Skip to main content
Log in

Infinitesimal Isometries on Developable Surfaces and Asymptotic Theories for Thin Developable Shells

  • Published:
Journal of Elasticity Aims and scope Submit manuscript

Abstract

We perform a detailed analysis of first order Sobolev-regular infinitesimal isometries on developable surfaces without affine regions. We prove that given enough regularity of the surface, any first order infinitesimal isometry can be matched to an infinitesimal isometry of an arbitrarily high order. We discuss the implications of this result for the elasticity of thin developable shells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Choi, D.: On geometrical rigidity of surfaces. Application to the theory of thin linear elastic shells. Math. Models Methods Appl. Sci. 7, 507–555 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ciarlet, P.G.: Mathematical Elasticity. North-Holland, Amsterdam (2000)

    MATH  Google Scholar 

  3. Conti, S., Dolzmann, G.: Γ-convergence for incompressible elastic plates. Calc. Var. Partial Differ. Equ. 34(4), 531–551 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Conti, S., Maggi, F., Müller, S.: Rigorous derivation of Föppl’s theory for clamped elastic membranes leads to relaxation. SIAM J. Math. Anal. 38(2), 657–680 (2006)

    Article  MathSciNet  Google Scholar 

  5. Dal Maso, G.: An Introduction to Γ-convergence. Progress in Nonlinear Differential Equations and their Applications, vol. 8. Birkhäuser, Basel (1993)

    Book  Google Scholar 

  6. Evans, L., Gariepy, R.: Measure Theory and Fine Properties of Functions. Studies in Advanced Mathematics. CRC Press, Boca Raton (1992)

    MATH  Google Scholar 

  7. Friesecke, G., James, R., Mora, M.G., Müller, S.: Derivation of nonlinear bending theory for shells from three-dimensional nonlinear elasticity by Gamma-convergence. C. R. Math. Acad. Sci. Paris 336(8), 697–702 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  8. Friesecke, G., James, R., Müller, S.: A theorem on geometric rigidity and the derivation of nonlinear plate theory from three dimensional elasticity. Commun. Pure Appl. Math. 55, 1461–1506 (2002)

    Article  MATH  Google Scholar 

  9. Friesecke, G., James, R., Müller, S.: A hierarchy of plate models derived from nonlinear elasticity by gamma-convergence. Arch. Ration. Mech. Anal. 180(2), 183–236 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. Geymonat, G., Sanchez-Palencia, E.: On the rigidity of certain surfaces with folds and applications to shell theory. Arch. Ration. Mech. Anal. 129(1), 11–45 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  11. Harris, P.J.: Carbon Nanotubes and Related Structures—New Materials for the Twenty-First Century. Cambridge University Press, Cambridge (1999)

    Book  Google Scholar 

  12. Hartman, P., Nirenberg, L.: On spherical image maps whose Jacobians do not change sign. Am. J. Math. 81, 901–920 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  13. Horak, J., Lord, G.J., Peletier, M.A.: Cylinder buckling: the mountain pass as an organizing center. SIAM J. Appl. Math. 66(5), 1793–1824 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hornung, P.: Approximating W 2,2 isometric immersions. C. R. Math. Acad. Sci. Paris 346(3–4), 189–192 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hornung, P.: Fine level set structure of flat isometric immersions. Arch. Ration. Mech. Anal. 199, 943–1014 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hornung, P.: Approximation of flat W 2,2 isometric immersions by smooth ones. Arch. Ration. Mech. Anal. 199, 1015–1067 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hornung, P.: Euler–Lagrange equation and regularity for flat minimizers of the willmore functional. Commun. Pure Appl. Math. 64, 367–441 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Jensen, K., Mickelson, W., Kis, A., Zettl, A.: Buckling and kinking force measurements on individual multiwalled carbon nanotubes. Phys. Rev. B 76, 195436 (2007)

