Skip to main content

Abstract

In this contemporary scenario of urbanization and industrialization, chromium metal owes great significance. Due to hardness and resistance to corrosion, it is extensively utilized as raw material in various industries, the waste thus produced (sludge, fly ash, ash, slag, etc.) from these industries is a major contributor of chromium metal contamination to the environment. Chromium exhibits nine valence states ranging from −2 to +6, however, it predominantly exists in Cr (VI) and Cr (III) oxidation states. Cr (III) and Cr (VI) differ widely in physicochemical and biological reactivity behaviors. Trivalent chromium possesses less toxicity and it can also be precipitated in the form of hydroxide (Cr(OH)3). But the hexavalent chromium is highly toxic, mobile, and very difficult to precipitate. It is a strong oxidant, poses carcinogenic, mutagenic, and genotoxic effects on biotic communities, as it is easily diffusible through soil and water ecosystems. The existing remediation technologies such as land filling, stabilization, soil washing, flushing, excavation, ion exchange, adsorption, reverse osmosis, membrane separation, and solvent extraction are physicochemical methods. These physical and chemical curation processes are less complicated, speedy, and effective in metal exudation, but they consume a high amount of chemicals and energy, thus are not economically viable. These methods also result in secondary pollutants. In addition, most of these procedures perform effectively, when the concentration of metal is high and that of interfering agents is low. The aforesaid remediation procedures also exert adverse effects on soil fertility and aquatic eco-balance. Drawbacks associated with the conventional Cr(VI) treatment procedures steered the research community to develop sustainable and economically compatible processes. In this regard, microbial remediation and phytoremediation approaches were explored as prospective alternatives to conventional cleanup technologies. This chapter of the book focuses on chromium contamination issues, its sources, chemical behavior, effects, a brief account of physical and chemical remediation techniques, and detailed chromium detoxification by biological methods. The chapter also offers a critical evaluation of bioremediation capacity of various microorganisms (fungi, bacteria, algae, and yeast) in special reference to the biosorption, biotransformation, bioaccumulation, and other mechanisms being utilized by the microbial community to remove hexavalent chromium. Another unit of the chapter presents the review of the current status of chromium phytoremediation, chromium uptake pathways, storage sites in plants, and phytoremediation mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahluwalia SS, Goyal D (2007) Microbial and plant derived biomass for removal of heavy metals from wastewater. Bioresour Technol 98(12):2243–2257

    Article  CAS  PubMed  Google Scholar 

  • Ahmad WA, Ahmad WHW, Karim NA, Raj ASS, Zakaria ZA (2013) Cr(VI) reduction in naturally rich growth medium and sugarcane bagasse by Acinetobacter haemolyticus. Int Biodeterior Biodegrad 85:571–576

    Article  CAS  Google Scholar 

  • Amatussalam A, Abubacker MN, Rajendran RB (2011) In situ Carica papaya stem matrix and Fusarium oxysporum (NCBT-156) mediated bioremediation of chromium. Ind J Exp Biol 49:925–931

    CAS  Google Scholar 

  • Anjum NA, Ahmad I, Mohmood I, Pacheco M, Duartte AC, Pereira E, Umar S, Ahmad A, Khan NA, Iqbal NA, Prasad MNV (2012) Modulation of glutathione and its related enzymes in plants’ reponses to toxic metals and metalloids-a review. Environ Exp Bot 75:307–324

    CAS  Google Scholar 

  • Bahadur A, Ahmad R, Afzal A, Feng H, Suthar V, Batool A, Khan A, Mahmood-ul-Hussan M (2017) The influences of Cr-tolerant zhizobacteria in phytoremediation and attenuation of Cr (VI) stress in agronomic sunflower (Helianthus annuus L.). Chemosphere 179:112–119

    Article  CAS  PubMed  Google Scholar 

  • Bahafid W, Joutey NT, Sayel H, Boularab I, El Ghachtouli N (2013) Bioaugmentation of chromium-polluted soil microcosms with Candida tropicalis diminishes phytoavailable chromium. J Appl Microbiol 115(3):727–734

    Article  CAS  PubMed  Google Scholar 

  • Bajgai RC, Georgieva N, Lazarova N (2012) Bioremediation of chromium ions with filamentous yeast Trichosporon cutaneum R57. J Biol Earth Sci 2(2):B70-75

    Google Scholar 

  • Banerjee S, Joshi SR, Mandal T, Halder G (2017) Insight into Cr6+reduction efficiency of Rhodococcus erythropolis isolated from coalmine waste water. Chemosphere 167:269–281

    Article  CAS  PubMed  Google Scholar 

  • Barrere-Diaz CE, Lugo-Lugo V, Bilyeu B (2012) A review of chemical, electrochemical and biological methods for aqueous Cr(VI) reduction. J Hazard Mater 223–224:1–12

