Skip to main content
Log in

Effect of brewery wastewater obtained from different phases of treatment plant on seed germination of chickpea (Cicer arietinum), maize (Zea mays), and pigeon pea (Cajanus cajan)

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Brewing industry releases large quantities of wastewater after product generation. Brewery wastewater contains organic compounds which are biodegradable in nature. These biodegradable wastes can be recycled and reused and hence considered as suitable products for agriculture. But before using wastewater for agriculture, it is better to evaluate the phytotoxic effects of wastewater on crops. Hence, the main objective of this study is to evaluate the effects of brewery effluent on seed germination and growth parameters of selected crop species like chickpea (Cicer arietinum), maize (Zea mays), and pigeon pea (Cajanus cajan). Study comprised seven types of water treatments—tap water as control, diluted UASBR effluent (50% effluent + 50% distilled water): UASBR50, undiluted UASBR effluent: UASBR100, diluted TC effluent (50% effluent + 50% distilled water): ETP50,TC effluent without dilution: ETP100, 10% diluted reverse osmosis (RO10) reject (10% RO reject + 90% distilled water), and 25% diluted reverse osmosis(RO25) reject (25% RO reject + 75% distilled water) with three replications in completely randomized design. Germination test was performed in petri plates for 5 days. Parameters like germination percentage, germination rate index, seedling length, phytotoxicity index, seed vigor index, and biomass were calculated. All parameters decreased with increase in respective effluent concentration. Among all treatments, RO25 showed highest inhibitory effect on all three crops. Even though undiluted effluent of UASBR and ETP effluent showed positive effect on germination, seedling growth of three crops was promoted to the maximum by UASBR50 and ETP50. Hence, from the study, it was concluded that dilution of brewery effluent can be recommended before using it for irrigational purpose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abdul-Baki AA, Anderson JD (1973) Vigour determination in soybean by multiple criteria. Crop Sci 3:630–637

    Article  Google Scholar 

  • Abu-Dieyeh MH, Diab M, Al-Ghouti MA (2017) Ecological and agriculture impacts of bakery yeast wastewater use on weed communities and crops in an arid environment. Environ Sci Pollut Res 24(17):14957–14969. https://doi.org/10.1007/s11356-017-9115-1

    Article  CAS  Google Scholar 

  • Aguirre L, Johnson DA (1991) Influence of temperature and cheatgrass competition on seedling development of two bunchgrasses. J Range Dev 44(4):347–354. https://doi.org/10.2307/4002397

    Article  Google Scholar 

  • Anupama S (2011) NSL distillery effluent and its effect of paddy crop with various concentrations in Mau, Uttar Pradesh, India. J Environ Res Dev 5(3A):773–778

    Google Scholar 

  • APHA, AWWA, WEF (2005) Standard methods for the examination of water and wastewater, 21st edn. American Public Health Association, Washington

    Google Scholar 

  • Asfi M, Ouzounidou G, Moustakas M (2012) Evaluation of olive oil mill wastewater toxicity on spinach. Environ Sci Pollut Res 19(6):2363–2371. https://doi.org/10.1007/s11356-012-0746-y

    Article  CAS  Google Scholar 

  • Augusthy PO, Sherin MA (2001) Effect of factory effluents on seed germination and seedling growth of Vigna radiate L. J Environ Res 22(92):137–139

    CAS  Google Scholar 

  • Barazani O, Golan-Goldhirsh A (2009) Salt-driven interactions between Pistacia lentiscus and Salsola inermis. Environ Sci Pollut Res 16(7):855–861. https://doi.org/10.1007/s11356-009-0231-4

    Article  CAS  Google Scholar 

  • Bazai ZA, Achakzai AKK (2006) Effect of waste water from Quetta city on germination and seedling growth of lettuce (Lactucasativa L.) J Appl Sci 6(2):380–382

    Article  Google Scholar 

  • Chaitanyakumar D, Unnisa SA, Rao B, Kumar GV (2011) Efficiency assessment of combined treatment technologies: a case study of charminar brewery wastewater treatment plant. Ind J Fund Appl Life Sci 1(2):138–145

    Google Scholar 

  • da Costa Marques MR, de Souza PSA, Rigo MM, Cerqueira AA, de Paiva JL, Merçon F, Perez DV (2015) Effects of untreated and treated oilfield-produced water on seed germination, seedling development, and biomass production of sunflower (Helianthus annuus L.) Environ Sci Pollut Res 22(20):15985–15993. https://doi.org/10.1007/s11356-015-4820-0