    Article  ADS  Google Scholar 

  19. Kirchheim, B.: Geometry and Rigidity of Microstructures. Habilitation Thesis, Leipzig (2001). Zbl pre01794210

  20. Lecumberry, M., Müller, S.: Stability of slender bodies under compression and validity of the Föppl-von-Kármán theory. Arch. Ration. Mech. Anal. 193(2), 255–310 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. LeDret, H., Raoult, A.: The nonlinear membrane model as a variational limit of nonlinear three-dimensional elasticity. J. Math. Pures Appl. 73, 549–578 (1995)

    MathSciNet  Google Scholar 

  22. LeDret, H., Raoult, A.: The membrane shell model in nonlinear elasticity: a variational asymptotic derivation. J. Nonlinear Sci. 6, 59–84 (1996)

    Article  MathSciNet  ADS  Google Scholar 

  23. Lewicka, M., Mora, M.G., Pakzad, M.R.: Shell theories arising as low energy Γ-limit of 3d nonlinear elasticity. Ann. Sc. Norm. Super. Pisa, Cl. Sci. IX, 1–43 (2010)

    MathSciNet  Google Scholar 

  24. Lewicka, M., Mora, M.G., Pakzad, M.R.: A nonlinear theory for shells with slowly varying thickness. C. R. Math. Acad. Sci. Paris 347, 211–216 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  25. Lewicka, M., Mora, M.G., Pakzad, M.R.: The matching property of infinitesimal isometries on elliptic surfaces and elasticity of thin shells. Arch. Ration. Mech. Anal. (3), 200, 1023–1050 (2011)

    Article  MathSciNet  Google Scholar 

  26. Lewicka, M., Pakzad, M.R.: The infinite hierarchy of elastic shell models; some recent results and a conjecture. Fields Inst. Commun. (2012, to appear)

  27. Mahadevan, L., Vaziri, A., Das, M.: Persistence of a pinch in a pipe. Europhys. Lett. 77, 40003 (2007)

    Article  ADS  Google Scholar 

  28. Mora, M.G., Müller, S.: Derivation of the nonlinear bending-torsion theory for inextensible rods by Γ-convergence. Calc. Var. Partial Differ. Equ. 18, 287–305 (2003)

    Article  MATH  Google Scholar 

  29. Müller, S., Pakzad, M.R.: Regularity properties of isometric immersions. Math. Z. 251(2), 313–331 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  30. Pakzad, M.R.: On the Sobolev space of isometric immersions. J. Differ. Geom. 66(1), 47–69 (2004)

    MathSciNet  MATH  Google Scholar 

  31. Pogorelov, A.V.: Surfaces with Bounded Extrinsic Curvature (1956). (Russian), Kharhov

  32. Pogorelov, A.V.: Extrinsic Geometry of Convex Surfaces. Translation of mathematical monographs, vol. 35. Am. Math. Soc., Providence (1973)

    MATH  Google Scholar 

  33. Sanchez-Palencia, E.: Statique et dynamique des coques minces. II. Cas de flexion pure inhibée. Approximation membranaire. C. R. Math. Acad. Sci. Paris 309(7), 531–537 (1989)

    MathSciNet  MATH  Google Scholar 

  34. Ziemer, W.P.: Weakly Differentiable Functions. Graduate Texts in Mathematics, vol. 120. Springer, New York (1989)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

P. Hornung was supported by EPSRC grant EP/F048769/1. M. Lewicka was partially supported by the NSF grants DMS-0707275 and DMS-0846996, and by the Polish MN grant N N201 547438. M.R. Pakzad was partially supported by the University of Pittsburgh grant CRDF-9003034 and by the NSF grant DMS-0907844.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marta Lewicka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hornung, P., Lewicka, M. & Pakzad, M.R. Infinitesimal Isometries on Developable Surfaces and Asymptotic Theories for Thin Developable Shells. J Elast 111, 1–19 (2013). https://doi.org/10.1007/s10659-012-9391-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10659-012-9391-4

Keywords

Mathematics Subject Classification

Navigation