    Article  CAS  Google Scholar 

  • Bharagava RN, Mishra S (2018) Hexavalent chromium reduction potential of Cellulosimicrobium sp. isolated from common effluent treatment plant of tannery industries. Ecotoxicol Environ Saf 147:102–109

    Article  CAS  PubMed  Google Scholar 

  • Bhateria R, Dhaka R (2017) Biological strategies for detoxification of hexavalent chromium. Int J Pharm Bio Sci 8(1): B 35–48

    Google Scholar 

  • Boonyapookana B, Upatham ES, Kruatrachue M, Pokethitiyook P, Singhakaew S (2002) Phytoaccumulation and phytotoxicity of cadmium and chromium in duckweed Wilffia globosa. Int J Phytoremediat 4(2):87–100

    Article  CAS  Google Scholar 

  • Brady D, Letebele B, Duncan JR, Rose PD (1994) Bioaccumulation of metals by Scenedesmus, Selenastrum and Chlorella algae. Water SA 20:213–218

    CAS  Google Scholar 

  • Cabral L, Giovanella P, Kerlleman A, Gianello C, Bento FM, Camargo FAO (2014) Impact of selected anions and metals on the growth and in vitro removal of methylmercury by Pseudomonas putida. Int Biodeterior Biodegrad 91:29–36

    Article  CAS  Google Scholar 

  • Carlos F S , Giovanella P, Bavaresco J, Borges CDS, Camargo FADO (2016) A comparison of microbial bioaugmentation and biostimulation for hexavalent chromium removal from wastewater. Water Air Soil Pollut 227:175

    Google Scholar 

  • Chen JC, Wang KS, Chen H, Lu CY, Huang LC, Li HC, Peng TH, Chang SH (2010) Phytoremediation of Cr (III) by Ipomonea aquatica (water spinach) from water in the presence of EDTA and chloride: effects of Cr speciation. Bioresour Technol 101(9):3033–3039

    Article  CAS  PubMed  Google Scholar 

  • Chen Z, Zou L, Zhang H, Chen Y, Liu P, Li X (2014) Thioredoxin is involved in hexavalent chromium reduction in Streptomyces violaceoruber strain LZ-26-1 isolated from the Lanzhou reaches of the Yellow River. Int Biodeterior Biodegrad 94:146–151

    Article  CAS  Google Scholar 

  • Cheung KH, Gu JD (2007) Mechanism of hexavalent chromium detoxification by microorganisms and bioremediation application potential: a review. Int Biodeterior Biodegrad 59(1):8–15

    Article  CAS  Google Scholar 

  • Coetzee JJ, Bansal N, Chirwa EMN (2020) Chromium in environment, its toxic effect from chromite-mining and ferrochrome industries, and its possible bioremediation. Expo Health 12:51–62

    Article  Google Scholar 

  • Corradi MG, Gorbi G (1993) Chromium toxicity on two linked trophic levels II morphophysiological effects on Scenedesmus acutus. Ecotoxicol Environ Saf 25:72–78

    Article  CAS  PubMed  Google Scholar 

  • Costa RC, Moura FC, Oliveira PE, Magalhaes F, Ardisson JD, Lago RM (2010) Controlled reduction of red mud waste to produce active systems for environmental applications: heterogenous Fenton reaction and reduction of Cr (VI). Chemosphere 78(9):1116–1120

    Article  CAS  PubMed  Google Scholar 

  • Del Bubba M, Ancillotti C, Checchini L, Ciofi L, Fibbi D, Gonnelli C, Mosti S (2013) Chromium accumulation and changes in plant growth, selected phenolics and sugars of wild type and genetically modified Nicotiana lansdorffii. J Hazard Mater 262:394–403

    Article  PubMed  CAS  Google Scholar 

  • Deng L, Zhang Y, Qin J, Wang X, Zhu X (2009) Biosorption of Cr (VI) from aqueous solution of nonliving algae Cladophora albida. Miner Eng 22:372–377

    Article  CAS  Google Scholar 

  • Deng P, Tan XQ, Wu Y, Bai QH, Jia Y, Xiao H (2015) Cloning and sequence analysis demonstrate the chromate reduction ability of a novel chromate reductase gene from Serratia sp. Exp Ther Med 9(3):795–800

    Article  CAS  PubMed  Google Scholar 

  • Dhir B, Sharmila P, Pardha Saradhi P, Nasim SA (2009) Physiological and antioxidant responses of Salvinia natans exposed to chromium rich waste water. Ecotoxicol Environ Saf 72(6):1790–1797

