Skip to main content
Log in

Hexavalent chromium reducing bacteria: mechanism of reduction and characteristics

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

As a common heavy metal, chromium and its compounds are widely used in industrial applications, e.g., leather tanning, electroplating, and in stainless steel, paints and fertilizers. Due to the strong toxicity of Cr(VI), chromium is regarded as a major source of pollution with a serious impact on the environment and biological systems. The disposal of Cr(VI) by biological treatment methods is more favorable than traditional treatment methods because the biological processes are environmentally friendly and cost-efficient. This review describes how bacteria tolerate and reduce Cr(VI) and the effects of some physical and chemical factors on the reduction of Cr(IV). The practical applications for Cr(VI) reduction of bacterial cells are also included in this review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article.

References

  • Ackerley DF, Gonzalez CF, Keyhan M, Blake R, Matin A (2004) Mechanism of chromate reduction by the Escherichia coli protein, NfsA, and the role of different chromate reductases in minimizing oxidative stress during chromate reduction. Environ Microbiol 6:851–860

    Article  CAS  Google Scholar 

  • Ahemad M (2014) Bacterial mechanisms for Cr(VI) resistance and reduction: an overview and recent advances. Folia Microbiol (Praha) 59:321–332

    Article  CAS  Google Scholar 

  • Bae WC, Lee HK, Choe YC, Jahng DJ, Lee SH, Kim SJ, Lee JH, Jeong BC (2005) Purification and characterization of NADPH-dependent Cr(VI) reductase from Escherichia coli ATCC 33456. J Microbiol 43:21–27

    CAS  Google Scholar 

  • Bahafid W, Sayel H, Joutey NT, Ghachtouli NEJ (2011) Removal mechanism of hexavalent chromium by a novel strain of Pichia anomala isolated from industrial effluents of Fez (Morocco). J Environ Sci Eng:980–991

  • Baldiris R, Acosta-Tapia N, Montes A, Hernandez J, Vivas-Reyes R (2018) Reduction of hexavalent chromium and detection of chromate reductase (ChrR) in Stenotrophomonas maltophilia. Molecules 23

  • Banat IM (1995) Characterization of biosurfactants and their use in pollution removal state of the art (Review). Acta Biotechnol 15:251–267

    Article  CAS  Google Scholar 

  • Banerjee S, Misra A, Chaudhury S, Dam B (2019) A Bacillus strain TCL isolated from Jharia coalmine with remarkable stress responses, chromium reduction capability and bioremediation potential. J Hazard Mater 367:215–223

    Article  CAS  Google Scholar 

  • Barak Y, Ackerley DF, Dodge CJ, Banwari L, Alex C, Francis AJ, Matin A (2006) Analysis of novel soluble chromate and uranyl reductases and generation of an improved enzyme by directed evolution. Appl Environ Microbiol 72:7074–7082

    Article  CAS  Google Scholar 

  • Bartlett RJ (1991) Chromium cycling in soils and water—links, gaps, and methods. Environ Health Perspect 92:17–24

    Article  CAS  Google Scholar 

  • Bharagava RN, Mishra S (2018) Hexavalent chromium reduction potential of Cellulosimicrobium sp. isolated from common effluent treatment plant of tannery industries. Ecotoxicol Environ Saf 147:102–109

    Article  CAS  Google Scholar 

  • Bhide JV, Dhakephalkar PK, Paknikar KM (1996) Microbiological process for the removal of Cr(VI) from chromate-bearing cooling tower effluent. Biotechnol Lett 18:667–672

    Article  CAS  Google Scholar 

  • Bilal S, Khan AL, Shahzad R, Kim YH, Imran M, Khan MJ, Al-Harrasi A, Kim TH, Lee IJ (2018) Mechanisms of Cr(VI) resistance by endophytic Sphingomonas sp. LK11 and its Cr(VI) phytotoxic mitigating effects in soybean (Glycine max L.). Ecotoxicol Environ Saf 164:648–658

    Article  CAS  Google Scholar 

  • BIO, Dollars RJUSGS (1997): Bioremediation: Nature’s Way to a Cleaner Environment.

  • Branco R, Alpoim MC, Morais PV (2004) Ochrobactrum tritici strain 5bvl1—characterization of a Cr(Vi)-resistant and Cr(Vi)-reducing strain. Can J Microbiol 50:697–703

    Article  CAS  Google Scholar 

  • Camargo FA, Okeke BC, Bento FM, Frankenberger WT (2003) In vitro reduction of hexavalent chromium by a cell-free extract of Bacillus sp. ES 29 stimulated by Cu2+. Appl Microbiol Biotechnol 62:569–573

    Article  CAS  Google Scholar 

  • Cameotra SS, Makkar RS (2010) Biosurfactant-enhanced bioremediation of hydrophobic pollutants. Pure Appl Chem 82:97–116

    Article  CAS  Google Scholar 

  • Campos J, Martinez-Pacheco M, Cervantes C (1995a) Hexavalent-chromium reduction by a chromate-resistant Bacillus sp. strain. Antonie Van Leeuwenhoek 68:203–208

    Article  CAS  Google Scholar 

  • Campos J, Martinezpacheco M, Cervantes C (1995b) Hexavalent-Chromium Reduction by a Chromate-Resistant Bacillus Sp Strain. Anton Leeuw Int J G 68:203–208

    Article  CAS  Google Scholar 

  • Cervantes C, Campos-García J (2007) Reduction and efflux of chromate by bacteria. In: Nies DH, Silver S (eds) Molecular microbiology of heavy metals. Springer Berlin Heidelberg, Berlin, pp 407–419

    Chapter  Google Scholar 

  • Chang J, Deng S, Liang Y, Chen J (2019) Cr(VI) removal performance from aqueous solution by Pseudomonas sp. strain DC-B3 isolated from mine soil: characterization of both Cr(VI) bioreduction and total Cr biosorption processes. Environ Sci Pollut Res Int 26:28135–28145

    Article  CAS  Google Scholar 

  • Chatterjee S, Sau GB, Mukherjee SK (2011) Bioremediation of Cr(VI) from chromium-contaminated wastewater by free and immobilized cells of Cellulosimicrobium cellulans KUCr3. Bioremediation Journal 15:173–180

    Article  CAS  Google Scholar 

  • Cheng G, Li X (2009) Bioreduction of chromium (VI) by Bacillus sp. isolated from soils of iron mineral area. Eur J Soil Biol 45:483–487