    Article  Google Scholar 

  • Dash AK (2012) Impact of domestic waste water on seed germination and physiological parameters of rice and wheat. Int J Res Rev Appl Sci 12(2):280–286

    CAS  Google Scholar 

  • Djelal H, Tahrani L, Fathallah S, Cabrol A, Mansour HB (2014) Treatment process and toxicities assessment of wastewater issued from anaerobic digestion of household wastes. Environ Sci Pollut Res 21(4):2437–2447. https://doi.org/10.1007/s11356-013-2158-z

    Article  CAS  Google Scholar 

  • Driessen W, Vereijken T (2003) Recent developments in biological treatment of brewery effluent. The Institute and Guild of Brewing Convention, Livingstone, pp 2–7

    Google Scholar 

  • Gassama UM, Puteh AB, Abd-Halim MD, Kargbo B (2015) Influence of municipal wastewater on rice seed germination, seedling performance, nutrient uptake, and chlorophyll content. J Crop Sci Biotechnol 18(1):9–19. https://doi.org/10.1007/s12892-014-0091-4

    Article  Google Scholar 

  • Gautham DD, Bishoni S (1992) Effect of dairy effluent on wheat (Triticumaestivum). J Ecobiol 4:111–115

    Google Scholar 

  • Genner C (1988) Treatment and disposal of brewery effluents. Brewers Guardian, pp 25–27

  • Ishiwaki N, Murayama H, Awayama H, Kanauvhi O, Sato T (2000) Development of high value uses of spent grain by fractionation technology. MBAA Technic 37(2):261–265

    CAS  Google Scholar 

  • Khan MG, Danlel G, Konjit M, Thomas A, Eyasu SS, Awoke G (2011) Impact of textile waste water on seed germination and some physiological parameters in pea (Pisumsativum L.), Lentil (Lensesculentum L.) and gram (Cicerarietinum L. ). Asian J Plant Sci 10:269–273

    Article  CAS  Google Scholar 

  • Khan MHU, Khattak JZK, Jamil M, Malook I, Khan SU, Jan M, Din I, Saud S, Kamran M, Alharby H, Fahad S (2017) Bacillus safensis with plant-derived smoke stimulates rice growth under saline conditions. Environ Sci Pollut Res 24(30):23850–23863. https://doi.org/10.1007/s11356-017-0026-y

    Article  Google Scholar 

  • Lafragueta C, Garcia-Criado B, Arranz A, Vazquez-de-Aldana BR (2014) Germination of Medicago sativa is inhibited by soluble compounds in cement dust. Environ Sci Pollut Res 21(2):1285–1291. https://doi.org/10.1007/s11356-013-2009-y

    Article  Google Scholar 

  • Lauchli A, Luttge U (2000) Salinity—environments-plants molecules. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Leal K, Chacin E, Behling E, Gutierez E, Fernandez N, Forster CF (1998) A mesophilic digestion of brewery wastewater in an unheated anaerobic filter. Bioresour Technol 65(1–2):51–55. https://doi.org/10.1016/S0960-8524(98)00025-X

    Article  CAS  Google Scholar 

  • Malaviya P, Sharma A (2011) Impact of distillery effluent on germination behaviour of Brassica napus L. J Environ Biol 32(1):91–94

    CAS  Google Scholar 

  • Mathur KC, Sukla UM, Sukla AK, Shubhi M (1997) Effect of fly ash pollution and growth of maize. J Environ Pollut 4(1):17–27

    Google Scholar 

  • Mekki A, Dhouib A, Sayadi S (2007) Polyphenols dynamics and phytotoxicity in a soil amended by olive mill wastewaters. J Environ Manag 84(2):134–140. https://doi.org/10.1016/j.jenvman.2006.05.015

    Article  CAS  Google Scholar 

  • Mensuh JK, Akomeah PA, Ikhajiagbe B, Ekpekurede EO (2006) Effects of salinity on germination, growth and yield of five groundnut genotypes. Afr J Biotechnol 5(20):1973–1979

    Google Scholar 

  • Moll M, Bieres (1991) Coolers—definition, fabrication, composition. Technol Dev 2:15–263