    Article  CAS  PubMed  Google Scholar 

  • Dimitroula H, Syranidou E, Manousaki E, Nikolaidis NP, Karatzas GP, Kalogerakis N (2015) Mitigation measures for chromium–VI contaminated groundwater-the role of endophytic bacteria in rhizofilteration. J Hazard Mater 281:114–120

    Article  CAS  PubMed  Google Scholar 

  • Dogan G, Dogan N, Doganli G (2014) Efect of environmental factors on biological reduction of hexavalent chromium by Pseudomonas mendocina. Asian J Chem 26(21):7359–7363

    Article  CAS  Google Scholar 

  • Dogan NM, Kantar C, Gulcan S, Dodge CJ, Yilmaz BC, Mazmanci MA (2011) Chromium (VI) bioremoval by pseudomonas bacteria: role of microbial exudates for natural attenuation and biotreatment of Cr (VI) contamination. Environ Sci Technol 45(6):2278–3228

    Article  CAS  PubMed  Google Scholar 

  • Eleftheriou EP, Adamakis IDS, Panteris E, Fatsiou M (2015) Chromium induced ultrastructural changes and oxidative stress in roots of Arabidopsis thaliana. Int J Mol Sci 16(7):15852–15871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Escobar MP, Dussan J (2016) Phytoremediation potential of chromium and lead by Alnus acuminate subsp. Acuminata. Environ Progr Sustain Energy 35(4):942–948

    Article  CAS  Google Scholar 

  • Fang Z, Zhang J, Liu B, Du G, Chen J (2013) Biodegradation of wool waste and keratinase production in scale-up fermenter with different strategies by Stenotrophomonas maltophilia BBE11-1. Bioresour Technol 140:286–291

    Article  CAS  PubMed  Google Scholar 

  • Fasulo MP, Bassi M, Donini A (1983) Cytotoxic effects of hexavalent chromium in Euglena gracilis II Physiological and ultrastructural studies. Protoplasma 114:35–43

    Article  CAS  Google Scholar 

  • Fernández PM, Fariña JI, Figueroa LIC (2010) The significance of inoculum standardization and cell density on the Cr (VI) bioremediation by environmental yeast isolates. Water Air Soil Pollut 212:275–279

    Article  CAS  Google Scholar 

  • Fernández PM, Viñarta SC, Bernal AR, Cruz EL, Figueroa LIC (2018) Bioremediation strategies for chromium removal: Current research, scale-up approach and future perspectives. Chemosphere 208:139–148

    Article  PubMed  CAS  Google Scholar 

  • Field EK, Gerlach R, Viamajala S, Jennings LK, Peyton BM, Apel WA (2013) Hexavalent chromium reduction by Cellulomonas sp. strain ES6: the influence of carbon source, iron minerals, and electron shuttling compounds. Biodegradation 24:437–450

    Article  CAS  PubMed  Google Scholar 

  • Focardi S, Pepi M, Landi G, Gasperini S, Ruta M, Di Biasio P, Focardi SE (2012) Hexavalent chromium reduction by whole cells and cell free extract of the moderate halophilic bacterial strain Halomonas sp. TA-04. Int Biodeterior Biodegradation 66(1):63–70

    Google Scholar 

  • Ganesh KS, Baskaran L, RajasekaranS SK, Chidambaram ALA, Sundaramoorthy P (2008) Chromium stress induced alterations in biochemical in biochemical and enzyme metabolism in aquatic and terrestrial plants. Colloids SurfB Bio Interfaces 63(2):159–163

    Article  CAS  Google Scholar 

  • Gavrilescu M (2004) Removal of heavy metals from the environment by biosorption. Eng Life Sci 4(3):219–232

    Article  CAS  Google Scholar 

  • Ge S, Ai W, Dong X (2016) High-quality draft genome sequence of leucobacter sp. strain G161, a distinct and effective chromium reducer. Genome Announc 44(1):e01760–15

    Google Scholar 

  • Ge S, Zheng W, Dong X, Zhou M, Zhou J (2014) Distributions of soluble hexavalent chromate reductase from Leucobacter sp. G161 with high reducing ability and thermostability. J Pure Appl Microbiol 8:1893–1900

    CAS  Google Scholar 

  • Ghafoori M, Majid NM, Islam M, Luhat S (2013) Bioaccumulation of heavy metals by Dyera costulata cultivated in sewage sludge contaminated soil. Afr J Biotechnol 10(52):10674–10682

    Article  Google Scholar 

  • Gibbs HJ, Lees PS, Pinsky PF, Rooney BC (2000) Clinical findings of irritation among chromium chemical production worker. Am J Ind Med 38(2):127–131

    Article  Google Scholar 

  • Gill RA, Ali B, Islam F, Farooq MA, Gill MB, Mwamba TM, Zhou W (2015) Physiological and molecular analyses of black and yellow seeded Brassica napus regulated by 5-aminolivulinic acid under chromium stress. Plant Physiol Biochem 94:130–143