    Article  CAS  Google Scholar 

  • Cheng Y, Xie Y, Zheng J, Wu Z, Chen Z, Ma X, Li B, Lin Z (2009) Identification and characterization of the chromium(VI) responding protein from a newly isolated Ochrobactrum anthropi CTS-325. J Environ Sci 21:1673–1678

    Article  CAS  Google Scholar 

  • Cheung KH, Gu J-D (2007) Mechanism of hexavalent chromium detoxification by microorganisms and bioremediation application potential: a review. Int Biodeterior Biodegradation 59:8–15

    Article  CAS  Google Scholar 

  • Coetzee JJ, Bansal N, Chirwa EMN (2018) Chromium in environment, its toxic effect from chromite-mining and ferrochrome industries, and its possible bioremediation. Exposure and Health 12:51–62

    Article  Google Scholar 

  • Das S, Mishra J, Das SK, Pandey S, Rao DS, Chakraborty A, Sudarshan M, Das N, Thatoi H (2014) Investigation on mechanism of Cr(VI) reduction and removal by Bacillus amyloliquefaciens, a novel chromate tolerant bacterium isolated from chromite mine soil. Chemosphere 96:112–121

    Article  CAS  Google Scholar 

  • Desai C, Jain K, Madamwar D (2008) Hexavalent chromate reductase activity in cytosolic fractions of Pseudomonas sp. G1DM21 isolated from Cr(VI) contaminated industrial landfill. Process Biochem 43:713–721

    Article  CAS  Google Scholar 

  • Dhakephalkar PK, Bhide JV, Paknikar KM (1996) Plasmid mediated chromate resistance and reduction in Pseudomonas mendocina MCM B-180. Biotechnol Lett 18:1119–1122

    Article  CAS  Google Scholar 

  • Dhal B, Thatoi H, Das N, Pandey BD (2010) Reduction of hexavalent chromium by Bacillus sp. isolated from chromite mine soils and characterization of reduced product. J Chem Technol Biotechnol 85:1471–1479

    CAS  Google Scholar 

  • Dhal B, Thatoi HN, Das NN, Pandey BD (2013) Chemical and microbial remediation of hexavalent chromium from contaminated soil and mining/metallurgical solid waste: A review. J Hazard Mater 250:272–291

    Article  Google Scholar 

  • Dong YR, Sanford RA, Boyanov MI, Kemner KM, Flynn TM, O'Loughlin EJ, Locke RA, Weber JR, Egan SM, Fouke BW (2016) Tepidibacillus decaturensis sp nov., a microaerophilic, moderately thermophilic iron-reducing bacterium isolated from 1.7 km depth groundwater. Int J Syst Evol Microbiol 66:3964–3971

    Article  CAS  Google Scholar 

  • Elahi A, Rehman A (2019) Multiple metal resistance and Cr6+ reduction by bacterium, Staphylococcus sciuri A-HS1, isolated from untreated tannery effluent. J King Saud University - Sci 31:1005–1013

    Article  Google Scholar 

  • Elahi A, Ajaz M, Rehman A, Vuilleumier S, Khan Z, Hussain SZ (2019) Isolation, characterization, and multiple heavy metal-resistant and hexavalent chromium-reducing Microbacterium testaceum B-HS2 from tannery effluent. J King Saud University - Sci 31:1437–1444

    Article  Google Scholar 

  • Elangovan R, Abhipsa S, Rohit B, Ligy P, Chandraraj K (2006) Reduction of Cr(VI) by a Bacillus sp. Biotechnol Lett 28:247–252

    Article  CAS  Google Scholar 

  • Elemba MO, Ijah UJ (2016) Removal of lead and chromium from soil using biosurfactant isolated from spent lubricating oil contaminated soil. Int J Adv Res 4:201–211

    Article  CAS  Google Scholar 

  • Elias DA, Suflita JM, McInerney MJ, Krumholz LR (2004) Periplasmic cytochrome c3 of Desulfovibrio vulgaris is directly involved in H2-mediated metal but not sulfate reduction. Appl Environ Microbiol 70:413–420

    Article  CAS  Google Scholar 

  • Ertani A, Mietto A, Borin M, Nardi S (2017) Chromium in agricultural soils and crops: a review. Water Air Soil Pollut:228

  • Ettinger MJ (1984) Copper metabolism and diseases of copper metabolism. Copper Proteins and Copper Enzymes 3:175–229

  • Farooq U, Kozinski JA, Khan MA, Athar M (2010) Biosorption of heavy metal ions using wheat based biosorbents--a review of the recent literature. Bioresour Technol 101:5043–5053

    Article  CAS  Google Scholar 

  • Fernández PM, Viñarta SC, Bernal AR, Cruz EL, Figueroa LIC (2018) Bioremediation strategies for chromium removal: Current research, scale-up approach and future perspectives. Chemosphere 208:139–148

    Article  Google Scholar 

  • Field EK, Blaskovich JP, Peyton BM, Gerlach R (2018) Carbon-dependent chromate toxicity mechanism in an environmental Arthrobacter isolate. J Hazard Mater 355:162–169

    Article  CAS  Google Scholar 

  • Focardi S, Pepi M, Landi G, Gasperini S, Ruta M, Di Biasio P, Focardi SE (2012) Hexavalent chromium reduction by whole cells and cell free extract of the moderate halophilic bacterial strain Halomonas sp. TA-04. Int Biodeterior Biodegradation 66:63–70

    Article  CAS  Google Scholar 

  • Gang H, Xiao C, Xiao Y, Yan W, Bai R, Ding R, Yang Z, Zhao F (2019) Proteomic analysis of the reduction and resistance mechanisms of Shewanella oneidensis MR-1 under long-term hexavalent chromium stress. Environ Int 127:94–102

    Article  CAS  Google Scholar 

  • Ganguli A, Tripathi AK (2001) Inducible periplasmic chromate reducing activity in Pseudomonas aeruginosa isolated from a leather tannery effluent. J Microbiol Biotechnol 11:355–361

    CAS  Google Scholar 

  • Garbisu C, Alkorta I, Llama MJ, Serra JL (1998) Aerobic chromate reduction by Bacillus subtilis. Biodegradation 9:133–141

