Skip to main content
Log in

Ground states of a nonlinear Schrödinger system with nonconstant potentials

  • Articles
  • Progress of Projects Supported by NSFC
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

In the case where either the potentials V j , µ j and β are periodic or V j are well-shaped and µ j and β are anti-well-shaped, existence of a positive ground state of the Schrödinger system

$\left\{ \begin{gathered} - \Delta u_1 + V_1 (x)u_1 = \mu _1 (x)u_1^3 + \beta (x)u_1 u_2^2 in\mathbb{R}^N , \hfill \\ - \Delta u_2 + V_2 (x)u_2 = \beta (x)u_1^2 u_2 + u_2 (x)u_2^3 in\mathbb{R}^N , \hfill \\ u_j \in H^1 (\mathbb{R}^N ),j = 1,2, \hfill \\ \end{gathered} \right.$

where N = 1, 2, 3, is proved provided that β is either small or large in terms of V j and µ j . The system with constant coefficients has been studied extensively in the last ten years, and the nonconstant coefficients case has seldom been studied. It turns out that new technical machineries in the setting of variational methods are needed in dealing with the nonconstant coefficients case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akhmediev N, Ankiewicz A. Partially coherent solitons on a finite background. Phys Rev Lett, 1999, 82: 2661–2664

    Article  Google Scholar 

  2. Ambrosetti A, Colorado E. Bound and ground states of coupled nonlinear Schrödinger equations. C R Math Acad Sci Paris, 2006, 342: 453–458

    Article  MATH  MathSciNet  Google Scholar 

  3. Ambrosetti A, Colorado E. Standing waves of some coupled nonlinear Schrödinger equations. J London Math Soc, 2007, 75: 67–82

    Article  MATH  MathSciNet  Google Scholar 

  4. Ambrosetti A, Felli V, Malchiodi A. Ground states of nonlinear Schrödinger equations with potentials vanishing at infinity. J Eur Math Soc, 2005, 7: 117–144

    Article  MATH  MathSciNet  Google Scholar 

  5. Ambrosetti A, Malchiodi A, Ruiz D. Bound states of nonlinear Schrödinger equations with potentials vanishing at infinity. J Anal Math, 2006, 98: 317–348

    Article  MATH  MathSciNet  Google Scholar 

  6. Bartsch T, Dancer E N, Wang Z Q. A Liouville theorem, a-priori bounds, and bifurcating branches of positive solutions for a nonlinear elliptic system. Calc Var Partial Differential Equations, 2010, 37: 345–361

    Article  MATH  MathSciNet  Google Scholar 

  7. Bartsch T, Wang Z Q. Existence and multiplicity results for some superlinear elliptic equations on ℝN. Comm Partial Differential Equations, 1995, 20: 1725–1741

    Article  MATH  MathSciNet  Google Scholar 

  8. Bartsch T, Wang Z Q. Note on ground states of nonlinear Schrödinger systems. J Partial Differential Equations, 2006, 19: 200–207

    MATH  MathSciNet  Google Scholar 

  9. Benci V, Grisanti C, Micheletti A. Existence and non-existence of the ground state solution for the nonlinear Schrödinger equations with V (∞) = 0. Topol Methods Nonlinear Anal, 2005, 26: 203–219

    MATH  MathSciNet  Google Scholar 

  10. Coti Zelati V, Rabinowitz P H. Homoclinic type solutions for a semilinear elliptic PDE on ℝn. Comm Pure Appl Math, 1992, 45: 1217–1269

    Article  MATH  MathSciNet  Google Scholar 

  11. Dancer E N, Wei J C, Weth T. A priori bounds versus multiple existence of positive solutions for a nonlinear Schrödinger system, Ann Inst H Poincaré Anal Non Linéaire, 2010, 27: 953–969.

    Article  MATH  MathSciNet  Google Scholar 

  12. Ding W Y, Ni W M. On the existence of positive entire solutions of a semilinear elliptic equations. Arch Rational Mech Anal, 1986, 31: 283–308

    Article  MathSciNet  Google Scholar 

  13. Hioe F T. Solitary waves for two and three coupled nonlinear Schrödinger equations. Phys Rev E, 1998, 58: 6700–6707

    Article  MathSciNet  Google Scholar 

  14. Hioe F T. Solitary waves for N coupled nonlinear Schrödinger equations. Phys Rev Lett, 1999, 82: 1152–1155

    Article  Google Scholar 

  15. Hioe F T, Salter T S. Special set and solutions of coupled nonlinear Schrödinger equations. J Phys A: Math Gen, 2002, 35: 8913–8928

    Article  MATH  MathSciNet  Google Scholar 

  16. Li Y Q, Wang Z Q, Zeng J. Ground states of nonlinear Schrödinger equations with potentials. Ann Inst H Poincaré Anal Non Linéaire, 2006, 23: 829–837

