Skip to main content

Advertisement

Log in

Geophysical, isotopic, and hydrogeochemical tools to identify potential impacts on coastal groundwater resources from Urmia hypersaline Lake, NW Iran

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

An Erratum to this article was published on 06 August 2016

Abstract

Measurements of major ions, trace elements, water-stable isotopes, and geophysical soundings were made to examine the interaction between Urmia Aquifer (UA) and Urmia Lake (UL), northwest Iran. The poor correlation between sampling depth and Cl concentrations indicated that the position of freshwater-saltwater interface is not uniformly distributed in the study area, and this was attributed to aquifer heterogeneities. The targeted coastal wells showed B/Cl and Br/Cl molar ratios in the range of 0.0022–2.43 and 0.00032–0.28, respectively. The base-exchange index (BEI) and saturation index (SI) calculations showed that the salinization process followed by cation-exchange reactions mainly controls changes in the chemical composition of groundwater. All groundwater samples are depleted with respect to δ18O (−11.71 to −9.4 ‰) and δD (−66.26 to −48.41 ‰). The δ18O and δD isotope ratios for surface and groundwater had a similar range and showed high deuterium excess (d-excess) (21.11 to 31.16 ‰). The high d-excess in water samples is because of incoming vapors from the UL mixed with an evaporated moisture flux from the Urmia mainland and incoming vapors from the west (i.e., Mediterranean Sea). Some saline samples with low B/Cl and Br/Cl ratios had depleted δ18O and δD. In this case, due to freshwater flushing, the drilled wells in the coastal playas and salty sediments could have more depleted isotopes, more Cl, and consequently smaller B/Cl and Br/Cl ratios. Moreover, the results of hydrochemical facies evolution (HFE) diagram showed that because of the existence fine-grained sediments saturated with high density saltwater in the coastal areas that act as a natural barrier, increasing the groundwater exploitation leads to movement of freshwaters from recharge zones in the western mountains not saltwater from UL. The highly permeable sediments at the junction of the rivers to the lake are characterized by low hydraulic gradient and high hydraulic conductivity. These properties enhance the salinization of groundwater observed in the study area. The main factors influencing the salinity are base-exchange reactions, invasion of highly diluted saltwater, dissolution of salty pans, and water chemistry evolution along flow paths.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Alcala FJ, Custodio E (2008) Using the Cl/Br ratio as a tracer to identify the origin of salinity in aquifers in Spain and Portugal. J Hydrol 359:189–207

    Article  Google Scholar 

  • Al-Ruwaih FM (1995) Chemistry of groundwater in the Dammam Aquifer, Kuwait. Hydrogeol J 3:42–55

    Article  Google Scholar 

  • Amiri V, Sohrabi N, Altafi Dadgar M (2015) Evaluation of groundwater chemistry and its suitability for drinking and agricultural uses in the Lenjanat plain, central Iran. Environ Earth Sci 74:6163–6176

    Article  CAS  Google Scholar 

  • Amrhein C, Duff MC, Casey WH, Westcot DW (1998) Emerging problems with uranium, vanadium, molybdenum, chromium, and boron. In: Dudley LM, Guitjens JC (eds) Agroecosystems and the environment: sources, control, and remediation of potentially toxic, trace element oxyanions. American Association for the Advancement of Science, Washington, DC

    Google Scholar 

  • APHA (1985) Standard methods for the examination of water and wastewater, 16th edn. American Public Health Association, Washington DC

    Google Scholar 

  • Asfahani J, Abou Zakhem B (2013) Geoelectrical and hydrochemical investigations for characterizing the salt water intrusion in the Khanasser Valley, Northern Syria. Acta Geophys 61(2):422–444

    Article  Google Scholar 

  • Backstrom M, Nilsson U, Hakansson K, Allard B, Karlsson S (2003) Speciation of heavy metals in road runoff and roadside total deposition. Water Air Soil Pollut 147:343–366

    Article  Google Scholar 

  • Backstrom M, Karlsson S, Backman L, Folkeson L, Lind B (2004) Mobilisation of heavy metals by deicing salts in a roadside environment. Water Res 38:720–732