    Article  CAS  Google Scholar 

  • Ge S, Dong X, Zhou J, Ge S (2013) Comparative evaluations on bio-treatment of hexavalent chromate by resting cells of Pseudochrobactrum sp. and Proteus sp. in wastewater. J Environ Manag 126:7–12

    Article  CAS  Google Scholar 

  • Ge S, Gu J, Ai W, Dong X (2021) Biotreatment of pyrene and Cr(VI) combined water pollution by mixed bacteria. Sci Rep 11:114

    Article  CAS  Google Scholar 

  • Gnanamani A, Kavitha V, Sekaran G, Rajakumar GS (2008) Vesicle formation in hydrocarbons assisted with microbial hydrolases and biosurfactants. Colloids Surf B: Biointerfaces 67:192–198

    Article  CAS  Google Scholar 

  • Gnanamani A, Kavitha V, Radhakrishnan N, Suseela Rajakumar G, Sekaran G, Mandal AB (2010) Microbial products (biosurfactant and extracellular chromate reductase) of marine microorganism are the potential agents reduce the oxidative stress induced by toxic heavy metals. Colloids Surf B: Biointerfaces 79:334–339

    Article  CAS  Google Scholar 

  • González AJ, Caimán C, Gorino N, Fortunato MS, Radice M, Gómez C, Mujica C, Marquina L, Gallego A, Korol SE (2017) Biotransformation of chromium (VI) in liquid effluents by resistant bacteria isolated from the Matanza-Riachuelo basin, in Argentina. Environ Technol 39:2848–2855

    Article  Google Scholar 

  • Goodgame DM, Joy AM (1986) Relatively long-lived chromium(V) species are produced by the action of glutathione on carcinogenic chromium(VI). J Inorg Biochem 26:219–224

    Article  CAS  Google Scholar 

  • Gopalan R, Veeramani H (1994) Studies on microbial chromate reduction by Pseudomonas Sp. In aerobic continuous suspended growth cultures. Biotechnol Bioeng 43:471–476

    Article  CAS  Google Scholar 

  • Grace Pavithra K, Senthil Kumar P, Carolin Christopher F, Saravanan A (2017) Removal of toxic Cr(VI) ions from tannery industrial wastewater using a newly designed three-phase three-dimensional electrode reactor. J Phys Chem Solids 110:379–385

    Article  Google Scholar 

  • GracePavithra K, Jaikumar V, Kumar PS, SundarRajan P (2019) A review on cleaner strategies for chromium industrial wastewater: present research and future perspective. J Clean Prod 228:580–593

    Article  CAS  Google Scholar 

  • Gupta P, Kumar V, Usmani Z, Rani R, Chandra A (2018a) Phosphate solubilization and chromium (VI) remediation potential of Klebsiella sp. strain CPSB4 isolated from the chromium contaminated agricultural soil. Chemosphere 192:318–327

    Article  CAS  Google Scholar 

  • Gupta P, Rani R, Chandra A, Kumar V (2018b) Potential applications of Pseudomonas sp (strain CPSB21) to ameliorate Cr6+ stress and phytoremediation of tannery effluent contaminated agricultural soils. Sci Rep 8. https://doi.org/10.1038/s41598-018-23322-5

  • He Y, Dong L, Zhou S, Jia Y, Gu R, Bai Q, Gao J, Li Y, Xiao H (2018) Chromium resistance characteristics of Cr(VI) resistance genes ChrA and ChrB in Serratia sp. S2. Ecotoxicol Environ Saf 157:417–423

    Article  CAS  Google Scholar 

  • Hora A, Shetty KV (2014) Inhibitory and stimulating effect of single and multi-metal ions on hexavalent chromium reduction by Acinetobacter sp. Cr-B2. World J Microbiol Biotechnol 30:3211–3219

    Article  CAS  Google Scholar 

  • Hu P, Brodie EL, Suzuki Y, McAdams HH, Andersen GL (2005) Whole-genome transcriptional analysis of heavy metal stresses in Caulobacter crescentus. J Bacteriol 187:8437–8449

    Article  CAS  Google Scholar 

  • Huang T-P, Xiao Y, Pan J-R, Chen Z, Li L-F, Xu L, Zhang L-L, Guan X (2014) Aerobic Cr(VI) Reduction by an Indigenous Soil Isolate Bacillus thuringiensis BRC-ZYR2. Pedosphere 24:652–661

    Article  Google Scholar 

  • Huang XN, Min D, Liu DF, Cheng L, Qian C, Li WW, Yu HQ (2019) Formation mechanism of organo-chromium (III) complexes from bioreduction of chromium (VI) by Aeromonas hydrophila. Environ Int 129:86–94

    Article  CAS  Google Scholar 

  • Huffer S, Taeger T (2004) Sustainable leather manufacturing—a topic with growing importance. J Am Leather Chem Assoc 99:424–428

    Google Scholar 

  • Ibrahim AS, El-Tayeb MA, Elbadawi YB, Al-Salamah AA, Antranikian G (2012) Hexavalent chromate reduction by alkaliphilic Amphibacillus sp. KSUCr3 is mediated by copper-dependent membrane-associated Cr(VI) reductase. Extremophiles 16:659–668

    Article  CAS  Google Scholar 

  • Ikegami K, Hirose Y, Sakashita H, Maruyama R, Sugiyama T (2020) Role of polyphenol in sugarcane molasses as a nutrient for hexavalent chromium bioremediation using bacteria. Chemosphere 250:126267

    Article  CAS  Google Scholar 

  • Jin R, Wang B, Liu G, Wang Y, Zhou J, Wang J (2017) Bioreduction of Cr(VI) by Acinetobacter sp. WB-1 during simultaneous nitrification/denitrification process. J Chem Technol Biotechnol 92:649–656

    Article  CAS  Google Scholar 

  • Jobby R, Jha P, Yadav AK, Desai N (2018) Biosorption and biotransformation of hexavalent chromium [Cr(VI)]: A comprehensive review. Chemosphere 207:255–266

    Article  CAS  Google Scholar 

  • Kakudo M, Higuchi Y, Kusunoki M, Matsuura M, Yasuoka N (1984) Refined structure of cytochrome c3 at 143 A resolution. J Mol Biol 172:109–139