    Article  MATH  MathSciNet  Google Scholar 

  17. Lin T C, Wei J C. Ground state of N coupled nonlinear Schrödinger equations in ℝn, n ⩽ 3. Comm Math Phys, 2005, 255: 629–653

    Article  MATH  MathSciNet  Google Scholar 

  18. Lions P L. The concentration-compactness principle in the calculus of variations, the locally compact case, part 1. Ann Inst H Poincaré Anal Non Linéaire, 1984, 1: 109–145

    MATH  Google Scholar 

  19. Liu Z L, Wang Z Q. Multiple bound states of nonlinear Schrödinger systems. Comm Math Phys, 2008, 282: 721–731

    Article  MATH  MathSciNet  Google Scholar 

  20. Liu Z L, Wang Z Q. Ground states and bound states of a nonlinear Schrödinger system. Adv Nonlinear Studies, 2010, 10: 175–193

    MATH  Google Scholar 

  21. Maia L A, Montefusco E, Pellacci B. Positive solutions for a weakly coupled nonlinear Schrödinger system. J Differential Equations, 2006, 229: 743–767

    Article  MATH  MathSciNet  Google Scholar 

  22. Maia L A, Montefusco E, Pellacci B. Infinitely many nodal solutions for a weakly coupled nonlinear Schrödinger system. Comm Contemp Math, 2008, 10: 651–669

    Article  MATH  MathSciNet  Google Scholar 

  23. Pomponio A. Coupled nonlinear Schrödinger systems with potentials. J Differential Equations, 2006, 227: 258–281

    Article  MATH  MathSciNet  Google Scholar 

  24. Pomponio A. Ground states for a system of nonlinear Schrödinger equations with three wave interactions. J Math Phys, 2010, 51: 093513

    Article  MathSciNet  Google Scholar 

  25. Rabinowitz P H. On a class of nonlinear Schrödinger equations. Z Angew Math Phys, 1992, 43: 270–291

    Article  MATH  MathSciNet  Google Scholar 

  26. Sato Y, Wang Z Q. On the multiple existence of semi-positive solutions for a nonlinear Schrödinger system. Ann Inst H Poincaré Anal Non Linéaire, 2013, 30: 1–22

    Article  MATH  MathSciNet  Google Scholar 

  27. Sirakov B. Existence and multiplicity of solutions of semilinear elliptic equations in ℝN. Calc Var Partial Differential Equations, 2000, 11: 119–142

    Article  MATH  MathSciNet  Google Scholar 

  28. Sirakov B. Least energy solitary waves for a system of nonlinear Schrödinger equations in ℝN. Comm Math Phys, 2007, 271: 199–221

    Article  MATH  MathSciNet  Google Scholar 

  29. Struwe M. Variational Methods. Berlin: Springer-verlag, 1996

    Book  MATH  Google Scholar 

  30. Tian R S, Wang Z Q. Multiple solitary wave solutions of nonlinear Schrödinger systems. Topol Methods Nonlinear Anal, 2011, 37: 203–223

    MATH  MathSciNet  Google Scholar 

  31. Timmermans E. Phase separation of Bose-Einstein condensates. Phys Rev Lett, 1998, 81: 5718–5721

    Article  Google Scholar 

  32. Wang X F, Zeng B. On concentration of positve bound states of nonlinear Schrödinger equations with competing potential functions. SIAM J Math Anal, 1997, 28: 633–655

    Article  MATH  MathSciNet  Google Scholar 

  33. Wei J C, Weth T. Nonradial symmetric bound states for a system of two coupled Schrödinger equations. Rend Lincei Mat Appl, 2007, 18: 279–294

    MATH  MathSciNet  Google Scholar 

  34. Wei J C, Weth T. Radial solutions and phase seperation in a system of two coupled Schrödinger equations. Arch Rational Mech Anal, 2008, 190: 83–106

    Article  MATH  MathSciNet  Google Scholar 

  35. Wei J C, Yao W. Uniqueness of positive solutions to some coupled nonlinear Schrödinger equations. Comm Pure Appl Anal, 2012, 11: 1003–1011

    MATH  MathSciNet  Google Scholar 

  36. Willem M. Minimax Theorems. Berlin: Birkhauser, 1996

    Book  MATH  Google Scholar 

  37. Wu T F. Two coupled nonlinear Schrödinger equations involving a non-constant coupling coefficient. Nonlinear Anal, 2012, 75: 4766–4783

    Article  MATH  MathSciNet  Google Scholar 

  38. Zhang Q S. Positive solutions to ΔuV u+W u p = 0 and its parabolic counterpart in noncompact manifolds. Pacific J Math, 2004, 213: 163–200

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ZhaoLi Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Liu, Z. Ground states of a nonlinear Schrödinger system with nonconstant potentials. Sci. China Math. 58, 257–278 (2015). https://doi.org/10.1007/s11425-014-4914-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-014-4914-z

Keywords

MSC(2010)

Navigation