    Google Scholar 

  • Mseddi S, Chaari L, Belaid C, Chakchouk I, Kallel M (2016) Valorization of treated olive mill wastewater in fertigation practice. Environ Sci Pollut Res 23(16):15792–15800. https://doi.org/10.1007/s11356-015-4353-6

    Article  CAS  Google Scholar 

  • Naeem F, Ahmed F, Kanwal M, Murad W, Azizullah A (2015) Phytotoxicity evaluation of some commonly used shampoos using Brassica napus L. Environ Sci Pollut Res 22(19):15164–15170. https://doi.org/10.1007/s11356-015-5054-x

    Article  CAS  Google Scholar 

  • Nagajyothi PC, Dinakr N, Suresh S, Udaykiran Y, Suresh C, Damodharam T (2009) Effect of industrial effluent on the morphological parameters and chlorophyll content of green gram (Phaseolus aureus Roxb). J Environ Biol 30(3):385–388

    CAS  Google Scholar 

  • Nagda GK, Diwan AM, Ghole VS (2006) Seed germination bioassays to assess toxicity of molasses fermentation based bulk drug industry effluent. Elec J Environ Agric Food Chem 5:1598–1603

    Google Scholar 

  • Narain K, Bhat MM, Abhilash PC, Yunus M (2012a) Impact of distillery effluent on seedling growth and pigment concentration of Cicer arietinum L. J Environ Res Dev 6(3A):601–608

    Google Scholar 

  • Narain K, Bhat MM, Yunus M (2012b) Impact of distillery effluent on germination and seedling growth of Pisum sativum L. Univers J Environ Res Technol 2(4):269–272

    CAS  Google Scholar 

  • Naseri R, Emami T, Mirzaei A, Soleymanifard A (2012) Effect of salinity (sodium chloride) on germination and seedling growth of barley(Hordeumvulgare L.) cultivars. Int J Agric Crop Sci 4(13):911–917

    Google Scholar 

  • Noorjahan CM, Jamuna S (2012) Physico-chemical characterisation of brewery effluent and its degradation using native fungus-aspergillus niger, aquatic plant-water hyacinth-Eichhornia SP and green mussel–Pernaviridis. J Environ Earth Sci 2(4):31–40

    Google Scholar 

  • Ogunwenmo KO, Oyelana OA, Ibidunmoye O, Anyasor G, Ogunnowo AA (2010) Effects of brewery, textile and paint effluent on seed germination of leafy vegetables—Amaranthus hybridus and Celosia argentea (Amaranthaceae). J Biol Sci 10(2):151–156

    Article  Google Scholar 

  • Panasker DB, Pawar RS (2011) Effect of textile mill effluent on growth of Vigna unguiculata and Pisum sativum seedlings. Ind J Sci Technol 4(3):266–272

    Google Scholar 

  • Pandey N, Sharma CP (2002) Effect of heavy metals Co2+, Ni2+, and Cd2+ on growth and metabolism of cabbage. Plant Sci 163(4):753–758. https://doi.org/10.1016/S0168-9452(02)00210-8

    Article  CAS  Google Scholar 

  • Pandey SK, Tyagi P, Gupta AK (2007) Physico-chemical analysis and effect of distillery effluent on seed germination of wheat (Triticum aestivum), pea (Pisum sativum), and lady’s finger (Abelmoschus esculentus). ARPN J Agric Biol Sci 2(6):35–40

    Google Scholar 

  • Pandey SN, Nautiyal BD, Sharma CP (2008) Pollution level in distillery effluent and its phytotoxic effect on seed germination and early growth of maize and rice. J Environ Biol 29 (2): 267-270

  • Parawira W, Kudita I, Nyandoroh MG, Zvauya R (2005) A study of industrial anaerobic treatment of opaque beer brewery wastewater in a tropical climate using a full-scale UASB reactor seeded with activated sludge. Process Biochem 40(2):593–599. https://doi.org/10.1016/j.procbio.2004.01.036

    Article  CAS  Google Scholar 

  • Pathak H, Joshi HC, Chaudhary A, Chaudhary R, Kalra N, Dwivedi MK (1999) Soil amendment with distillery effluent for wheat and rice cultivation. Water Air Soil Pollut 113(1–4):133–140. https://doi.org/10.1023/A:1005058321924