    Article  Google Scholar 

  • Kalaimurugan D, Balamuralikrishnan B, Durairaj K, Vasudhevan P, Shivakumar MS, Kaul T, Chang SW, Ravindran B, Venkatesan S (2019) Isolation and characterization of heavy-metal-resistant bacteria and their applications in environmental bioremediation. Int J Environ Sci Technol 17:1455–1462

    Article  Google Scholar 

  • Kamaruzzaman MA, Abdullah SRS, Hasan HA, Hassan M, Idris M, Ismail NI (2019) Potential of hexavalent chromium-resistant rhizosphere bacteria in promoting plant growth and hexavalent chromium reduction. J Environ Biol 40:427–433

    Article  CAS  Google Scholar 

  • Kang C, Wu P, Li L, Yu L, Ruan B, Gong B, Zhu N (2017) Cr(VI) reduction and Cr(III) immobilization by resting cells of Pseudomonas aeruginosa CCTCC AB93066: spectroscopic, microscopic, and mass balance analysis. Environ Sci Pollut Res Int 24:5949–5963

    Article  CAS  Google Scholar 

  • Karthik C, Barathi S, Pugazhendhi A, Ramkumar VS, Thi NBD, Arulselvi PI (2017) Evaluation of Cr(VI) reduction mechanism and removal by Cellulosimicrobium funkei strain AR8, a novel haloalkaliphilic bacterium. J Hazard Mater 333:42–53

    Article  CAS  Google Scholar 

  • Kaszycki P, Dubicka-Lisowska A, Augustynowicz J, Piwowarczyk B, Wesolowski W (2018) Callitriche cophocarpa (water starwort) proteome under chromate stress: evidence for induction of a quinone reductase. Environ Sci Pollut Res Int 25:8928–8942

    Article  CAS  Google Scholar 

  • Khattar JIS, Parveen S, Singh Y, Singh DP, Gulati A (2014) Intracellular uptake and reduction of hexavalent chromium by the cyanobacterium Synechocystis sp. PUPCCC 62. J Appl Phycol 27:827–837

    Article  Google Scholar 

  • Kumari D, Pan X, Zhang D, Zhao C, Al-Misned FA, Mortuza MG (2015) Bioreduction of Hexavalent Chromium from Soil Column Leachate by Pseudomonas stutzeri. Bioremediation Journal 19:249–258

    Article  CAS  Google Scholar 

  • Kumari V, Yadav A, Haq I, Kumar S, Bharagava RN, Singh SK, Raj A (2016) Genotoxicity evaluation of tannery effluent treated with newly isolated hexavalent chromium reducing Bacillus cereus. J Environ Manag 183:204–211

    Article  CAS  Google Scholar 

  • Lapenna D, Ciofani G (2020) Chromium and human low-density lipoprotein oxidation. J Trace Elem Med Biol 59:126411

    Article  Google Scholar 

  • Lefebvre Y, Pezerat H (1992) Production of activated species of oxygen during the chromate(VI)-ascorbate reaction: implication in carcinogenesis. Chem Res Toxicol 5:461–463

    Article  CAS  Google Scholar 

  • Leong YK, Chang J-S (2020) Bioremediation of heavy metals using microalgae: Recent advances and mechanisms. Bioresour Technol 303:122886

    Article  CAS  Google Scholar 

  • Li M, He Z, Hu Y, Hu L, Zhong H (2019) Both cell envelope and cytoplasm were the locations for chromium(VI) reduction by Bacillus sp. M6. Bioresour Technol 273:130–135

    Article  CAS  Google Scholar 

  • Li Y, Wang H, Wu P, Yu L, Rehman S, Wang J, Yang S, Zhu N (2020) Bioreduction of hexavalent chromium on goethite in the presence of Pseudomonas aeruginosa. Environ Pollut 265:114765

    Article  CAS  Google Scholar 

  • Lin H, You S, Liu L (2019) Characterization of microbial communities, identification of Cr(VI) reducing bacteria in constructed wetland and Cr(VI) removal ability of Bacillus cereus. Sci Rep 9:12873

    Article  Google Scholar 

  • Liu Z, Wu Y, Lei C, Liu P, Gao M (2012) Chromate reduction by a chromate-resistant bacterium, Microbacterium sp. World J Microbiol Biotechnol 28:1585–1592

    Article  CAS  Google Scholar 

  • Liu XH, Chu G, Du YY, Li J, Si YB (2019) The role of electron shuttle enhances Fe(III)-mediated reduction of Cr(VI) by Shewanella oneidensis MR-1. World J Microb Biot 35:64

  • Llovera S, Bonet R, Simon-Pujol MD, Congregado F (1993) Chromate reduction by resting cells of Agrobacterium radiobacter EPS-916. Appl Environ Microbiol 59:3516–3518

    Article  CAS  Google Scholar 

  • Long D, Hashmi MZ, Su X, Pongpiachan S (2019) Cr(VI) reduction by an extracellular polymeric substance (EPS) produced from a strain of Pseudochrobactrum saccharolyticum. King Abdulaziz City Sci Technol 9:111

    Google Scholar 

  • Lovley DR, Giovannoni SJ, White DC, Champine JE, Phillips EJ, Gorby YA, Goodwin S (1993a) Geobacter metallireducens gen. nov. sp. nov., a microorganism capable of coupling the complete oxidation of organic compounds to the reduction of iron and other metals. Arch Microbiol 159:336–344

    Article  CAS  Google Scholar 

  • Lovley DR, Widman PK, Woodward JC, Phillips EJ (1993b) Reduction of uranium by cytochrome c3 of Desulfovibrio vulgaris. Appl Environ Microbiol 59:3572–3576

    Article  CAS  Google Scholar 

  • Lowe KL, Straube W, Little B, Jones-Meehan J (2003) Aerobic and anaerobic reduction of Cr(VI) by Shewanella oneidensis effects of cationic metals, sorbing agents and mixed microbial cultures. Acta Biotechnol 23:161–178

    Article  CAS  Google Scholar 

  • Ma ZM, Zhu WJ, Long HZ, Chai LY, Wang QW (2007) Chromate reduction by resting cells of Achromobacter sp Ch-1 under aerobic conditions. Process Biochem 42:1028–1032

    Article  CAS  Google Scholar 

  • Ma Y, Zhong H, He Z (2019) Cr(VI) reductase activity locates in the cytoplasm of Aeribacillus pallidus BK1, a novel Cr(VI)-reducing thermophile isolated from Tengchong geothermal region, China. Chem Eng J 371:524–534