    Article  CAS  Google Scholar 

  • Badv K, Deriszadeh M (2005) Wellhead protection area delineation using the analytic element method. Water Air Soil Pollut 161:39–54

    Article  CAS  Google Scholar 

  • Barbecot F, Marlin C, Gibert E, Dever L (2000) Hydrochemical and isotopic characterisation of the Bathonian and Bajocian coastal aquifer of the Caen area (northern France). Appl Geochem 15:791–805

    Article  CAS  Google Scholar 

  • Bear J (1979) Hydraulics of groundwater. McGraw-Hill, New York, p 576

    Google Scholar 

  • Carol E, Kruse E, Mas-Pla J (2009) Hydrochemical and isotopical evidence of ground water salinization processes on the coastal plain of Samborombón Bay, Argentina. J Hydrol 365:335–345

    Article  CAS  Google Scholar 

  • Cartwright I, Weaver TR, Fulton S, Nichol C, Reid M, Cheng X (2004) Hydrogeochemical and isotopic constraints on the origins of dryland salinity, Murray Basin, Victoria, Australia. Appl Geochem 19:1233–1254

    Article  CAS  Google Scholar 

  • Cartwright I, Hall S, Tweed S, Leblanc M (2009) Geochemical and isotopic constraints on the interaction between saline lakes and groundwater in southeast Australia. Hydrogeol J 17:1991–2004

    Article  CAS  Google Scholar 

  • Cengeloglu Y, Arslan G, Tor A, Kocak I, Dursun N (2008) Removal of boron from water by using reverse osmosis. Sep Purif Technol 64:141–146

    Article  CAS  Google Scholar 

  • Craig H (1961) Isotopic variation in meteoric waters. Science 133:1702–1703

    Article  CAS  Google Scholar 

  • Dansgaard W (1964) Stable isotopes in precipitation. Tellus 16:436–438

    Article  Google Scholar 

  • Darling WG, Edmunds WM, Smedley PL (1997) Isotopic evidence for paleowaters in the British Isles. Appl Geochem 12:813–829

    Article  CAS  Google Scholar 

  • de Louw PGB, Oude Essink GHP, Stuyfzand PJ, van der Zee Seatm (2010) Upward groundwater flow in boils as the dominant mechanism of salinization in deep polders, The Netherlands. J Hydrol 394:494–506

    Article  Google Scholar 

  • De Simone LA, Howes BL, Barlow PM (1997) Mass-balance analysis of reactive transport and cation-exchange in a plume of wastewater-contaminated groundwater. J Hydrol 203:228–249

    Article  Google Scholar 

  • Dregne HE (2002) Land degradation in the drylands. Arid Land Res Manag 16:99–132

    Article  Google Scholar 

  • Duque C, Calvache ML, Pedrera A, Martin-Rosales W, Lopez-Chicano M (2008) Combined time domain electromagnetic soundings and gravimetry to determine marine intrusion in a detrital coastal aquifer (Southern Spain). J Hydrol 349:536–547

    Article  Google Scholar 

  • Faye S, Maloszewski P, Stichler W, Trimborn P, Faye SC, Gaye CB (2005) Groundwater salinization in the Saloum (Senegal) delta aquifer: minor elements and isotopic indicators. Sci Total Environ 343:243–259

    Article  CAS  Google Scholar 

  • Fidelibus MD, Calò G, Tinelli R, Tulipano L (2011) Salt ground waters in the Salento karstic coastal aquifer (Apulia, Southern Italy). In: Lambrakis N, Stournaras G, Katsanou K (eds) Advances in the research of aquatic environment,\environmental\earth sciences series, vol 1. Springer, Berlin, pp 407–415

    Chapter  Google Scholar 

  • Folk RL, Land LS (1975) Mg/Ca ratio and salinity: two controls over crystallization of dolomite. AAPG Bull 59(1):60–68

