begin{aligned} \rho =\max \{\rho _1,\rho _2\},\quad \rho _3= \rho ({2+\alpha })/{2},\quad \lambda = ({1+\alpha })/{2}. \end{aligned}$$
(8.10)

By (4.3), (8.10), (8.2), and \(\sum _{j=1}^{n-1} a_{j}^{(-\alpha )}=a_{n}^{(-\alpha -1)}-1-a_n^{(-\alpha )}\), we have

$$\begin{aligned} b_n/b_0&=\rho _1\rho _2\sum _{j=1}^{n-1} a_{j}^{(-\alpha )} \rho _1^{j-1}\rho _2^{n-j-1} + \rho _2^n + \rho ^n_1a_n^{(-\alpha )} \nonumber \\&\le \rho _1\rho _2\rho ^{n-2}\sum _{j=1}^{n-1} a_{j}^{(-\alpha )}+ \rho _2^n + \rho ^n_1 a_n^{(-\alpha )}\nonumber \\&\le (1+\alpha ) \rho _1\rho _2\rho _3^{n-2} + \rho _2^n+\rho ^n_1a_n^{(-\alpha )}. \end{aligned}$$
(8.11)

From (8.1), we have \(\lambda ^{1-n}a_n^{(-\alpha )}/\alpha \ge 1\) for \(n\ge 1\). Hence,

$$\begin{aligned} \begin{aligned} b_n/b_0\le&\left[ (1+\alpha ) \rho _1\rho _2\rho _3^{n-2}+\rho _2^n\right] \lambda ^{1-n} {a_n^{(-\alpha )}}/{\alpha } +\rho ^n_1 a_n^{(-\alpha )}\\ =&\left[ \frac{1+\alpha }{\alpha \lambda } \rho _1\rho _2 \left( \frac{\rho _3}{\lambda }\right) ^{n-2} +\frac{\lambda }{\alpha }\left( \frac{\rho _2}{\lambda }\right) ^n+\rho ^n_1\right] a_n^{(-\alpha )}\\ \le&\bigg [\frac{1+\alpha }{\alpha \lambda } \rho _1\rho _2 \left( \frac{\rho _3}{\lambda }\right) +\frac{\lambda }{\alpha }\left( \frac{\rho _2}{\lambda }\right) ^3 +\rho ^3_1 \bigg ]a_n^{(-\alpha )}, \quad n\ge 3, \end{aligned} \end{aligned}$$
(8.12)

where we used \(\rho _1\le 1/3\), \(\rho _2/\lambda <1\), and \(\rho _3/\lambda <1\). Direct calculation yields

$$\begin{aligned} \frac{1+\alpha }{\alpha } \frac{\rho _1\rho _2\rho _3}{\lambda ^2} =\left\{ \begin{aligned}&\frac{2\alpha (2+\alpha )}{ 1+\alpha } \frac{1-2\theta }{3-2\theta }\frac{\theta ^2}{(1+\alpha \theta )^2} \le {3\theta ^2} \frac{1-2\theta }{3-2\theta } ,&\rho _1\le \rho _2 ,\\&\frac{2(2+\alpha )}{1+\alpha } \left( \frac{1-2\theta }{3-2\theta }\right) ^2 \frac{ \theta }{1+\alpha \theta } \le 4\theta \left( \frac{1-2\theta }{3-2\theta }\right) ^2,&\rho _1> \rho _2, \end{aligned} \right. \nonumber \\ \end{aligned}$$
(8.13)
$$\begin{aligned} \frac{1}{\alpha } \frac{\rho _2^3}{\lambda ^2} +\rho ^3_1 =\frac{4\alpha ^2}{ (1+\alpha )^2}\frac{\theta ^3}{(1+\theta \alpha )^3} +\left( \frac{1-2\theta }{3-2\theta }\right) ^3 \le \left( \frac{\theta }{1+\theta }\right) ^3 +\left( \frac{1-2\theta }{3-2\theta }\right) ^3.\nonumber \\ \end{aligned}$$
(8.14)