    Article  CAS  Google Scholar 

  • Magnuson TS, Swenson MW, Paszczynski AJ, Deobald LA, Kerk D, Cummings DE (2010) Proteogenomic and functional analysis of chromate reduction in Acidiphilium cryptum JF-5, an Fe(III)-respiring acidophile. Biometals 23:1129–1138

    Article  CAS  Google Scholar 

  • Mary Mangaiyarkarasi MS, Vincent S, Janarthanan S, Subba Rao T, Tata BV (2011) Bioreduction of Cr(VI) by alkaliphilic Bacillus subtilis and interaction of the membrane groups. Saudi J Biol Sci 18:157–167

    Article  CAS  Google Scholar 

  • Masaki Y, Hirajima T, Sasaki K, Okibe N (2015) Bioreduction and immobilization of hexavalent chromium by the extremely acidophilic Fe(III)-reducing bacterium Acidocella aromatica strain PFBC. Extremophiles 19:495–503

    Article  CAS  Google Scholar 

  • Massara H, Mulligan CN, Hadjinicolaou J (2007) Effect of rhamnolipids on chromium-contaminated kaolinite. Soil Sediment Contam Int J 16:1–14

    Article  CAS  Google Scholar 

  • McLean J, Beveridge TJ (2001) Chromate reduction by a pseudomonad isolated from a site contaminated with chromated copper arsenate. Appl Environ Microbiol 67:1076–1084

    Article  CAS  Google Scholar 

  • Megharaj M, Avudainayagam S, Naidu R (2003) Toxicity of hexavalent chromium and its reduction by bacteria isolated from soil contaminated with tannery waste. Curr Microbiol 47:51–54

    Article  CAS  Google Scholar 

  • Michailides MK, Tekerlekopoulou AG, Akratos CS, Coles S, Pavlou S, Vayenas DV (2015) Molasses as an efficient low-cost carbon source for biological Cr(VI) removal. J Hazard Mater 281:95–105

    Article  CAS  Google Scholar 

  • Mishra RR, Dhal B, Dutta SK, Dangar TK, Das NN, Thatoi HN (2012) Optimization and characterization of chromium(VI) reduction in saline condition by moderately halophilic Vigribacillus sp. isolated from mangrove soil of Bhitarkanika, India. J Hazard Mater 227-228:219–226

    Article  CAS  Google Scholar 

  • Mohamed MSM, El-Arabi NI, El-Hussein A, El-Maaty SA, Abdelhadi AA (2020) Reduction of chromium-VI by chromium-resistant Escherichia coli FACU: a prospective bacterium for bioremediation. Folia Microbiol (Praha) 65:687–696

    Article  CAS  Google Scholar 

  • Mohapatra RK, Pandey S, Thatoi H, Panda CR (2017a) Reduction of Chromium(VI) by Marine Bacterium Brevibacillus laterosporus Under Varying Saline and pH Conditions. Environ Eng Sci 34:617–626

    Article  CAS  Google Scholar 

  • Mohapatra RK, Parhi PK, Thatoi H, Panda CR (2017b) Bioreduction of hexavalent chromium by Exiguobacterium indicum strain MW1 isolated from marine water of Paradip Port, Odisha, India. Chem Ecol 33:114–130

    Article  CAS  Google Scholar 

  • Moraetis D, Nikolaidis NP, Karatzas GP, Dokou Z, Kalogerakis N, Winkel LHE, Palaiogianni-Bellou A (2012) Origin and mobility of hexavalent chromium in North-Eastern Attica, Greece. Appl Geochem 27:1170–1178

    Article  CAS  Google Scholar 

  • Mukherjee K, Saha R, Ghosh A, Saha B (2012) Chromium removal technologies. Res Chem Intermed 39:2267–2286

    Article  Google Scholar 

  • Mushtaq J, Batool R (2019) Cr (VI) resistant Bacillus and Acinetobacter isolated from soil of Narran valley. Soil Environ 38:57–65

    Article  CAS  Google Scholar 

  • Naeem A, Batool R, Jamil N (2013) Cr(VI) reduction by Cellulosimicrobium sp isolated from tannery effluent. Turk J Biol 37:315–322

    CAS  Google Scholar 

  • Narayani M, Shetty KV (2013) Chromium-resistant bacteria and their environmental condition for hexavalent chromium removal: a review. Crit Rev Environ Sci Technol 43:955–1009

    Article  CAS  Google Scholar 

  • Nyman JL, Caccavo F, Cunningham AB, Gerlach R (2002) Biogeochemical Elimination of Chromium (VI) from Contaminated Water. Bioremediation J 6:39–55

    Article  CAS  Google Scholar 

  • Oves M, Khan MS, Qari HA (2019) Chromium-reducing and phosphate-solubilizing Achromobacter xylosoxidans bacteria from the heavy metal-contaminated soil of the Brass city, Moradabad, India. Int J Environ Sci Technol 16:6967–6984

    Article  CAS  Google Scholar 

  • Padan E, Bibi E, Ito M, Krulwich TA (2005) Alkaline pH homeostasis in bacteria: new insights. Biochim Biophys Acta 1717:67–88

    Article  CAS  Google Scholar 

  • Pal A, Paul AK (2004) Aerobic chromate reduction by chromium-resistant bacteria isolated from serpentine soil. Microbiol Res 159:347–354

    Article  CAS  Google Scholar 

  • Pal A, Dutta S, Paul AK (2005) Reduction of hexavalent chromium by cell-free extract of Bacillus sphaericus AND 303 isolated from serpentine soil. Curr Microbiol 51:327–330

    Article  CAS  Google Scholar 

  • Perron NR, Brumaghim JL (2009) A review of the antioxidant mechanisms of polyphenol compounds related to iron binding. Cell Biochem Biophys 53:75–100

    Article  CAS  Google Scholar 

  • Philip L, Iyengar L, Venkobachar C (1998) Cr(VI) reduction by Bacillus coagulans isolated from contaminated soils. J Environ Eng 124:1165–1170

    Article  CAS  Google Scholar 

  • Phillips DLE (1994) Reduction of chromate by Desulfovibrio vulgaris and its C3 cytochrome. Appl Environ Microbiol 60:726–728