    Article  CAS  PubMed  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machineryin abiotic stress tolerance in crop plants. Plant Physiol Biochem 48(12):909–930

    Article  CAS  PubMed  Google Scholar 

  • Gupta R, Ahuja P, Khan S, Saxena RK, Mohapata H (2000) Microbial biosorbents: meeting challenges of heavy metal pollutionin aqueous solutions. Curr Sci 78:967–973

    CAS  Google Scholar 

  • Gupta VK, Srivastava AK, Jain N (2001) Biosorption of chromium (VI) from aqueous solution of green algae Spirogyra sp. Water Res 35:4079–4085

    Article  CAS  PubMed  Google Scholar 

  • He Z, Gao F, Sha T, Hu Y, He C (2009) Isolation and characterization of a Cr (VI)-reduction Ochrobactrum sp. strain CSCr-3 from chromium landfill. J Hazard Mater 163(2–3):869–873

    Google Scholar 

  • Hora A, Shetty VK (2015) Partial purification and characterization of chromate reductase of a novel Ochrobactrum sp. strain Cr-B4. Prep. Biochem Biotechnol 45(8):769–784

    Google Scholar 

  • Huang H, Wu K, Khan A, Jiang Y, Ling Z, Liu P, Chen Y, Tao X, Li X (2016) A novel Pseudomonas gessardii strain LZ-E simultaneously degrades naphthalene and reduces hexavalent chromium. Bioresour Technol 207:370–378

    Article  CAS  PubMed  Google Scholar 

  • Igwe JC, Abia AA (2006) A bioseparation process for removing heavy metals from waste water using biosorbents. Afr J Biotechnol 5:1167–1179

    Google Scholar 

  • Iram S, Uzma G, Rukh S, Ara T (2013) Bioremediation of heavy metals using isolates of filamentous fungus Aspergillus fumigatus collected from polluted soil of Kasur, Pakistan. Int Res J Biological Sci 2(12):66–73

    Google Scholar 

  • Jadia CD, Fulekar M (2009) Phytoremediation of heavy metals: recent techniques. Afr J Biotechnol 8(6)

    Google Scholar 

  • Jain P, Amatullah A, Rajib SA, Reza HM (2012) Antibiotic resistance and chromium reduction pattern among actinomycetes. Am J Biochem and Biotechnol 8(2):111–117

    Google Scholar 

  • Kang SY, Lee JU, Moon HS, Kim KW (2004) Competitive adsorption characteristics of Co2+, Ni2+, and Cr3+ by IRN-77 cation exchange resin in synthesized wastewater. Chemosphere 56(2):141–147

    Article  CAS  PubMed  Google Scholar 

  • Kümmerer K (2004) Resistance in the environment. J Antimicrob Chemother 54(2):311–320

    Article  PubMed  CAS  Google Scholar 

  • Koppolu L, Agblevor FA, Clements LD (2003) Pyrolysis as a technique for separating heavy metals fromhyperaccumulators. Part II: lab scale pyrolysis of synthetic hyperaccumulator biomass. Biomass Bioenergy 25(6):651–663

    Google Scholar 

  • Lahouti M, Jamshidi S, Ejtehadi H, Rowshani M, Mahmoodzadeh H (2008) X- ray microanalysis and ultrastructural localization of chromium in Raphanus sativus L. Int J Bot 4:340–343

    Article  Google Scholar 

  • Latha S, Vinothini G, Dhanasekaran D (2015) Chromium [Cr(VI)] biosorption property of the newly isolated actinobacterial probiont Streptomyces werraensis LD22. 3 Biotech 5:423–432

    Google Scholar 

  • Liu J, Duan CQ, Zhang XH, Zhu YN, Hu C (2009) Subcellular distribution of chromium in accumulating plant Leersia hexandra Swartz. Plant Soil 322(1–2):187–195

    Article  CAS  Google Scholar 

  • Llagostera M, Garrido S, Guerrero R, Barbe J (1986) Induction of SOS genes of Escherichia coli by chromium compounds. Environ Mutagen 8(4):571–577

    Article  CAS  PubMed  Google Scholar 

  • Long D, Tang X, Cai K, Chen G, Chen L, Duan D, Zhu J, Chen Y (2013) Cr (VI) reduction by a potent novel alkaliphilic halotolerant strain Pseudochrobactrum saccharolyticum LY10. J Hazard Mater 256–257:24–32

    Article  PubMed  CAS  Google Scholar 

  • Lopez-Luna J, Gozalez-Chavez M, Esparza-Garcia F, Rodrigez-Vazquez R (2009) Toxicity assessment of soil amended with tannery sludge, trivalent chromium and hexavalent chromium using wheat, oat and sorghum plants. J Hazard Mater 163(2):829–834