    Article  CAS  Google Scholar 

  • Ramana S, Biswas AK, Kundu S, Saha JK, Yadava RBR (2002) Effect of distillery effluent on seed germination in some vegetable crops. Bioresour Technol 82(3):273–275

    Article  CAS  Google Scholar 

  • Rani R, Srivastava MM (1990) Eco physiological response of Pisum sativum and Citrus maxima to distillery effluents. Int J Ecol Environ Sci 16:125–132

    Google Scholar 

  • Reddy PG, Borse RD (2001) Effect of pulp and paper mill effluent on seed germination and seedling growth of Trigonella foenum-graceum L. (Methi). J Ind Pollut Control 17:165–169

    CAS  Google Scholar 

  • Rodrigues AC, Brito AG, Melo LF (2001) Post treatment of a brewery wastewater using a sequencing batch reactor. Water Environ Res 73(1):45–51. https://doi.org/10.2175/106143001X138679

    Article  CAS  Google Scholar 

  • Rusan MJM, Albalasmeh AA, Zuraiqi S, Bashabsheh M (2015) Evaluation of phytotoxicity effect of olive mill wastewater treated by different technologies on seed germination of barley (Hordeum vulgare L.) Environ Sci Pollut Res 22(12):9127–9135. https://doi.org/10.1007/s11356-014-4004-3

    Article  CAS  Google Scholar 

  • Sandeep K, Pandey SK, Tyagi P, Gupta AK (2007) Physico-chemical analysis and effect of distillery effluent on seed germination of wheat (Triticum aestivum), pea (Pisum sativum), and lady’s finger (Abelmoschus esculentus). ARPN J Agric Biol Sci 2(6):35–40

    Google Scholar 

  • Senthilraja K, Jothimani P, Rajannan G (2013) Effect of brewery wastewater on growth and physiological changes in maize, sunflower and sesame crops. Int J Life Sci Educ Res 1(1):36–42

    Google Scholar 

  • Shao X, Peng D, Teng Z, Ju X (2008) Treatment of brewery wastewater using anaerobic sequencing batch reactor (ASBR). Bioresour Technol 99(8):3182–3186. https://doi.org/10.1016/j.biortech.2007.05.050

    Article  CAS  Google Scholar 

  • Singh A, Agrawal SB, Rai JPN, Singh P (2002) Assessment of the pulp and paper mill effluent on growth, yield and nutrient quality of wheat (Triticum aestivum L.) J Environ Biol 28(3):283–288

    Google Scholar 

  • Wang R (2005) Modeling seed germination and seedling emergence in Winterfat (Krascheninnikovia lanata (Pursh) A.D.J. Meeuse & Smit): Physiological mechanisms and ecological relevance. Ph.D Thesis, University of Saskatchewan, Saskatoon, Saskatchewan.

  • Wang YR, Yu L, Nan ZB, Liu YL (2004) Vigor tests used to rank seed lot quality and predict field emergence in four forage species. Crop Sci 44(2):535–541. https://doi.org/10.2135/cropsci2004.5350

    Article  Google Scholar 

  • Yasmin A, Nawaz S, Ali SM (2011) Impact of industrial effluents on germination and seedling growth of lens esculentum varieties. Pak J Bot 43(6):2759–2763

    Google Scholar 

  • Yousaf I, Ali SM, Yasmin A (2010) Germination and early growth response of Glycine max varieties in textile and paper industry effluents. Pak J Bot 42:3857–3386

    Google Scholar 

  • Zhang R, Zhang H, Tu C, Hu X, Li L, Luo Y, Christie P (2015) Phytotoxicity of ZnO nano particles and the released Zn (II) ion to corn (Zea mays L.) and cucumber (Cucumis sativus L.) during germination. Environ Sci Pollut Res 22(14):11109–11117. https://doi.org/10.1007/s11356-015-4325-x

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author would like to acknowledge Department of Science and Technology, India, for providing fellowship under INSPIRE programme to pursue doctoral study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rupa Salian.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salian, R., Wani, S., Reddy, R. et al. Effect of brewery wastewater obtained from different phases of treatment plant on seed germination of chickpea (Cicer arietinum), maize (Zea mays), and pigeon pea (Cajanus cajan). Environ Sci Pollut Res 25, 9145–9154 (2018). https://doi.org/10.1007/s11356-018-1218-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-018-1218-9

Keywords

Navigation