Skip to main content
Log in

Construction of infinitely many solutions for fractional Schrödinger equation with double potentials

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

We consider the following fractional Schrödinger equation involving critical exponent:

$$\begin{aligned} (-\Delta )^su+V(y)u=Q(y)u^{2_s^*-1}, \;u>0, \; \hbox { in } \mathbb {R}^{N},\; u \in D^s(\mathbb {R}^N), \end{aligned}$$

where \(2_s^*=\frac{2N}{N-2s}\), \((y',y'') \in \mathbb {R}^{2} \times \mathbb {R}^{N-2}\) and \(V(y) = V(|y'|,y'')\) and \(Q(y) = Q(|y'|,y'')\) are bounded nonnegative functions in \(\mathbb {R}^{+} \times \mathbb {R}^{N-2}\). By using finite-dimensional reduction method and local Pohozaev-type identities, we show that if \(\frac{2+N-\sqrt{N^2+4}}{4}< s <\min \{\frac{N}{4}, 1\}\) and \(Q(r,y'')\) has a stable critical point \((r_0,y_0'')\) with \(r_0>0,\; Q(r_0,y_0'') > 0\) and \( V(r_0,y_0'') > 0\), then the above problem has infinitely many solutions, whose energy can be arbitrarily large.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  1. Ambrosio, V.: Multiplicity of positive solutions for a class of fractional Schrödinger equations via penalization method. Ann. Mat. Pura Appl. 196(6), 2043–2062 (2017)

    Article  MathSciNet  Google Scholar 

  2. Ambrosio, V.: Periodic solutions for critical fractional problems. Calc. Var. Partial Differ. Equ. 57(2), 45 (2018)

    Article  MathSciNet  Google Scholar 

  3. Applebaum, D.: Lévy Processes and Stochastic Calculus. Cambridge Studies in Advanced Mathematics 116, 2nd edn. Cambridge University, Cambridge (2009)

    Book  Google Scholar 

  4. Barrios, B., Colorado, E., de Pablo, A., Sánchez, U.: On some critical problems for the fractional Laplacian operator. J. Differ. Equ. 252(11), 6133–6162 (2012)

    Article  MathSciNet  Google Scholar 

  5. Benci, V., Cerami, G.: Existence of positive solutions of the equation \(-\Delta u +a(x)u=u^{\frac{N+2}{N-2}}\) in \(\mathbb{R} ^N\). J. Funct. Anal. 88, 90–117 (1990)

    Article  MathSciNet  Google Scholar 

  6. Brändle, C., Colorado, E., de Pablo, A., Sánchez, U.: A concave–convex elliptic problem involving the fractional Laplacian. Proc. R. Soc. Edinb. Sect. A 143(1), 39–71 (2013)

    Article  MathSciNet  Google Scholar 

  7. Caffarelli, L., Silvestre, L.: An extension problem related to the fractional Laplacian. Commun. Partial Differ. Equ. 32(7–9), 1245–1260 (2007)

    Article  MathSciNet  Google Scholar 

  8. Cao, D., Peng, S., Yan, S.: Singularly Perturbed Methods for Nonlinear Elliptic Problems. Cambridge University Press, Cambridge (2021)

    Book  Google Scholar 

  9. Chen, W., Li, Y., Ma, P.: The Fractional Laplacian. World Scientific, Singapore (2019)

    Google Scholar 

  10. Chen, W., Wei, J., Yan, S.: Infinitely many positive solutions for the Schrödinger equations in \(\mathbb{R} ^{N}\) with critical growth. J. Differ. Equ. 252, 2425–2447 (2012)

    Article  Google Scholar 

  11. Dávila, J., del Pino, M., Wei, J.: Concentrating standing waves for the fractional nonlinear Schrödinger equation. J. Differ. Equ. 256(2), 858–892 (2014)

    Article  Google Scholar 

  12. del Pino, M., Felmer, P., Musso, M.: Two-bubble solutions in the super-critical Bahri–Coron’s problem. Calc. Var. Partial Differ. Equ. 16, 113–145 (2003)

    Article  MathSciNet  Google Scholar 

  13. Deng, Y., Lin, C.-S., Yan, S.: On the prescribed scalar curvature problem in \(\mathbb{R} ^N\), local uniqueness and periodicity. J. Math. Pures Appl. 104, 1013–1044 (2015)

    Article  MathSciNet  Google Scholar 

  14. Di Nezza, E., Palatucci, G., Valdinoci, E.: Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 136(5), 521–573 (2012)

    Article  MathSciNet  Google Scholar 

  15. Guo, Y., Liu, T., Nie, J.: Solutions for Fractional Schrödinger equation involving critical exponent via local Pohozaev identities. Adv. Nonlinear Stud. 20, 185–211 (2020)