    CAS  Google Scholar 

  • Freeman JT (2007) The use of bromide and chloride mass ratios to differentiate salt-dissolution and formation brines in shallow groundwaters of the Western Canadian Sedimentary Basin. Hydrogeol J 15:1377–1385

    Article  CAS  Google Scholar 

  • Gardner PM, Kirby SM (2011) Hydrogeologic and geochemical characterization of groundwater resources in Rush Valley, Tooele County, Utah. U.S. Geological Survey Scientific Investigations Report 2011-5068, 68p

  • Gat JR, Carmi H (1970) Evolution of the isotopic composition of atmospheric waters in the Mediterranean Sea area. J Geophys Res 75:3039–3040

    Article  CAS  Google Scholar 

  • Gaye CB (2001) Isotope techniques for monitoring groundwater salinization. First International Conference on Saltwater Intrusion and Coastal Aquifers-Monitoring, Modeling, and Management. Essaouira

  • Geffen N, Semiat R, Eisen MS, Balazs Y, Katz I, Dosoretz CG (2006) Boron removal from water by complexation to polyol compounds. J Membr Sci 286:45–51

    Article  CAS  Google Scholar 

  • Georghiou G, Pashafidis L (2007) Boron in groundwaters of Nicosia (Cyprus) and its treatment by reverse osmosis. Desalination 215:104–110

    Article  CAS  Google Scholar 

  • Giménez-Forcada E (2014) Space/time development of seawater intrusion: a study case in Vinaroz coastal plain (Eastern Spain) using HFE-Diagram, and spatial distribution of hydrochemical facies. J Hydrol 517:617–627

    Article  Google Scholar 

  • Giménez-Forcada E, Bencini A, Pranzini G (2010) Hydrogeochemical considerations about the origin of groundwater salinization in some coastal plains of Elba Island (Tuscany, Italy). Environ Geochem Health 32:243–257

    Article  Google Scholar 

  • Goldberg S, Kabengi NJ (2010) Bromide adsorption by reference minerals and soils. Vadose Zone J 9:780–786

    Article  CAS  Google Scholar 

  • Goldberg S, Forster HS, Heick EL (1993) Boron adsorption mechanisms on metal oxides, clay-minerals, and soils inferred from ionic-strength effects. Soil Sci Soc Am 57:704–708

    Article  CAS  Google Scholar 

  • Goldberg S, Hyun S, Lee LS (2008) Chemical modeling of arsenic(III, V) and selenium(IV, VI) adsorption by soils surrounding ash disposal facilities. Vadose Zone J 7:1185–1192

    Article  Google Scholar 

  • Gonfiantini R (1978) Standard for stable isotope measurements in natural compounds. Nature 271:534

    Article  CAS  Google Scholar 

  • Halim MA, Majumder RK, Nessa SA, Hiroshiro Y, Sasaki K, Saha BB, Saepuloh A, Jinno K (2010) Evaluation of processes controlling the geochemical constituents in deep groundwater in Bangladesh: spatial variability on arsenic and boron enrichment. J Hazard Mater 180:50–62

    Article  CAS  Google Scholar 

  • Han D, Liang X, Jin M, Currell MJ, Han Y, Song X (2009) Hydrogeochemical indicators of groundwater flow systems in the Yangwu River Alluvial Fan, Xinzhou Basin, Shanxi, China. Environ Manag 44:243–255

    Article  Google Scholar 

  • Han D, Song X, Currell MJ, Cao G, Zhang Y, Kang Y (2011) A survey of groundwater levels and hydrogeochemistry in irrigated fields in the Karamay Agricultural Development Area, northwest China: implications for soil and groundwater salinity resulting from surface water transfer for irrigation. J Hydrol 405(3-4):217–234

    Article  CAS  Google Scholar 

  • Hyung H, Kim J-H (2006) A mechanistic study on boron rejection by sea water reverse osmosis membranes. J Membr Sci 286:269–278

    Article  CAS  Google Scholar 

  • ISO 5667-11 (1993) Water quality. Sampling. Guidance on sampling of groundwaters