    Article  CAS  PubMed  Google Scholar 

  • Lytras G, Lytras C, Argyropoulou D, Dimopoulos N, Malavetas G, Lyberatos G (2017) A novel two-phase bioreactor for microbial hexavalent chromium removal from wastewater. J Hazard Mater 336:41–51

    Article  CAS  PubMed  Google Scholar 

  • Narayani M, Shetty KV (2013) Chromium-resistant bacteria and their environmental condition for hexavalent chromium removal: a review. Crit Rev Environ Sci Techno 43(9):955–1009

    Article  CAS  Google Scholar 

  • Mala JGS, Sujatha D, Rose C (2015) Inducible chromate reductase exhibiting extracellular activity in Bacillus methylotrophicus for chromium bioremediation. Microbiol Res 170:235–241

    Article  CAS  Google Scholar 

  • Marsh TI, McInerney MJ (2001) Relationship of hydrogen bioavailability to chromate reduction aquifer sediments. Appl Environ Microbiol 67(4):1517–1521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mathiyazhagan N, Natarajan D (2011) Bioremediation on effluents from magnesite and bauxite mines using Thiobacillus spp and Pseudomonas spp. J Biorem Biodegrad 2(1):115

    Article  CAS  Google Scholar 

  • Miranda AT, Gonzalez MV, Gonzalez G, Vargas E, Campos-Garcia J, Cervantes C (2005) Involvement of DNA helicases in chromate resistance by Pseudomonas aeruginosa PAO1. Mutat Res 578(1–2):202–209

    Article  CAS  PubMed  Google Scholar 

  • Mishra V, Samantaray D, Dash S, Sethi A, Mishra B (2010) Aerobic hexavalent chromium reduction by Acenetobacter calcoaciticus. Biosci Biotechnol Res Asia 7:963–967

    Google Scholar 

  • Mona S, Kaushik A, Kaushik CP (2011) Biosorption of chromium (VI) by spent cyanobacterial biomass from a hydrogen fermenter using Box-Behnken model. Int Biodeterior Biodegrad 65:656–663

    Article  CAS  Google Scholar 

  • Munawaroh HSH, Gumilar GG, Nandiyanto ABD, Kartikasari S, Kusumawaty D, Hasanah L (2017) Microbial reduction of Cr(VI) into Cr(III) by locally isolated Pseudomonas aeruginosa. In: IOP conference series, vol 180(1), p 012296

    Google Scholar 

  • Naik UC, Srivastava S, Thakur IS (2012) Isolation and characterization of Bacillus cereus IST105 from electroplating effluent for detoxification of hexavalent chromium. Environ Sci Pollut Res Int 19:3005–3014

    Article  CAS  Google Scholar 

  • Nath K, Singh D, Shyam S, Sharma Y (2009) Phytotoxic effects of chromium and tannery effluenton growth and metabolism of Phaseolus mungo Roxb. J Environ Biol 30(2):227–234

    CAS  PubMed  Google Scholar 

  • Ngwenya N, Chirwa EMN (2011) Biological removal of cationic fission products from nuclear wastewater. Water Sci Technol 63(1):124–128

    Article  CAS  PubMed  Google Scholar 

  • Oliveira H (2012) Chromium as an environmental pollutant: insights on induced plant toxicity. J Botany 1–8 Article ID 375843

    Google Scholar 

  • Ontanon OM, Gonzalez PS, Ambrosio LF, Paisio CE, Agostini E (2014) Rhizoremediation of phenol and chromium by the synergistic combination of a native bacterial strain and Brassica napus hairy roots. Int Biodeterior Biodegrad 88:192–198

    Article  CAS  Google Scholar 

  • Orozco AMF, Contreras EM, Zaritzky NE (2008) Modelling Cr (VI) removal by a combined carbon-activated sludge system. J Hazard Mater 150(1):46–52

    Article  CAS  PubMed  Google Scholar 

  • Oves M, Khan MS, Zaidi A (2013) Chromium reducing and plant growth promoting novel strain Pseudomonas aeruginosa OSG41 enhance chickpea growth in chromium amended soils. Eur J Soil Biol 56:72–83

    Article  CAS  Google Scholar 

  • Paul ML, Samuel J, Chandrasekaran N, Mukherjee A (2012) Comparative kinetics, equilibrium, thermodynamic and mechanistic studies on biosorption of hexavalent chromium by live and heat killed biomass of Acinetobacter junii VITSUKMW2, an indigenous chromite mine isolate. Chem Eng J 187:104–113

    Article  CAS  Google Scholar 

  • Pradhan D, Sukla LB, Sawyer M, Rahman KSM (2017) Recent bioreduction of hexavalent chromium in waste water treatment: a review. J Ind Eng Chem 55:1–20