    Article  MathSciNet  Google Scholar 

  16. Guo, Y., Musso, M., Peng, S., Yan, S.: Non-degeneracy of multi-bubbling solutions for the prescribed scalar curvature equations and applications. J. Funct. Anal. 279(6), 108553 (2020)

    Article  MathSciNet  Google Scholar 

  17. Guo, Y., Nie, J.: Infinitely many non-radial solutions for the prescribed curvature problem of fractional operator. Discrete Contin. Dyn. Syst. 36(12), 6873–6898 (2016)

    Article  MathSciNet  Google Scholar 

  18. Guo, Y., Peng, S., Yan, S.: Local uniqueness and periodicity induced by concentration. Proc. Lond. Math. Soc. 114, 1005–1043 (2017)

    Article  MathSciNet  Google Scholar 

  19. He, Q., Wang, C., Wang, D.-B.: Construction of solutions for a critical problem with competing potentials via local Pohozaev identities. Commun. Contemp. Math. 24(1), 2050071 (2022)

    Article  MathSciNet  Google Scholar 

  20. Jin, T., Li, Y., Xiong, J.: On a fractional Nirenberg problem, part I: blow up analysis and compactness of solutions. J. Eur. Math. Soc. 16(6), 1111–1171 (2014)

    Article  MathSciNet  Google Scholar 

  21. Lieb, E.H.: Sharp constants in the Hardy–Littlewood–Sobolev and related inequalities. Ann. Math. 118(2), 349–374 (1983)

    Article  MathSciNet  Google Scholar 

  22. Li, Y.Y., Wei, J., Xu, H.: Multi-bump solutions of \(-\Delta u=K(x)u^{\frac{n+2}{n-2}}\) on lattices in \(\mathbb{R} ^n\). J. Reine Angew. Math. 743, 163–211 (2018)

    Article  MathSciNet  Google Scholar 

  23. Lions, P.L.: The concentration-compactness principle in the calculus of variations. The locally compact case. I. Ann. Inst. H. Poincaré Anal. Non Linéaire 1, 109–145 (1984)

    Article  MathSciNet  Google Scholar 

  24. Lions, P.L.: The concentration-compactness principle in the calculus of variations. The locally compact case. II. Ann. Inst. H. Poincaré Anal. Non Linéaire 1, 223–283 (1984)

    Article  MathSciNet  Google Scholar 

  25. Peng, S., Wang, C., Yan, S.: Construction of solutions via local Pohozaev identities. J. Funct. Anal. 274, 2606–2633 (2018)

    Article  MathSciNet  Google Scholar 

  26. Rey, O.: The role of the Green’s function in a nonlinear elliptic problem involving the critical Sobolev exponent. J. Funct. Anal. 89, 1–52 (1990)

    Article  MathSciNet  Google Scholar 

  27. Wang, C., Wei, S.: Large number of bubble solutions for a fractional elliptic equation with almost critical exponents. Proc. R. Soc. Edinb. Sect. A 151(5), 1642–1681 (2021)

    Article  MathSciNet  Google Scholar 

  28. Wei, J., Yan, S.: Infinitely many positive solutions for the nonlinear Schrödinger equations in \(\mathbb{R} ^N\). Calc. Var. Partial Differ. Equ. 37, 423–439 (2010)

  29. Wei, J., Yan, S.: Infinitely many solutions for the prescribed scalar curvature problem on \(\mathbb{S} ^{N}\). J. Funct. Anal. 258, 3048–3081 (2010)

    Article  MathSciNet  Google Scholar 

  30. Yan, S., Yang, J., Yu, X.: Equations involving fractional Laplacian operator: compactness and application. J. Funct. Anal. 269(1), 47–79 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The author Ting Liu wrote the main manuscript. All authors reviewed the manuscript.

Corresponding author

Correspondence to Ting Liu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is supported by National Natural Science Foundation of China (12301132), China Postdoctoral Science Foundation (2022M721135) and the Fundamental Research Funds for the Central Universities(2023MS076).

Appendices

Basic estimates

In this section, we will give some basic estimates, which can be found in [15, 17] and [29].

Lemma A.1

For each fixed i and j, \(i \ne j\), let

$$\begin{aligned} g_{ij}=\frac{1}{(1+|y-x_{j}|)^{\alpha }(1+|y-x_{i}|)^{\beta }}, \end{aligned}$$

where \(\alpha , \beta \ge 1\) are constants. Then for any constants \(0 \le \sigma \le min\{\alpha , \beta \}\), there is a constant \(C >0\), such that

$$\begin{aligned} g_{ij}(y) \le \frac{C}{|x_{i}-x_{j}|^{\sigma }}\left( \frac{1}{(1+|y-x_{j}|)^{\alpha +\beta -\sigma }} +\frac{1}{(1+|y-x_{i}|)^{\alpha +\beta -\sigma }}\right) . \end{aligned}$$