    Article  Google Scholar 

  • Prabhakaran DC, Bolaños-Benitez V, Sivry Y, Gelabert A, Riotte J, Subramanian S (2019) Mechanistic studies on the bioremediation of Cr(VI) using Sphingopyxis macrogoltabida SUK2c, a Cr(VI) tolerant bacterial isolate. Biochem Eng J 150:107292

    Article  CAS  Google Scholar 

  • Pradhan D, Sukla LB, Sawyer M, Rahman PKSM (2017) Recent bioreduction of hexavalent chromium in wastewater treatment: a review. J Ind Eng Chem 55:1–20

    Article  CAS  Google Scholar 

  • Priester JH, Olson SG, Webb SM, Neu MP, Hersman LE, Holden PA (2006) Enhanced exopolymer production and chromium stabilization in Pseudomonas putida unsaturated biofilms. Appl Environ Microbiol 72:1988–1996

    Article  CAS  Google Scholar 

  • Qian J, Zhou J, Wang L, Wei L, Li Q, Wang D, Wang Q (2017) Direct Cr (VI) bio-reduction with organics as electron donor by anaerobic sludge. Chem Eng J 309:330–338

    Article  CAS  Google Scholar 

  • Qu M, Chen J, Huang Q, Chen J, Xu Y, Luo J, Wang K, Gao W, Zheng Y (2018) Bioremediation of hexavalent chromium contaminated soil by a bioleaching system with weak magnetic fields. Int Biodeterior Biodegradation 128:41–47

    Article  CAS  Google Scholar 

  • Raman NM, Asokan S, Shobana Sundari N, Ramasamy S (2017) Bioremediation of chromium(VI) by Stenotrophomonas maltophilia isolated from tannery effluent. Int J Environ Sci Technol 15:207–216

    Article  Google Scholar 

  • Ramírez-Díaz MI, Díaz-Pérez C, Vargas E, Riveros-Rosas H, Campos-García J, Cervantes C (2007) Mechanisms of bacterial resistance to chromium compounds. BioMetals 21:321–332

    Article  Google Scholar 

  • Ranieri E, Gikas P (2014) Effects of plants for reduction and removal of hexavalent chromium from a contaminated soil. Water Air Soil Pollut:225

  • Sagar S, Dwivedi A, Yadav S, Tripathi M, Kaistha SD (2012) Hexavalent chromium reduction and plant growth promotion by Staphylococcus arlettae Strain Cr11. Chemosphere 86:847–852

    Article  CAS  Google Scholar 

  • Sanjay MS, Sudarsanam D, Raj GA, Baskar K (2020) Isolation and identification of chromium reducing bacteria from tannery effluent. J King Saud University-Sci 32:265–271

    Article  Google Scholar 

  • Sathishkumar K, Murugan K, Benelli G, Higuchi A, Rajasekar A (2016) Bioreduction of hexavalent chromium by Pseudomonas stutzeri L1 and Acinetobacter baumannii L2. Ann Microbiol 67:91–98

    Article  Google Scholar 

  • Sau GB, Chatterjee S, Mukherjee SK (2010) Chromate reduction by cell-free extract of Bacillus firmus KUCr1. Pol J Microbiol 59:185–190

    Article  CAS  Google Scholar 

  • Sayel H, Bahafid W, Tahri Joutey N, Derraz K, Fikri Benbrahim K, Ibnsouda Koraichi S, El Ghachtouli N (2011) Cr(VI) reduction by Enterococcus gallinarum isolated from tannery waste-contaminated soil. Ann Microbiol 62:1269–1277

    Article  Google Scholar 

  • Shanker A, Venkateswarlu B (2011) Chromium: environmental pollution, health effects and mode of action. In: Jerome ON (ed) Encyclopedia of environmental health, vol 65. Elsevier, Burlington, pp 650–659

    Chapter  Google Scholar 

  • Shen H, Wang YT (1993) Characterization of enzymatic reduction of hexavalent chromium by Escherichia coli ATCC 33456. Appl Environ Microbiol 59:3771–3777

    Article  CAS  Google Scholar 

  • Shi XL, Dalal NS (1990) NADPH-dependent flavoenzymes catalyze one electron reduction of metal ions and molecular oxygen and generate hydroxyl radicals. FEBS Lett 276:189–191

    Article  CAS  Google Scholar 

  • Silva B, Figueiredo H, Quintelas C, Neves IC, Tavares T (2012) Improved biosorption for Cr(VI) reduction and removal by Arthrobacter viscosus using zeolite. Int Biodeterior Biodegradation 74:116–123

    Article  CAS  Google Scholar 

  • Singh R, Kumar A, Kirrolia A, Kumar R, Yadav N, Bishnoi NR, Lohchab RK (2011) Removal of sulphate, COD and Cr(VI) in simulated and real wastewater by sulphate reducing bacteria enrichment in small bioreactor and FTIR study. Bioresour Technol 102:677–682

    Article  CAS  Google Scholar 

  • Singh HP, Mahajan P, Kaur S, Batish DR, Kohli RK (2013) Chromium toxicity and tolerance in plants. Environ Chem Lett 11:229–254

    Article  CAS  Google Scholar 

  • Singh P, Itankar N, Patil Y (2021) Biomanagement of hexavalent chromium: current trends and promising perspectives. J Environ Manag 279:111547

    Article  CAS  Google Scholar 

  • Somasundaram V, Philip L, Bhallamudi SM (2011) Laboratory scale column studies on transport and biotransformation of Cr(VI) through porous media in presence of CRB, SRB and IRB. Chem Eng J 171:572–581

    Article  CAS  Google Scholar 

  • Soni SK, Singh R, Awasthi A, Kalra A (2014) A Cr(VI)-reducing Microbacterium sp. strain SUCR140 enhances growth and yield of Zea mays in Cr(VI) amended soil through reduced chromium toxicity and improves colonization of arbuscular mycorrhizal fungi. Environ Sci Pollut Res Int 21:1971–1979

    Article  CAS  Google Scholar 

  • Sturm G, Brunner S, Suvorova E, Dempwolff F, Reiner J, Graumann P, Bernier-Latmani R, Majzlan J, Gescher J (2018) Chromate resistance Mechanisms in Leucobacter chromiiresistens. Appl Environ Microbiol 84(23)

  • Sultan S, Hasnain S (2007) Reduction of toxic hexavalent chromium by Ochrobactrum intermedium strain SDCr-5 stimulated by heavy metals. Bioresour Technol 98:340–344