Combining (8.6), (8.7), (8.12), (8.13), and (8.14), yields

$$\begin{aligned} \begin{aligned} b_n/b_0\le&\max \{f_2(\theta ),f_3(\theta )\}a_n^{(-\alpha )} \le \frac{2}{25} a_n^{(-\alpha )},\quad n\ge 3. \end{aligned} \end{aligned}$$
(8.15)

From (8.5), we have

$$\begin{aligned} {b_1}/{b_0}=\rho _2 + a_1^{(-\alpha )}\rho _1 =\alpha \left( \frac{\theta }{1+\theta \alpha }+ \frac{1-2\theta }{3-2\theta }\right) \le \frac{\alpha (1+\alpha )}{2+3\alpha }. \end{aligned}$$
(8.16)

Combining (8.15) and (8.16) yields

$$\begin{aligned} \begin{aligned} \frac{b_0a_n^{(-\alpha )}+b_1a_{n-1}^{(-\alpha )}+ b_n}{b_0a_n^{(-\alpha )}} \le&\frac{27}{25}+\frac{3\alpha (1+\alpha )}{(2+\alpha )(2+3\alpha )} \le \frac{27}{25}+ \frac{2}{5}=\frac{37}{25}\, , \end{aligned} \end{aligned}$$
(8.17)

where we used \({a_{n-1}^{(-\alpha )}} \le \frac{n}{n-1+\alpha }{a_{n}^{(-\alpha )}} \le \frac{3}{2+\alpha }{a_{n}^{(-\alpha )}}\) for \(n\ge 3\).

Using (8.9), we obtain

$$\begin{aligned}&1+\alpha -2\rho _1 \ge 1+\alpha -2/3=({1+3\alpha })/{3},\\&1+\alpha -2\rho _2 \ge 1+\alpha - {2\alpha }/({2+\alpha }) = ({\alpha ^2+\alpha +2})/({2+\alpha }),\\&1+\alpha -2\rho _3 \ge 1+\alpha -\rho ({2+\alpha }) \ge 1+\alpha -({2+\alpha })/{3} =({1+2\alpha })/{3}, \end{aligned}$$

which leads to

$$\begin{aligned}&\frac{\rho _{1}\rho _{2}}{1+\alpha -2\rho _{3}}+\frac{1}{1+\alpha } \frac{\rho ^{2_{2}}}{1+\alpha -2\rho _{2}} + \frac{\alpha }{2}\frac{\rho ^{2_{1}}}{1+\alpha -2\rho _{1}} \nonumber \\&\le \frac{3\alpha }{1+2\alpha }\frac{\theta }{1+\theta \alpha }\frac{1-2\theta }{3-2\theta } +\frac{\alpha (2+\alpha )}{(1+\alpha )(2+\alpha +\alpha ^2)} \frac{\alpha \theta ^{2}}{(1+\alpha \theta )^2}\nonumber \\&\qquad +\,\frac{3\alpha }{2(1+3\alpha )}\left( \frac{1-2\theta }{3-2\theta }\right) ^{2} \nonumber \\&\le {\theta } \frac{1-2\theta }{3-2\theta }+ \frac{3}{8}\left[ \frac{\alpha \theta ^{2}}{(1+\alpha \theta )^{2}} +\left( \frac{1-2\theta }{3-2\theta }\right) ^2\right] \nonumber \\&\le {\theta } \frac{1-2\theta }{3-2\theta }+\frac{3}{8}\left[ \frac{\theta ^2}{(1+\theta )^2} +\left( \frac{1-2\theta }{3-2\theta }\right) ^{2}\right] < \frac{9}{100}. \qquad \text {(By (8.8))} \end{aligned}$$
(8.18)