    Article  CAS  Google Scholar 

  • Ramirez-Diaz MI, Diaz-Perez C, Vargas E, Riveros-Rosas H, Campo-Garcia J, Cervantes C (2008) Mechanisms of bacterial resistance to chromium compounds. Biometals 21(3):321–332

    Article  CAS  PubMed  Google Scholar 

  • Ranieri E, Gikas P (2014) Effects of plants for reduction and removal of hexavalent chromium from a contaminated soil. Water Air Soil Pollut 225(6):1–9

    Article  CAS  Google Scholar 

  • Rao STH, Papathoti NK, Gundeboina R, Mohamed YK, Mudhole G, Bee H (2017) Hexavalent chromium reduction from pollutant samples by Achromobacter xylosoxidans SHB 204 and its Kinetics Study. Indian J Microbiol 57(3):292–298

    Article  CAS  Google Scholar 

  • Rath BP, Das S, Mohapatra PKD, Thatoi H (2014) Optimization of extracellular chromate reductase production by Bacillus amyloliquefaciens (CSB 9) isolated from chromite mine environment. Biocatal Agric Biotechnol 3(3):35–41

    Article  Google Scholar 

  • Revathi K, Haribabu T, Sudha P (2011) Phytoremediation of chromium contaminated soil using sorghum plant. Int J Environ Sci 2(2):417–428

    CAS  Google Scholar 

  • Rezaei H (2013) Biosorption of Chromium by using Spirulina sp. Arab J Chem 9:846–853

    Article  CAS  Google Scholar 

  • Robins KJ, Hooks DO, Rehm BHA, Ackerley DF (2013) Escherichia coli NemA is an efficient chromate reductase that can be biologically immobilized to provide a cell free system for remediation of hexavalent chromium. PLoS ONE 8(3):1–8

    Article  CAS  Google Scholar 

  • Rodriguez E, Santos C, Azevedo R, Moutinho-Pereira J, Correia C, Dias MC (2012) Chromium (VI) induces toxicity at different photosynthetic levels in pea. Plant Physiol Biochem 53:94–100

    Article  CAS  PubMed  Google Scholar 

  • Romanenko VI, Koren’kov VN (1977) Pure culture of bacteria using chromates and bichromates as hydrogen acceptors during development under anaerobic conditions. Mikrobiologiya 46(3):414–417

    Google Scholar 

  • Sagar S, Dwivedi A, Yadav S, Tripathi M, Kaistha SD (2012) Hexavalent chromium reduction and plant growth promotion by Staphylococcusarlettae strain Cr11. Chemosphere 86(8):847–852

    Article  CAS  PubMed  Google Scholar 

  • Sampanpanish P, Pongsapich W, Khaodhiar S, Khan E (2006) Chromium removal from soil by phytoremediation with weed plant species in Thailand. Water Air Soil Pollut Focus 6(1–2):191–206

    Article  CAS  Google Scholar 

  • Sari A, Tuzen M (2008) Biosorption of total chromium from aqueous solution by red algae (Ceramium virgatum): equilibrium, kinetic and thermodynamic studies. J Hazard Mater 160:349–355

    Article  CAS  PubMed  Google Scholar 

  • Schiavon M, Galla G, Wirtz M, Pilon-Smits FAH, Telatin V, Quaggiotti S, Hell R, Barcaccia G, Malagoli M (2012) Transcriptome profiling of genesdifferentially modulated by sulfur and chromium identifies potential targets for phytoremediation and reveals a S-Crinterplay on sulfate transport regulation in B. juncea J Hazard Mater 239–240, 192–205

    Google Scholar 

  • Shafque M, Jawaid A, Rehman Y (2017) As(V) reduction, As(III) oxidation, and Cr(VI) reduction by multi-metal-resistant Bacillus subtilis, Bacillus safensis, and Bacillus cereus species isolated from wastewater treatment plant. Geomicrobiol J 34(8):687–694

    Article  CAS  Google Scholar 

  • Shankar AK, Cervantes C, Loza-Tavera H, Avudainayagam S (2005) Chromium toxicity in plants. Environ Int 31(5)739–753

    Google Scholar 

  • Shankar AK, Venkateswarlu B (2011) In: Nriagu JO (Ed) Chromiun: environmental pollution, health effects and mode of action. Encyclopedia of environmental health. Elsevier, Burlington, pp 650–659

    Google Scholar 

  • Shao HB, Chu LY, Shao MA, Jaleel CA, Hong-mei M (2008) Higher plant antioxidants and redox signaling under environmental stresses. Comptes Rendus Biol 331(60):433–441