    Article  CAS  Google Scholar 

  • Sun Y, Lan J, Du Y, Guo L, Du D, Chen S, Ye H, Zhang TC (2020) Chromium(VI) bioreduction and removal by Enterobacter sp. SL grown with waste molasses as carbon source: Impact of operational conditions. Bioresour Technol 302:121974

    Article  CAS  Google Scholar 

  • Suzuki T, Miyata N, Horitsu H, Kawai K, Takamizawa K, Tai Y, Okazaki M (1992) Nad(P)H-Dependent chromium(Vi) reductase of Pseudomonas-Ambigua G-1—a Cr(V) intermediate is formed during the reduction of Cr(Vi) to Cr(Iii). J Bacteriol 174:5340–5345

    Article  CAS  Google Scholar 

  • Swapna TH, Papathoti NK, Khan MY, Reddy G, Hameeda B (2016) Bioreduction of Cr (VI) by biosurfactant producing marine bacterium Bacillus subtilis SHB 13. J Sci Ind Res India 75:432–438

    CAS  Google Scholar 

  • Tahri Joutey N, Bahafid W, Sayel H, Ananou S, El Ghachtouli N (2014) Hexavalent chromium removal by a novel Serratia proteamaculans isolated from the bank of Sebou River (Morocco). Environ Sci Pollut Res Int 21:3060–3072

    Article  CAS  Google Scholar 

  • Tahri Joutey N, Bahafid W, Sayel H, Nassef S, El Ghachtouli N (2015) Leucobacter chromiireducens CRB2, a new strain with high Cr(VI) reduction potential isolated from tannery-contaminated soil (Fez, Morocco). Ann Microbiol 66:425–436

    Article  Google Scholar 

  • Tan H, Wang C, Zeng G, Luo Y, Li H, Xu H (2020) Bioreduction and biosorption of Cr(VI) by a novel Bacillus sp. CRB-B1 strain. J Hazard Mater 386:121628

    Article  CAS  Google Scholar 

  • Tariq M, Waseem M, Rasool MH, Zahoor MA, Hussain I (2019) Isolation and molecular characterization of the indigenous Staphylococcus aureus strain K1 with the ability to reduce hexavalent chromium for its application in bioremediation of metal-contaminated sites. PeerJ 7:e7726

    Article  Google Scholar 

  • Teles YV, de Castro LM, Sargentini Junior É, do Nascimento AP, da Silva HA, Costa RS, do Nascimento Souza RD, da Mota AJ, Pereira JO (2018) Potential of bacterial isolates from a stream in Nanaus-Amazon to bioremediate chromium-contaminated environments. Water Air Soil Pollut 229(8):266

    Article  Google Scholar 

  • Thacker U, Madamwar D (2005) Reduction of toxic chromium and partial localization of chromium reductase activity in bacterial isolate DM1. World J Microbiol Biotechnol 21:891–899

    Article  CAS  Google Scholar 

  • Thatoi H, Das S, Mishra J, Rath BP, Das N (2014) Bacterial chromate reductase, a potential enzyme for bioremediation of hexavalent chromium: a review. J Environ Manag 146:383–399

    Article  CAS  Google Scholar 

  • Turano MAIBMBCMP (2002) The metal reductase activity of some multiheme cytochromes c: NMR structural characterization of the reduction of chromium(VI) to chromium(III) by cytochrome c7. Proc Natl Acad Sci 99:9750–9754

    Article  Google Scholar 

  • Vatsouria A, Vainshtein M, Kuschk P, Wiessner A, Kosolapov D, Kaestner M (2005) Anaerobic co-reduction of chromate and nitrate by bacterial cultures of Staphylococcus epidermidis L-02. J Ind Microbiol Biotechnol 32:409–414

    Article  CAS  Google Scholar 

  • Viamajala S, Peyton BM, Apel WA, Petersen JN (2002) Chromate reduction in Shewanella oneidensis MR-1 is an inducible process associated with anaerobic growth. Biotechnol Prog 18:290–295

    Article  CAS  Google Scholar 

  • Vijayaraghavan K, Yun YS (2008) Bacterial biosorbents and biosorption. Biotechnol Adv 26:266–291

    Article  CAS  Google Scholar 

  • Viti C, Giovannetti L (2007) Bioremediation of soils polluted with hexavalent chromium using bacteria: a challenge. Environ Bioremed Technol:57–76

  • Volesky B (2001) Detoxification of metal-bearing effluents: biosorption for the next century. Hydrometallurgy 59:203–216

    Article  CAS  Google Scholar 

  • Wang C, Cui Y (2019) Recognition of a New Cr(VI)-Reducing strain and study of the potential capacity for reduction of Cr(VI) of the strain. Biomed Res Int 2019:1–9

  • Wang PC, Mori T, Komori K, Sasatsu M, Toda K, Ohtake H (1989) Isolation and characterization of an Enterobacter-Cloacae strain that reduces hexavalent chromium under anaerobic conditions. Appl Environ Microbiol 55:1665–1669

    Article  CAS  Google Scholar 

  • Wang PC, Mori T, Toda K, Ohtake H (1990) Membrane-associated chromate reductase activity from Enterobacter cloacae. J Bacteriol 172:1670–1672

    Article  CAS  Google Scholar 

  • Wang PC, Toda K, Ohtake H, Kusaka I, Yabe I (1991) Membrane-bound respiratory system of Enterobacter cloacae strain HO1 grown anaerobically with chromate. FEMS Microbiol Lett 62:11–15

    Article  CAS  Google Scholar 

  • Wang Y, Yang Z, Peng B, Chai L, Wu B, Wu R (2013) Biotreatment of chromite ore processing residue by Pannonibacter phragmitetus BB. Environ Sci Pollut Res 20:5593–5602

    Article  CAS  Google Scholar 

  • Wang G, Zhang B, Li S, Yang M, Yin C (2017) Simultaneous microbial reduction of vanadium (V) and chromium (VI) by Shewanella loihica PV-4. Bioresour Technol 227:353–358

    Article  CAS  Google Scholar 

  • Wani PA, Wani JA, Wahid S (2018) Recent advances in the mechanism of detoxification of genotoxic and cytotoxic Cr (VI) by microbes. J Environ Chem Eng 6:3798–3807