From (8.11), \(a_j^{(-\alpha )}\le a_2^{(-\alpha )}=\alpha (1+\alpha )/2\), and the following inequality,

$$\begin{aligned} \sum _{j=2}^{n-1}\rho _k^j a_{n-j}^{(-\alpha )}= & {} \sum _{j=2}^{n-1}\frac{\rho _k^j}{\lambda ^j} \left( \lambda ^ja_{n-j}^{(-\alpha )}\right) \le a_{n}^{(-\alpha )} \sum _{j=2}^{n-1}\frac{\rho _k^j}{\lambda ^j} \le a_{n}^{(-\alpha )} \frac{\rho _k^2/\lambda ^2}{1-\rho _k/\lambda } \\= & {} \frac{\rho ^2_k}{\lambda (\lambda -\rho _k)} a_{n}^{(-\alpha )} =\frac{4\rho ^2_k}{(1+\alpha )(1+\alpha -2\rho _k)} a_{n}^{(-\alpha )}, \quad k=1,2,3, \end{aligned}$$

we obtain

$$\begin{aligned} \sum _{j=2}^{n-1}\frac{{b}_j}{b_0}{a}^{(-\alpha )}_{n-j}\le & {} \sum _{j=2}^{n-1} \left[ (1+\alpha ) \rho _1\rho _2\rho _3^{j-2} + \rho _2^j + \frac{\alpha (1+\alpha )}{2}\rho ^j_1\right] a_{n-j}^{(-\alpha )}\nonumber \\\le & {} {4} \left( \frac{\rho _1\rho _2}{1+\alpha -2\rho _3} +\frac{1}{1+\alpha }\frac{\rho ^2_2}{1+\alpha -2\rho _2} +\frac{\alpha }{2}\frac{\rho ^2_1}{1+\alpha -2\rho _1}\right) a_{n}^{(-\alpha )}\nonumber \\\le & {} \frac{9}{25}a_{n}^{(-\alpha )}. \qquad \text {(By 8.8)} \end{aligned}$$
(8.19)

Combining (8.17) and (8.19) yields

$$\begin{aligned} b_0^{-1}\sum _{j=0}^{n}{b}_j{a}^{(-\alpha )}_{n-j}=\sum _{j=2}^{n-1}({b}_j/b_0){a}^{(-\alpha )}_{n-j} +\left( b_0a_n^{(-\alpha )}+b_1a_{n-1}^{(-\alpha )}+ b_n\right) /b_0 \le \frac{46}{25}a_n^{(-\alpha )}, \end{aligned}$$

which leads to

$$\begin{aligned} c_n= 2b_0{a}^{(-\alpha )}_n -b_0^{-1}\sum _{j=0}^{n}{b}_j{a}^{(-\alpha )}_{n-j} \ge b_0\left( 2 - \frac{46}{25}\right) a_n^{(-\alpha )} =\frac{4}{25}b_0{a}^{(-\alpha )}_n \ge 0,\,n\ge 3. \end{aligned}$$

Step 2) Prove \(c_n> 0\) for \(n=0,1,2\). Obviously, \(c_0= 2b_0 - {b}_0\ge b_0 >0\) and

$$\begin{aligned} c_1= (2-\alpha ) b_0- b_1 \ge \left( 2 -\alpha -\frac{\alpha +\alpha ^2}{2+3\alpha }\right) b_0 =\frac{4(1-\alpha ^2) + 3\alpha }{2+3\alpha }b_0>0, \end{aligned}$$

where we used (8.16). By (8.5) and (8.9), we obtain

$$\begin{aligned} \begin{aligned} b_2/b_0 = \frac{\alpha ^2\theta }{1+\theta \alpha }f_1(\theta ) +\frac{\alpha (1+\alpha )}{2}\left( \frac{1-2\theta }{3-2\theta }\right) ^2 \le \frac{\alpha ^2}{2+\alpha } \frac{1+\alpha }{2+3\alpha } +\frac{\alpha (1+\alpha )}{2}\frac{1}{9}. \end{aligned} \end{aligned}$$

