Skip to main content
Log in

Coupling model for unsteady MHD flow of generalized Maxwell fluid with radiation thermal transform

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

This paper introduces a new model for the Fourier law of heat conduction with the time-fractional order to the generalized Maxwell fluid. The flow is influenced by magnetic field, radiation heat, and heat source. A fractional calculus approach is used to establish the constitutive relationship coupling model of a viscoelastic fluid. We use the Laplace transform and solve ordinary differential equations with a matrix form to obtain the velocity and temperature in the Laplace domain. To obtain solutions from the Laplace space back to the original space, the numerical inversion of the Laplace transform is used. According to the results and graphs, a new theory can be constructed. Comparisons of the associated parameters and the corresponding flow and heat transfer characteristics are presented and analyzed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fetecau, C., Athar, M., and Fetecau, C. Unsteady flow of a generalized Maxwell fluid with fractional derivative due to a constantly accelerating plate. Computers and Mathematics with Applications, 57, 596–603 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Hayat, T. and Sajid, M. Homotopy analysis of MHD boundary layer flow of an upper-convected Maxwell fluid. International Journal of Engineering Science, 45, 393–401 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Tan, W. C. and Masuoka, T. Stability analysis of a Maxwell fluid in a porous medium heated from below. Physics Letters A, 360, 454–460 (2007)

    Article  MATH  Google Scholar 

  4. Podlubny, I. Fractional Differential Equations, Academic Press, New York (1999)

    MATH  Google Scholar 

  5. Guo, B. L., Pu, X. K., and Huang, F. H. Fractional Partial Differential Equations and Their Numerical Solutions, Science Press, Beijing (2011)

    MATH  Google Scholar 

  6. Bagley, R. L. and Torvik, P. J. A theoretical basis for the application of fractional calculus to viscoelasticity. Journal of Rheology, 27, 201–210 (1983)

    Article  MATH  Google Scholar 

  7. Friedrich, C. Relaxation and retardation functions of the Maxwell model with fractional derivatives. Rheologica Acta, 30, 151–158 (1991)

    Article  Google Scholar 

  8. Song, D. Y. and Jiang, T. Q. Study on the constitutive equation with fractional derivative for the viscoelastic fluids modified Jeffreys model and its application. Rheologica Acta, 27, 512–517 (1998)

    Article  Google Scholar 

  9. Qi, H. T. and Xu, M. Y. Stokes’ first problem for a viscoelastic fluid with the generalized Oldroyd- B model. Acta Mechanica Sinica, 23, 463–469 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Qi, H. T. and Xu, M. Y. Some unsteady unidirectional flows of a generalized Oldroyd-B fluid with fractional derivative. Applied Mathematical Modeling, 33, 4184–4191 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Fetecau, C., Prasad, S. C., and Rajagopal, K. R. A note on the flow induced by a constantly accelerating plate in an Oldroyd-B fluid. Applied Mathematical Modeling, 31, 647–654 (2007)

    Article  MATH  Google Scholar 

  12. Fetecau, C., Fetecau, C., Kamran, M., and Vieru, D. Exact solutions for the flow of a generalized Oldroyd-B fluid induced by a constantly accelerating plate between two side walls perpendicular to the plate. Journal of Non-Newtonian Fluid Mechanics, 156, 189–201 (2009)

    Article  MATH  Google Scholar 

  13. Vieru, D., Fetecau, C., and Fetecau, C. Flow of a generalized Oldroyd-B fluid due to a constantly accelerating plate. Applied Mathematics and Computation, 201, 834–842 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Fetecau, C., Athar, M., and Fetecau, C. Unsteady flow of a generalized Maxwell fluid with fractional derivative due to a constantly accelerating plate. Computers and Mathematics with Applications, 57, 596–603 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Khan, M., Hayat, T., and Asghar, S. Exact solution for MHD flow of a generalized Oldroyd-B fluid with modified Darcy’s law. International Journal of Engineering Science, 44, 333–339 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Zheng, L. C., Liu, Y. Q., and Zhang, X. X. A new model for plastic-viscoelastic magnetohydrodynamic (MHD) flow with radiation thermal transfer. International Journal of Nonlinear Sciences and Numerical Simulation, 14, 435–441 (2013)