    Article  CAS  Google Scholar 

  • Wielinga B, Mizuba MM, Hansel CM, Fendorf S (2001) Iron promoted reduction of chromate by dissimilatory iron-reducing bacteria. Environ Sci Technol 35:522–527

    Article  CAS  Google Scholar 

  • Xia X, Wu S, Li N, Wang D, Zheng S, Wang G (2018) Novel bacterial selenite reductase CsrF responsible for Se(IV) and Cr(VI) reduction that produces nanoparticles in Alishewanella sp. WH16-1. J Hazard Mater 342:499–509

    Article  CAS  Google Scholar 

  • Xia S, Song Z, Jeyakumar P, Shaheen SM, Rinklebe J, Ok YS, Bolan N, Wang H (2019) A critical review on bioremediation technologies for Cr(VI)-contaminated soils and wastewater. Crit Rev Environ Sci Technol 49:1027–1078

    Article  CAS  Google Scholar 

  • Xiao W, Ye X, Yang X, Zhu Z, Sun C, Zhang Q, Xu P (2017) Isolation and characterization of chromium(VI)-reducing Bacillus sp. FY1 and Arthrobacter sp. WZ2 and their bioremediation potential. Bioremed J 21:100–108

    Article  CAS  Google Scholar 

  • Xu L, Luo M, Li W, Wei X, Xie K, Liu L, Jiang C, Liu H (2011) Reduction of hexavalent chromium by Pannonibacter phragmitetus LSSE-09 stimulated with external electron donors under alkaline conditions. J Hazard Mater 185:1169–1176

    Article  CAS  Google Scholar 

  • Xu L, Luo M, Jiang C, Wei X, Kong P, Liang X, Zhao J, Yang L, Liu H (2012) In vitro reduction of hexavalent chromium by cytoplasmic fractions of Pannonibacter phragmitetus LSSE-09 under aerobic and anaerobic conditions. Appl Biochem Biotechnol 166:933–941

    Article  CAS  Google Scholar 

  • Xu F, Ma T, Shi L, Zhang J (2013) Bioreduction of Cr(VI) by Bacillus sp. QH-1 isolated from soil under chromium-containing slag heap in high altitude area. Ann Microbiol 64:1073–1080

    Article  Google Scholar 

  • Xu W, Duan G, Liu Y, Zeng G, Li X, Liang J, Zhang W (2018) Simultaneous removal of hexavalent chromium and o-dichlorobenzene by isolated Serratia marcescens ZD-9. Biodegradation 29:605–616

    Article  CAS  Google Scholar 

  • Yao Y, Hu L, Li S, Zeng Q, Zhong H, He Z (2020) Exploration on the bioreduction mechanisms of Cr(VI) and Hg(II) by a newly isolated bacterial strain Pseudomonas umsongensis CY-1. Ecotoxicol Environ Saf 201:110850

    Article  CAS  Google Scholar 

  • Yuan HE, Dong LL, Zhou SM, Jia Y, Bai QH, Wang RH, Xiao HJMPM (2017) Screening of hexavalent chromium-resistant Serratia sp. S2 and the reduction characteristics of Cr(VI). Modern Preventive Medicine 44:3374–3389

  • Zapana-Huarache SV, Romero-Sanchez CK, Gonza APD, Torres-Huaco FD, Rivera AML (2020) Chromium (VI) bioremediation potential of filamentous fungi isolated from Peruvian tannery industry effluents. Braz J Microbiol 51:271–278

    Article  CAS  Google Scholar 

  • Zeng Q, Hu Y, Yang Y, Hu L, Zhong H, He Z (2019) Cell envelop is the key site for Cr() reduction by Oceanobacillus oncorhynchi W4, a newly isolated Cr() reducing bacterium. J Hazard Mater 368:149–155

    Article  CAS  Google Scholar 

  • Zhang R, Tian Y (2020) Characteristics of natural biopolymers and their derivative as sorbents for chromium adsorption: a review. J Leather Sci Eng 2

  • Zhang JK, Wang ZH, Ye Y (2016) Heavy metal resistances and chromium removal of a novel Cr(VI)-reducing Pseudomonad strain isolated from circulating cooling water of iron and steel plant. Appl Biochem Biotechnol 180:1328–1344

    Article  CAS  Google Scholar 

  • Zheng Z, Li Y, Zhang X, Liu P, Ren J, Wu G, Zhang Y, Chen Y, Li X (2015) A Bacillus subtilis strain can reduce hexavalent chromium to trivalent and an nfrA gene is involved. Int Biodeterior Biodegradation 97:90–96

    Article  CAS  Google Scholar 

  • Zhou B-J, Chen T-H (2014) Biodegradation of phenol with chromium (VI) reduction by the Pseudomonas sp. strain JF122. Desalin Water Treat 57:3544–3551

    Article  Google Scholar 

  • Zhu W, Chai L, Ma Z, Wang Y, Xiao H, Zhao K (2008) Anaerobic reduction of hexavalent chromium by bacterial cells of Achromobacter sp. Strain Ch1. Microbiol Res 163:616–623

    Article  CAS  Google Scholar 

  • Zhu Y, Yan J, Xia L, Zhang X, Luo L (2019) Mechanisms of Cr(VI) reduction by Bacillus sp. CRB-1, a novel Cr(VI)-reducing bacterium isolated from tannery activated sludge. Ecotoxicol Environ Saf 186. https://doi.org/10.1016/j.ecoenv.2019.109792

  • Zouboulis AI, Loukidou MX, Matis KA (2004) Biosorption of toxic metals from aqueous solutions by bacteria strains isolated from metal-polluted soils. Process Biochem 39:909–916

    Article  CAS  Google Scholar 

Download references

Funding

This study was financially supported by the National Key Research and Development Program of China (2018YFC1802201) and Sichuan Key Research and Development Program (2017YFS0287).

Author information

Authors and Affiliations

Authors

Contributions

YQT proposed the idea of the article, drafted an outline, and revised the work. JC performed the literature search combined with data analysis and wrote the article.

Corresponding author

Correspondence to Yongqiang Tian.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no conflict of interest.

Additional information

Responsible Editor: Robert Duran

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Tian, Y. Hexavalent chromium reducing bacteria: mechanism of reduction and characteristics. Environ Sci Pollut Res 28, 20981–20997 (2021). https://doi.org/10.1007/s11356-021-13325-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-021-13325-7

Keywords

Navigation