From the above inequality and (8.16), we have

$$\begin{aligned} c_2/b_0 =&{a}^{(-\alpha )}_2 -\left( ({b}_1/b_0)\alpha +{b}_2/b_0\right) \\ \ge&\frac{\alpha (1+\alpha )}{2}-\left( \frac{\alpha ^2(1+\alpha )}{2+3\alpha } +\frac{\alpha ^2}{2+\alpha } \frac{1+\alpha }{2+3\alpha } + \frac{\alpha (1+\alpha )}{2} \frac{1}{9}\right) \\ =&{\alpha (1+\alpha )}\left( \frac{4}{9} - \frac{\alpha }{2+3\alpha } -\frac{\alpha }{(2+\alpha )(2+3\alpha )}\right) \\ \ge&{\alpha (1+\alpha )}\left( \frac{4}{9} - \frac{1}{5} -\frac{1}{15}\right) =\frac{8\alpha (1+\alpha )}{45}>0. \end{aligned}$$

The proof is complete. \(\square \)

Appendix B. Proofs of Lemmas 3 and 7

Proof of Lemma 3

For \(\sigma \ge 0\), (3.4) follows from

$$\begin{aligned} \sum _{j=1}^{n-1}(n-j)^{-\alpha -1}j^{\sigma } \le n^{\sigma }\sum _{j=1}^{n-1}(n-j)^{-\alpha -1} \lesssim n^{\sigma } \sum _{j=1}^{\infty }j^{-\alpha -1} \lesssim n^{\sigma }. \end{aligned}$$

Next, we prove (3.4) for \(\sigma <0\).

For \(n\ge 2\), there exists \(j_n=\lceil n/2 \rceil \) and \(x_0=j_n/n \in (0,1)\) such that

$$\begin{aligned} \sum _{j=1}^{n-1}(n-j)^{-\alpha -1}j^{\sigma } =&\sum _{j=1}^{j_n}(n-j)^{-\alpha -1}j^{\sigma } + \sum _{j=j_n+1}^{n-1}(n-j)^{-\alpha -1}j^{\sigma }\\ \le&\sum _{j=1}^{j_n}(n-j_n)^{-\alpha -1}j^{\sigma } + \sum _{j=j_n+1}^{n-1}(n-j)^{-\alpha -1}j_n^{\sigma }\\ \lesssim&n^{-\alpha -1}\sum _{j=1}^{n-1}j^{\sigma } + n^{\sigma } \sum _{j=1}^{n-1}j^{-\alpha -1}. \end{aligned}$$

Using \(\sum _{j=1}^{n-1}j^{-\alpha -1}\lesssim 1\) and \(\sum _{j=1}^{n-1}j^{\sigma } \lesssim n^{\sigma +1}\log (n)\) completes the proof of (3.4).

By \(0\le a_{n}^{(-\alpha )}\lesssim n^{\alpha -1}\), one has

$$\begin{aligned} \sum _{j=1}^{n}a_{n-j}^{(-\alpha )}j^{\sigma }\lesssim n^{\sigma }+ \sum _{j=1}^{n-1} {(n-j)}^{\alpha -1}j^{\sigma }. \end{aligned}$$

Repeating the proof of (3.4) finishes the proof of (3.5). The proof is completed. \(\square \)

Proof of Lemma 7

The condition (2.5) and Lemma 1 yield the following linear system

$$\begin{aligned} \begin{aligned} \sum _{j=1}^mw^{(m)}_{n,j}j^{\sigma _k}&= \frac{\varGamma (\sigma _k+1)}{\varGamma (\sigma _k+1-\alpha )}n^{\sigma _k-\alpha } -\sum _{j=1}^n\omega _{n-j}^{(\alpha )}j^{\sigma _k}\\&=O(n^{-\alpha -1}) + O(n^{\sigma _k-\alpha -p}), \qquad 1\le k \le m, \end{aligned}\end{aligned}$$

which leads to

$$\begin{aligned} |w^{(m)}_{n,k}|\lesssim n^{-\alpha -1} + n^{\sigma _m-p-\alpha },\quad 1\le k \le m. \end{aligned}$$
(8.20)