    Article  CAS  Google Scholar 

  • Shugaba A, Buba F, Kolo BG, Nok AJ, Ameh DA, Lori JA (2012) Uptake and reduction of hexavalent chromium by Aspergillus niger and Aspergillus parasiticus. Pet Environ Biotechnol 3(3):119–127

    CAS  Google Scholar 

  • Shuhong Y, Meiping Z, Hong Y, Han W, Shan X, Yan L, Jihui W (2014) Biosorption of Cu2+, Pb2+ and Cr6+ by a novel exopolysaccharide from Arthrobacter ps-5. Carbohydr Polym 101:50–56

    Article  PubMed  CAS  Google Scholar 

  • Shukla OP, Rai UN, Dubey S (2009) Involvement and interaction of microbial communities in the transformation and stabilization of chromium during the composting of tannery effluent treated biomass of Vallisneria spiralis L. Bioresour Technol 100(7):2198–2203

    Article  CAS  PubMed  Google Scholar 

  • Sibi G (2016) Biosorption of chromium from electroplating and galvanizing industrial effluents under extreme conditions using Chlorella vulgaris. Green Energy Environ 1:172–177

    Article  Google Scholar 

  • Silva B, Figueiredo H, Quintelas C, Neves I C, Tavares, T (2012 )Improved biosorption for Cr(VI) reduction and removal by Arthrobacter viscosus using zeolite. Int Biodeterior Biodegrad 74:116–123

    Google Scholar 

  • Singh R, Dong H, Liu D, Zhao L, Marts AR, Farquhar E, Tierney DL, Almquist CB, Briggs BR (2015) Reduction of hexavalent chromium by the thermophilic methanogen Methanothermobacter thermautotrophicus. Geochem Cosmochim Acta 148:442–456

    Article  CAS  Google Scholar 

  • Singh R, Misra V, Singh RP (2011) Synthesis, characterization and role of zero valent iron particles in removal of hexavalent chromium from chromium spiked soil. J Nanopart Res 13(9):4063–4073

    Article  CAS  Google Scholar 

  • Soni SK, Singh R, Awasthi A, Kalra A (2014) A Cr(VI)- reducing Microbacterium sp. strain SUCR140 enhances growth of Zea mays in Cr(VI) amended soil through reduced chromium toxicity and improves colonization of arbuscular mycorrhizal fungi. Environ Sci Pollut Res 21(3):1971–1979

    Google Scholar 

  • Subrahmanyam D (2008) Effects of chromium toxicity on photosynthetic characteristics and oxidative changes in wheat (Triticum aestivum L.). Photosynthetica 46(3):339–345

    Google Scholar 

  • Sukumar C, Janaki V, Kamala-Kannan K, Shanthi K (2014) Biosorption of chromium (VI) using Bacillus subtilis SS-1 isolated from soil samples of electroplating industry. Clean Technol Environ Policy 16:405–413

    Article  CAS  Google Scholar 

  • Tang J, Hu Y, Baig SA, Sheng T, Xu X (2014) Hexavalent chromium reduction by Escherichia coli in the presence of ferric iron. Desalination Water Treat 52(22–24):4190–4196

    Article  CAS  Google Scholar 

  • Tekerlekopoulou AG, Tsiamis G, Dermou E, Siozios S, Bourtzis K, Vayenas DV (2010) The effect of carbon source on microbial community structure and Cr (VI) reduction rate. Biotechnol Bioeng 107(3):478–487

    Article  CAS  PubMed  Google Scholar 

  • Thacker U, Parikh R, Shouche Y, Madamwar D (2006) Hexavalent chromium reduction by Providencia sp. Process Biochem 41(6):1332–1337

    Article  CAS  Google Scholar 

  • Thatoi H, Das S, Mishra J, Rath BP (2014) Bacterial Chromate reductase, a potential enzyme for bioremediation of hexavalent chromium: a review. J Environ Manag 146:383–399

    Article  CAS  Google Scholar 

  • Vankar PS, Bajpai D (2007) Phytoremediation of chromium VI of tannery effluent by Trichoderma sp. In: CERTH’ 2007: conference on desalination and the environment, Sani Resort, Halkidiki, Greece, pp 22–25

    Google Scholar 

  • Vernnay P, Gauthier-Moussard C, Hitmi A (2007) Interaction of bioaccumulation of heavy metal chromium withwater relation, mineral nutrition and photosynthesisin developed leaves of Lolium perenne L. Chemosphere 68(8):1563–1575

    Article  CAS  Google Scholar 

  • Villegas LB, Fernandez PM, Amoroso MJ, de Figueroa LI (2008) Chromate removal by yeasts isolated from sediments of tanning factory and a mine sitein Argentina. Biometals 21(5):591–600

    Article  CAS  PubMed  Google Scholar 

  • Vymazal J (1990) Uptake of lead, chromium, cadmium and cobalt by Cladophora glomerata. Bull Environ Contam Toxicol 44:468–472