  • Jackson RB, Carpenter SR, Dahm CN, Mc Knight MDM, Naiman RJ, Postel SL, Running SW (2001) Water in a changing world. Ecol Appl 11:1027–1045

    Article  Google Scholar 

  • Jalali M (2007) Salinization of groundwater in arid and semi-arid zones: an example Tajarak, western Iran. Environ Geol 52:1133–1149

    Article  CAS  Google Scholar 

  • Jones BF, Deocampo DM (2003) Treatise on geochemistry, Volume 5. Editor: James I. Drever. Executive Editors: Heinrich D. Holland and Karl K. Turekian. pp. 605. ISBN 0-08-043751-6. Elsevier, pp.393-424

  • Jones BF, Vengosh A, Rosenthal A, Yechieli Y (1999) Geochemical investigations. In: Bear J, Cheng AH-D, Sorek S, Ouazar D, Herrera H (eds) Seawater intrusion in coastal aquifers-concepts, methods, and practices. Kluwer Academic Publishers, Dordrecht, pp 51–69

    Chapter  Google Scholar 

  • Jones BF, Naftz DL, Spencer RJ, Oviatt CG (2009) Geochemical evolution of Great Salt Lake, Utah, USA. Aquat Geochem 15:95–121

    Article  CAS  Google Scholar 

  • Kamei T, Ikeda J, Ishida H, Ismda S, Onishi I, Partoazar H, Sasajima S, Nishimur S (1973) A general report on the geological and paleontological survey in Maragheh Area, North-West Iran. Internal Report, Geological Survey of Iran

  • Katz BG, Griffin DW, McMahon PB, Harden H, Wade E, Hicks RW, Chanton J (2010) Fate of effluent-borne contaminants beneath septic tank drainfields overlying a karst aquifer. J Environ Qual 39:1181–1195

    Article  CAS  Google Scholar 

  • Katz BG, Eberts SM, Kauffman LJ (2011) Using Cl/Br ratios and other indicators to assess potential impacts on groundwater quality from septic systems: a review and examples from principal aquifers in the United States. J Hydrol 397:151–166

    Article  CAS  Google Scholar 

  • Kharaka YK, Ambats G, Presser TS, Davis RA (1996) Removal of selenium from contaminated agricultural drainage water by nanofiltration membranes. Appl Geochem 11:797–802

    Article  CAS  Google Scholar 

  • Khatami S (2013) Nonlinear chaotic and trend analyses of water level at Urmia Hypersaline Lake, Iran. M.Sc. Thesis report, TVVR 13/5012. Lund: Lund University

  • Kloppmann W, Vengosh A, Guerrot C, Millot R, Pankratov I (2008) Isotope and ion selectivity in reverse osmosis desalination: geochemical tracers for man-made freshwater. Environ Sci Technol 42:4723–4731

    Article  CAS  Google Scholar 

  • Koukadaki MA, Karatzas GP, Papadopoulou MP, Vafidis A (2007) Identification of the saline zone in a coastal aquifer using electrical tomography data and simulation. Water Resour Manag 21:1881–1898

    Article  Google Scholar 

  • Kouzana L, Benassi R, Ben mammou A, Sfar felfoul M (2010) Geophysical and hydrochemical study of the seawater intrusion in Mediterranean semi-arid zones. Case of the Korba coastal aquifer (Cap-Bon, Tunisia). J Afr Earth Sci 58:242–254

    Article  CAS  Google Scholar 

  • Krouse HR, Mayer B (2000) Sulphur and oxygen isotopes in sulphate. In: Cook P, Herczeg AL (eds) Environmental tracers in subsurface hydrology. Kluwer, Boston, pp 195–231

    Chapter  Google Scholar 

  • Leontiadis L, Vergis S, Christodoulou T (1996) Isotope hydrology study of areas in eastern Macedonia and Thrace, northern Greece. J Hydrol 182:1–17

    Article  CAS  Google Scholar 

  • Leybourne MI, Goodfellow WD (2007) Br/Cl ratios and O, H, C, and B isotopic constraints on the origin of saline waters from eastern Canada. Geochim Cosmochim Acta 71:2209–2223