Combining (3.8), Lemma 3, \(\omega _n^{(\alpha )}=O(n^{-\alpha -1})\), (2.20), and (8.20) leads to

$$\begin{aligned} |W^{(m)}_{n,k}| \lesssim n^{\max \{-\alpha -1,\sigma _m-p-\alpha \}},\quad 1\le k \le m. \end{aligned}$$
(8.21)

Combining (3.2), (3.5), and (8.21) yields (3.15), which ends the proof. \(\square \)

Appendix C. Proof of Theorem 3

Proof

We show a sketch of the proof. Let \(\theta ^n={}_Fu_{h}^n-u_h^n\). By (5.6), (2.15), and \(\theta ^n=\varepsilon _{n}=0\) for \(0\le n \le n_0-1\), we obtain

$$\begin{aligned} \begin{aligned} \frac{1}{\tau ^{\alpha }}\sum _{j=n_0}^n\omega _{n-j}^{(\alpha )}(\theta ^j,v) +(\nabla \theta ^n,\nabla v)&=\left( P_{h}\left( f({}_Fu^{n}_h)-f(u^{n}_h)\right) ,v\right) \\&\quad -\frac{1}{\tau ^{\alpha }}\sum _{j=1}^{n-n_0}\varepsilon _{n-j}\omega _{n-j}^{(\alpha )}(\theta ^j + u_h^j-u_h^0,v). \end{aligned}\nonumber \\ \end{aligned}$$
(8.22)

Similar to (3.19), we can obtain the equivalent form of (8.22) as

$$\begin{aligned} \begin{aligned}&({\mathcal {A}}^{\alpha ,n_0-1}_{\tau } \theta ^n,v) + ({\mathcal {B}}^{\alpha ,n_0-1}\nabla \theta ^j,\nabla v) \\&\quad = \big ( {\mathcal {B}}^{\alpha ,n_0-1}{\widetilde{F}}^n ,v\big ) -\sum _{j=n_0}^{n} {\widetilde{b}}_{n-j}(\theta ^j,v)-(H^n,v), \end{aligned} \end{aligned}$$
(8.23)

where \({\widetilde{F}}^n=f({}_Fu^{n}_h)-f(u^{n}_h))\), and

$$\begin{aligned} \begin{aligned} {\widetilde{b}}_n= \frac{1}{\tau ^{\alpha }}\sum _{j=n_0}^nb_{n-j}\varepsilon _{j}\omega _{j}^{(\alpha )},\quad H^n=\sum _{k=n_0}^{n} {b}_{n-k}\sum _{j=1}^{k-n_0} \varepsilon _{k-j}\omega _{k-j}^{(\alpha )}(u_h^j-u_h^0). \end{aligned} \end{aligned}$$

By \(\omega _{n}^{(\alpha )}=O(n^{-\alpha -1})\) and (3.4), we can easily obtain

$$\begin{aligned} |{\widetilde{b}}_n | \lesssim \varepsilon n^{-\alpha -1}. \end{aligned}$$

By the boundedness of \(\Vert u_h^n\Vert \), \(b_n=O(n^{-\alpha -1})\), and \(\omega _n^{(\alpha )}=O(n^{-\alpha -1})\), we derive

$$\begin{aligned} \Vert H^n\Vert \lesssim \sum _{k=n_0}^{n} |{b}_{n-k}|\sum _{j=1}^{k} |\varepsilon _{k-j}\omega _{k-j}^{(\alpha )} | \lesssim \varepsilon \sum _{j=n_0}^{n} |{b}_{n-k}|\lesssim \varepsilon . \end{aligned}$$

Following the proof of Theorem 2, we can easily arrive at (5.8), the details are omitted. The proof is complete. \(\square \)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Zeng, F., Jiang, X. et al. Convergence analysis of the time-stepping numerical methods for time-fractional nonlinear subdiffusion equations. Fract Calc Appl Anal 25, 453–487 (2022). https://doi.org/10.1007/s13540-022-00022-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13540-022-00022-6

Keywords

Mathematics Subject Classification

Navigation