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Wang N, Zhu L, Yu H, Tang H (2008) Photocatalytic reduction of Cr(VI) over different TiO2 photocatalysts and the effects of dissolved organic species. J Hazard Mater 152(1):93–99

    Article  CAS  PubMed  Google Scholar 

  • Wang N, Xu Y, Zhu L, Shen X, Tang H (2009) Reconsideration to the deactivation of TiO2 catalyst during simultaneous photocatalytic reduction of Cr(VI) and oxidation of salicylic acid. J Photochem Photobiol C 201:121–127

    Article  CAS  Google Scholar 

  • Wang S (2008) A Comparative study of Fenton and Fenton-like reaction kinetics in decolourisation of wastewater. Dyes Pigm 76(3):714–720

    Article  CAS  Google Scholar 

  • Wani PA, Khan MS, Zaidi A (2008) Chromium reducing and plant growth promoting Mesorhyzobium improves chickpea growth in chromium amended soil. Biotechnol Lett 30(1):159–163

    Article  CAS  PubMed  Google Scholar 

  • Whitacre DM (2010) Reviews of environmental contamination and toxicology. Springer, pp 56–57

    Google Scholar 

  • Xiao W, Ye X, Yang X, Zhu Z, Sun C, Zhang Q, Xu P (2017) Isolation and characterization of chromium(VI)-reducing Bacillus sp. FY1 and Arthrobacter sp. WZ2 and their bioremediation potential. Bioremediat J 21(2):100–108

    Google Scholar 

  • Xie P, Hao X, Mohamad OA, Liang J, Wei G (2013) Comparative study of chromium biosorption by Mesorhizobium amorphae strain CCNWGS0123 in single and binary mixtures. Appl Biochem Biotechnol 169:570–587

    Article  CAS  PubMed  Google Scholar 

  • Yahya SK, Zakaria ZA, Samin J, Raj AS, Ahmad WA (2012) Isotherm kinetics of Cr(III) removal by non-viable cells of Acinetobacter haemolyticus. Colloids Surfaces B Biointerfaces 94:362–368

    Article  CAS  PubMed  Google Scholar 

  • Yang L, Xiao Y, Liu S, Li Y, Cai Q, Luo S, Zeng G (2010) Photocatalytic reduction of Cr(VI) on WO3 doped long TiO2 nanotube arrays in the presence of citric acid. Appl Catal B Environ 94:142–149

    Article  CAS  Google Scholar 

  • Yang QL, Kang SZ, Chen H, Bu W, Mu J (2011) La2Ti2O7: an efficient and stable photocatalyst for the photoreduction of Cr(VI) ions in water. Desalination 266:149–153

    Article  CAS  Google Scholar 

  • Zahoor A, Rehman A (2009) Isolation of Cr(VI) reducing bacteria from industrial effluents and their potential uses in bioremediation of chromium containing wastewater. J Environ Sci 21(6):814–820

    Article  CAS  Google Scholar 

  • Zeng F, Mao Y, Cheng W, Wu F, Zhang G (2008) Genotypic and environmental variation in chromium, cadmium and lead concentrations in rice. Environ Pollut 153(2):309–314

    Article  CAS  PubMed  Google Scholar 

  • Zeng F, Wu X, Qiu B, Wu F, Jiang L, Zhang G (2014) Physiological and proteomic alterations in rice (Oryza sativa L.) seedlings under hexavalent chromium stress. Planta 240(2):291–308

    Google Scholar 

  • Zeng F, Zhou W, Qiu B, Ali S, Wu F, Zhang G (2011) Subcellular distribution and chemical forms of chromium in rice plants suffering from different levels of chromium toxicity. L Plant Nutri Soil Sci 174(20):249–256

    Google Scholar 

  • Zheng Z, Li Y, Zhang X, Liu P, Ren J, Wu G, Zhang Y, Chen Y, Li X (2015) A Bacillus subtilis strain can reduce hexavalent chromium to trivalent and an nfrA gene is involved. Int Biodeterior Biodegrad 97:90–96

    Article  CAS  Google Scholar 

  • Zhu W, Chai L, Ma Z, Wang Y, Xiao H, Zhao K (2008) Anaerobic reduction of hexavalent chromium by bacterial cells of Achromobacter sp. Strain Ch1. Microbiol Res 163(1):616–623

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kirandeep Kaur .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kaur, K., Sharma, S., Malik, J.A. (2022). Chromium Pollution and Its Bioremediation: An Overview. In: Malik, J.A. (eds) Microbial and Biotechnological Interventions in Bioremediation and Phytoremediation. Springer, Cham. https://doi.org/10.1007/978-3-031-08830-8_15

Download citation

Publish with us

Policies and ethics