Lemma A.2

For any constant \(0< \sigma < N-2s\), there is a constant \(C >0\), such that

$$\begin{aligned} \int \limits _{\mathbb {R}^{N}}\frac{{\textrm{d}}z}{|y-z|^{N-2s}(1+|z|)^{2s+\sigma }} \le \frac{C}{(1+|y|)^{\sigma }}. \end{aligned}$$

Lemma A.3

Let \(\mu > 0\), for any constants \(0< \beta < N\), there exists a constant \(C > 0\), independent of \(\mu \), such that

$$\begin{aligned} \displaystyle \int \limits _{\mathbb {R}^N\backslash B_{\mu }(y)} \frac{1}{|y-z|^{N+2s}}\frac{1}{(1+|z|)^{\beta }} {\textrm{d}}z \le C\left( \frac{1}{(1+|y|)^{\beta +2s}}+ \frac{1}{\mu ^{2s}}\frac{1}{(1+|y|)^{\beta }} \right) . \end{aligned}$$

Lemma A.4

Suppose that \(|y-x|^2 + t^2 = \rho ^2\), then there exists a constant \(C > 0\) such that

$$\begin{aligned} |\tilde{Z}_{x_i,\lambda } | \le \frac{C}{\lambda ^{\frac{N-2s}{2}}}\frac{1}{(1+|y-x_i|)^{N-2s}}, \quad |\nabla \tilde{Z}_{x_i,\lambda } | \le \frac{C}{\lambda ^{\frac{N-2s}{2}}}\frac{1}{(1+|y-x_i|)^{N-2s+1}}. \end{aligned}$$

Lemma A.5

\(\forall \delta > 0\), there exists \(\rho = \rho (\delta ) \in (2\delta , 5 \delta )\), such that when \(N>4\,s\),

$$\begin{aligned} \displaystyle \int \limits _{\partial ^{''} D_\rho ^+} t^{1-2s} |\nabla \tilde{\phi }|^2 \le \frac{Ck\Vert \phi \Vert _*^2}{\lambda ^{\tau }}. \end{aligned}$$

When \(N=3=4s\),

$$\begin{aligned} \displaystyle \int \limits _{\partial ^{''} D_\rho ^+} t^{1-2s} |\nabla \tilde{\phi }|^2 \le Ck\Vert \phi \Vert _*^2, \end{aligned}$$

where C is a constant, dependent on \(\delta \).

The energy expansion

Recall that, the functional corresponding to (1.1) is

$$\begin{aligned} I(u)=\frac{1}{2}\displaystyle \int \limits _{\mathbb {R}^{N}}\big (|(-\Delta )^{\frac{s}{2}}u|^2 +V(y)u^2\big )-\frac{1}{2_s^*}\displaystyle \int \limits _{\mathbb {R}^{N}} Q(y)(u)_+^{2_s^*}. \end{aligned}$$

Lemma B.1

We have the following expansion:

$$\begin{aligned} \frac{\partial I(Z_{\bar{r},\bar{y}'',\lambda })}{\partial \lambda }=k\left( -\frac{A_1}{\lambda ^{2s+1}} +\displaystyle \sum _{j=2}^{k}\frac{B_2 }{\lambda ^{N-2s+1}|x_j-x_1|^{N-2s}}+O\bigg (\frac{1}{\lambda ^{2s+1+\epsilon }}\bigg )\right) , \end{aligned}$$

where positive constants \(B_1,B_2\) are defined by

$$\begin{aligned} A_1 =s V( r_0, y_0'')\displaystyle \int \limits _{\mathbb {R}^N}U_{0,1}^2, \end{aligned}$$
(B.1)

and

$$\begin{aligned} B_2 = \frac{N-2s}{2}c(N,s)\displaystyle \int \limits _{\mathbb {R}^N} U_{0,1}^{2_s^*-1}. \end{aligned}$$
(B.2)

Proof

A direct computation leads to

$$\begin{aligned} \frac{\partial I(Z_{\bar{r},\bar{y}'',\lambda })}{\partial \lambda } =\frac{\partial I(Z^*_{\bar{r},\bar{y}'',\lambda })}{\partial \lambda }+O\left( \frac{k}{\lambda ^{2s+1+\epsilon }}\right) . \end{aligned}$$
(B.3)