    Article  MathSciNet  Google Scholar 

  17. Zheng, L. C., Liu, Y. Q., and Zhang, X. X. Exact solutions for MHD flow of generalized Oldroyd-B fluid due to an infinite accelerating plate. Mathematical and Computer Modelling, 54, 780–788 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Shen, F., Tan, W. C., Zhao, Y. H., and Masuoka, T. Decay of vortex velocity and diffusion of temperature in a generalized second grade fluid. Applied Mathematical Modeling, 25, 1151–1159 (2004)

    MATH  Google Scholar 

  19. Shen, F., Tan, W. C., Zhao, Y. H., and Masuoka, T. The Reyleigh-Stokes problem for a heated generalized second grade fluid with fractional derivative model. Nonlinear Analysis: Real World Applications, 7, 1072–1080 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  20. Ezzat, M. A. Thermoelectric MHD non-Newtonian fluid with fractional derivative heat transfer. Physica B, 405, 4188–4194 (2010)

    Article  Google Scholar 

  21. Qi, H. T. and Liu, J. G. Time-fractional radial diffusion in hollow geometries. Meccanica, 45, 577–583 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  22. Jiang, X. Y. and Qi, H. T. Thermal wave model of binoheat transfer with modified Riemann- Liouville fractional derivative. Journal of Physics A: Mathematical and Theoretical, 45, 831–842 (2012)

    Article  Google Scholar 

  23. Xu, H. Y. and Jiang, X. Y. Time fractional dual-phase-lag heat conduction equation. Chinese Physics B, 24, 034401 (2015)

    Article  Google Scholar 

  24. Jiang, X. Y., Xu, M. Y., and Qi, H. T. The fractional diffusion model with an absorption term and modified Fick’s law for non-local transport processes. Nonlinear Analysis: Real World Applications, 11, 262–269 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  25. Tan, W. C. and Masuoka, T. Stokes’ first problem for a second grade fluid in a porous half-space with heated boundary. International Journal of Non-Linear Mechanics, 40, 515–522 (2005)

    Article  MATH  Google Scholar 

  26. EI-Aziz, M. A. Radiation effect on the flow and heat transfer over an unsteady stretching sheet. International Communications in Heat and Mass Transfer, 36, 521–524 (2009)

    Article  Google Scholar 

  27. Cortell, R. Effects of viscous dissipation and radiation on the thermal boundary layer over a nonlinearly stretching sheet. Physics Letters A, 371, 631–636 (2008)

    Article  MATH  Google Scholar 

  28. Ezzat, M., El-Bary, A. A., and Ezzat, S. Combined heat and mass transfer for unsteady MHD flow of perfect conducting micropolar fluid with thermal relaxation. Energy Conversion and Management, 52, 934–945 (2011)

    Article  Google Scholar 

  29. Ezzat, M. and El-Karamany, A. S. Magnetothermoelasticity with two relaxation times in conducting medium with variable electrical and thermal conductivity. Applied Mathematics and Computation, 142, 449–467 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  30. Ezzat, M. A., Othman, M. I., and El-Karamany, A. S. State space approach to generalized thermoviscoelasticity with two relaxation times. International Journal of Engineering Science, 40, 283–302 (2002)

    Article  MATH  Google Scholar 

  31. Ezzat, M. A., El-Karamany, A. S., and Samaan, A. A. The dependence of the modulus of elasticity on reference temperature in generalized thermoelasticity with thermal relaxation. Applied Mathematics and Computation, 147, 169–189 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  32. Ezzat, M. A. The relaxation effects of the volume properties of electrically conducting viscoelastic material. Materials Science and Engineering B, 130, 11–23 (2006)

    Article  Google Scholar 

  33. Ezzat, M. A. and El-Karamany, A. S. The relaxation effects of the volume properties of viscoelastic material in generalized thermoelasticity. International Journal of Engineering Science, 41, 2281–2298 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  34. El-Karamany, A. S. and Ezzat, M. A. Thermal shock problem in generalized thermo-viscoelasticty under four theories. International Journal of Engineering Science, 42, 649–671 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  35. Honig, G. and Hirdes, U. A method for the numerical inversion of Laplace transforms. Journal of Computational and Applied Mathematics, 10, 113–132 (1984)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaqing Liu.

Additional information

Project supported by the China Postdoctoral Science Foundation (No. 2015M580069)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Guo, B. Coupling model for unsteady MHD flow of generalized Maxwell fluid with radiation thermal transform. Appl. Math. Mech.-Engl. Ed. 37, 137–150 (2016). https://doi.org/10.1007/s10483-016-2021-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-016-2021-8

Keywords

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation