Skip to main content
Log in

Lower Bounds of Optimal Exponentials of Thickness in Geometry Rigidity Inequality for Shells

  • Published:
Journal of Systems Science and Complexity Aims and scope Submit manuscript

Abstract

The optimal exponentials of thickness in the geometry rigidity inequality of shells represent the geometry rigidity of the shells. The author obtains that the lower bounds of the optimal exponentials are 4/3, 3/2, and 1, for hyperbolic shells, parabolic shells, and elliptic shells, respectively, through the construction of the Ansätze.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Friesecke G, James R, and Müller S, A theorem on geometric rigidity and the derivation of nonlinear plate theory from three dimensional elasticity, Commun. Pure Appl. Math., 2002, 55(11): 1461–1506.

    Article  MathSciNet  Google Scholar 

  2. Friesecke G, James R D, and Müller S, A hierarchy of plate models derived from nonlinear elasticity by gamma-convergence, Arch. Ration. Mech. Anal., 2006, 180(2): 183–236.

    Article  MathSciNet  Google Scholar 

  3. John F, Rotation and strain, Commun. Pure Appl. Math., 1961, 14: 391–413.

    Article  MathSciNet  Google Scholar 

  4. John F, Bounds for deformations in terms of average strains, Proceedings of the 3rd Symposium on Inequalities III, Los Angeles, 1969, 1972, 129–144.

  5. Kohn R V, New integral estimates for deformations in terms of their nonlinear strains, Arch. Ration Mech. Anal., 1982, 78(2): 131–172.

    Article  MathSciNet  Google Scholar 

  6. Rešetnjak J G, Liouville’s conformal mapping theorem under minimal regularity hypotheses, Sibirsk. Mat. Ž., 1967, 8: 835–840.

    MathSciNet  Google Scholar 

  7. Reśetnjak J G, The estimation of stability in Liouville’s theorem on conformal mappings of multidimensional spaces, Sibirsk. Mat. Ž., 1970, 11: 1121–1139, 1198.

    MathSciNet  Google Scholar 

  8. Friesecke G, James R D, Mora M G, et al., Derivation of nonlinear bending theory for shells from three-dimensional nonlinear elasticity by gamma-convergence, C. R. Math., 2003, 336(8): 697–702.

    Article  MathSciNet  Google Scholar 

  9. Hornung P, Lewicka M, and Pakzad M R, Infinitesimal isometries on developable surfaces and asymptotic theories for thin developable shells, J. Elasticity, 2013, 111(1): 1–19.

    Article  MathSciNet  Google Scholar 

  10. Lewicka M, Mora M G, and Pakzad M R, Shell theories arising as low energy Γ-limit of 3d nonlinear elasticity, Ann. Sc. Norm. Super. Pisa Cl. Sci., 2010, 9(2): 253–295.

    MathSciNet  MATH  Google Scholar 

  11. Lewicka M and Pakzad M R, The Infinite Hierarchy of Elastic Shell Models: Some Recent Results and a Conjecture, Springer, New York, 2013.

    MATH  Google Scholar 

  12. Lewicka M, Mora M G, and Pakzad M R, The matching property of infinitesimal isometries on elliptic surfaces and elasticity of thin shells, Arch. Ration. Mech. Anal., 2011, 200(3): 1023–1050.

    Article  MathSciNet  Google Scholar 

  13. Yao P F, Linear strain tensors on hyperbolic surfaces and asymptotic theories for thin shells, SIAM J. Math. Anal., 2019, 51(2): 1387–1435.

    Article  MathSciNet  Google Scholar 

  14. Lewicka M and Müller S, On the optimal constants in korn’s and geometric rigidity estimates, in bounded and unbounded domains, under neumann boundary conditions, Indiana Univ. Math. J., 2016, 65(2): 377–397.

    Article  MathSciNet  Google Scholar 

  15. Yao P F, Space of infinitesimal isometries and bending of shells, Pure Appl. Funct. Anal., 2020, 5(1): 203–227.

    MathSciNet  MATH  Google Scholar 

  16. Conti S and Maggi F, Confining thin elastic sheets and folding paper, Arch. Ration. Mech. Anal., 2008, 187(1): 1–48.

    Article  MathSciNet  Google Scholar 

  17. Dauge M and Suri M, On the asymptotic behaviour of the discrete spectrum in buckling problems for thin plates, Math. Methods Appl. Sci., 2006, 29(7): 789–817.

    Article  MathSciNet  Google Scholar 

  18. Grabovsky Y and Harutyunyan D, Scaling instability in buckling of axially compressed cylindrical shells, J. Nonlinear Sci., 2016, 26(1): 83–119.

    Article  MathSciNet  Google Scholar 

  19. Grabovsky Y and Harutyunyan D, Korn inequalities for shells with zero Gaussian curvature, Ann. Inst. H. Poincaré Anal. Non Linéaire, 2018, 35(1): 267–282.

    Article  MathSciNet  Google Scholar 

  20. Grabovsky Y and Harutyunyan D, Exact scaling exponents in Korn and Korn-type inequalities for cylindrical shells, SIAM J. Math. Anal., 2014, 46(5): 3277–3295.

    Article  MathSciNet  Google Scholar 

  21. Harutyunyan D, Gaussian curvature as an identifier of shell rigidity, Arch. Ration. Mech. Anal., 2017, 226(2): 743–766.

    Article  MathSciNet  Google Scholar 

  22. Yao P F, Optimal exponentials of thickness in Korn’s inequalities for parabolic and elliptic shells, Annali di Matematica Pura ed Applicata, 2020, DOI: https://doi.org/10.1007/s10231-020-01000-6.

  23. Yao P F, Strain tensors and their applications, arXiv: 1807.11115 [math-ph].

  24. Yao P F, Modeling and Control in Vibrational and Structural Dynamics: A Differential Geometric Approach, CRC Press, Boca Raton, 2011.

    Book  Google Scholar 

  25. Lee J M, Introduction to Smooth Manifolds, Springer, New York, 2013.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pengfei Yao.

Additional information

This research was supported by the National Science Foundation of China under Grant Nos. 12071463 and 61573342, and Key Research Program of Frontier Sciences, Chinese Academy of Sciences, under Grant No. QYZDJ-SSW-SYS011.

This paper was recommended for publication by Editor GUO Jin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, P. Lower Bounds of Optimal Exponentials of Thickness in Geometry Rigidity Inequality for Shells. J Syst Sci Complex 34, 2092–2108 (2021). https://doi.org/10.1007/s11424-020-0075-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11424-020-0075-z

Keywords

Navigation