On the other hand, we have

$$\begin{aligned} \frac{\partial I(Z^*_{\bar{r},\bar{y}'',\lambda })}{\partial \lambda }&=\displaystyle \int \limits _{\mathbb {R}^N}V(y)Z^*_{\bar{r},\bar{y}'',\lambda }\frac{\partial Z^*_{\bar{r},\bar{y}'',\lambda }}{\partial \lambda } +\displaystyle \int \limits _{\mathbb {R}^N}(1-Q(r,y''))(Z^*_{\bar{r},\bar{y}'',\lambda })^{2_s^*-1}\frac{\partial Z^*_{\bar{r},\bar{y}'',\lambda }}{\partial \lambda } \\&\quad -\displaystyle \int \limits _{\mathbb {R}^N}\left( (Z^*_{\bar{r},\bar{y}'',\lambda })^{2_s^*-1}-\displaystyle \sum _{j=1}^kU_{x_j,\lambda }^{2_s^*-1}\right) \frac{\partial Z^*_{\bar{r},\bar{y}'',\lambda }}{\partial \lambda } \\&:=I_1+I_2-I_3. \end{aligned}$$

By symmetry, we have

$$\begin{aligned} I_1&=k\left( \displaystyle \int \limits _{\mathbb {R}^N}V(y)U_{x_1,\lambda }\frac{\partial U_{x_1,\lambda }}{\partial \lambda }+O\bigg (\frac{1}{\lambda }\displaystyle \int \limits _{\mathbb {R}^N}V(y)U_{x_1,\lambda }\displaystyle \sum _{j=2}^kU_{x_j,\lambda }\bigg )\right) \\ {}&= k\left( \displaystyle \int \limits _{\mathbb {R}^N}V(y)U_{x_1,\lambda }\frac{\partial U_{x_1,\lambda }}{\partial \lambda }+O\left( \frac{1}{\lambda ^{2s+1+\epsilon }}\right) \right) \\ {}&= k\left( -\frac{A_1}{\lambda ^{2s+1}}+O\left( \frac{1}{\lambda ^{2s+1+\epsilon }}\right) \right) , \end{aligned}$$

where \(A_1 = s V( r_0, y_0'')\displaystyle \int \limits _{\mathbb {R}^N}U_{0,1}^2 > 0\) is a constant.

By symmetry, a direct computation leads to

$$\begin{aligned} |I_2|&\le Ck \displaystyle \int \limits _{B_{\lambda ^{-\frac{1}{2}+\epsilon }(x_1)}} |y-x_1|^2 U_{x_1,\lambda }^{2_s^*-1}\frac{\partial U_{x_1,\lambda }}{\partial \lambda }+ \frac{Ck}{\lambda ^{3+\epsilon }} \\ {}&\le \frac{Ck}{\lambda ^{2s+1+\epsilon }}. \end{aligned}$$

Next, we have

$$\begin{aligned} I_3&=k\displaystyle \int \limits _{\Omega _1}\left( (Z^*_{\bar{r},\bar{y}'',\lambda })^{2_s^*-1}-\displaystyle \sum _{j=1}^kU_{x_j,\lambda }^{2_s^*-1}\right) \frac{\partial Z^*_{\bar{r},\bar{y}'',\lambda }}{\partial \lambda }\\ {}&=k\left( \displaystyle \int \limits _{\Omega _1}(2_s^*-1)U_{x_1,\lambda }^{2_s^*-2}\displaystyle \sum _{j=2}^kU_{x_j,\lambda }\frac{\partial U_{x_1,\lambda }}{\partial \lambda }+O\bigg (\frac{1}{\lambda ^{2s+1+\epsilon }}\bigg )\right) \\ {}&=k\left( -\displaystyle \sum _{j=2}^k\frac{B_2 }{\lambda ^{N-2s+1}|x_j-x_1|^{N-2s}}+O\bigg (\frac{1}{\lambda ^{2s+1+\epsilon }}\bigg )\right) , \end{aligned}$$

where \(B_2 = \frac{N-2s}{2}c(N,s)\displaystyle \int \limits _{\mathbb {R}^N} U_{0,1}^{2_s^*-1} > 0\) is a constant.

Thus, we obtain that

$$\begin{aligned} \frac{\partial I(Z^*_{\bar{r},\bar{y}'',\lambda })}{\partial \lambda } =k\left( -\frac{A_1}{\lambda ^{2s+1}} +\displaystyle \sum _{j=2}^{k}\frac{B_2 }{\lambda ^{N-2s+1}|x_j-x_1|^{N-2s}}+O\bigg (\frac{1}{\lambda ^{2s+1+\epsilon }}\bigg )\right) , \end{aligned}$$
(B.4)

where \(A_1\), \(B_2\) are defined by \( A_1 =s V( r_0, y_0'')\displaystyle \int \limits _{\mathbb {R}^N}U_{0,1}^2, \) and \( B_2 = \frac{N-2\,s}{2}c(N,s)\displaystyle \int \limits _{\mathbb {R}^N} U_{0,1}^{2_s^*-1}. \)

Combining (B.3) and (B.4), the result follows. \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, T. Construction of infinitely many solutions for fractional Schrödinger equation with double potentials. Z. Angew. Math. Phys. 75, 102 (2024). https://doi.org/10.1007/s00033-024-02240-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-024-02240-9

Keywords

Mathematics Subject Classification

Navigation