    Article  CAS  Google Scholar 

  • Madani K (2014) Water management in Iran: what is causing the looming crisis? J Environ Stud Sci 4(4):315–328

    Article  Google Scholar 

  • Mandilaras D, Lambrakis N, Stamatis G (2008) The role of bromide and iodide ions in the salinization mapping of the aquifer of Glafkos River basin (northwest Achaia, Greece). Hydrol Process 22:611–622

    Article  CAS  Google Scholar 

  • Mane PP, Park P-K, Hyung H, Brown JC, Kim J-H (2009) Modeling boron rejection in pilot- and full-scale reverse osmosis desalination processes. J Membr Sci 338:119–127

    Article  CAS  Google Scholar 

  • Manning AH (2009) Ground-water temperature, noble gas, and carbon isotope data from the Española Basin, New Mexico. U.S. Geological Survey Scientific Investigations Report 2008-5200, 69p

  • Marfia AM, Krishnamurthy RV, Atekwana EA, Panton WF (2004) Isotopic and geochemical evolution of ground and surface waters in a karst dominated geological setting: a case study from Belize, Central America. Appl Geochem 19:937–946

    Article  CAS  Google Scholar 

  • Marie A, Vengosh A (2001) Sources of salinity in ground water from Jericho Area, Jordan Valley. Ground Water 39:240–248

    Article  CAS  Google Scholar 

  • Martinez R, Sánchez-Mata D, Costa M (1999) Boreal and western temperate forest vegetation (syntaxonomical synopsis of the potential natural plant communities of North America II). Itinera Geobot 12:3–311

    Google Scholar 

  • Mehta S, Fryar AE, Banner JL (2000a) Controls on the regional-scale salinization of the Ogallala aquifer, Southern High Plains, Texas, USA. Appl Geochem 15:849–864

    Article  CAS  Google Scholar 

  • Mehta S, Fryar AE, Brady RM, Morin RH (2000b) Modeling regional salinization of the Ogallala aquifer, Southern High Plains, TX, USA. J Hydrol 238:44–64

    Article  CAS  Google Scholar 

  • Ministry of Energy of Iran (2010) Integrated management plan for Lake Urmia Basin. report, 91pp

  • Mohammadi K (2012) Optimum management of water extraction from coastal Urmia aquifer. M.Sc. Thesis. Kharazmi University, Tehran (In Persian)

  • Mongelli G, Monni S, Oggiano G, Paternoster M, Sinisi R (2013) Tracing groundwater salinization processes in coastal aquifers: a hydrogeochemical and isotopic approach in the Na-Cl brackish waters of northwestern Sardinia, Italy. Hydrol Earth Syst Sci 17:2917–2928

    Article  CAS  Google Scholar 

  • Morrow FJ, Ingham MR, McConchie JA (2010) Monitoring of tidal influences on the saline interface using resistivity traversing and cross-borehole resistivity tomography. J Hydrol 389:69–77

    Article  CAS  Google Scholar 

  • Musgrove M, Fahlquist L, Houston NA, Lindgren RJ, Ging PB (2010) Geochemical evolution processes and water-quality observations based on results of the national water-quality assessment program in the San Antonio Segment of the Edwards Aquifer, 1996-2006. U.S. Geological Survey Scientific Investigations Report 2010-5129, 93p

  • NOAA (National Oceanic and Atmospheric Administration). “Oroomieh climate normals 1961-1990”. Retrieved 27 Dec 2012

  • Ozturk N, Kavak D, Kose TE (2008) Boron removal from aqueous solution by reverse osmosis. Desalination 223:1–9

    Article  CAS  Google Scholar 

  • Panno SV, Hackley KC, Hwang HH, Greenberg S, Krapac IG, Landsberger S, O’Kelly DJ (2006) Source identification of sodium and chloride in natural waters: preliminary results. Ground Water 44:176–187

    Article  CAS  Google Scholar 

  • Parks JL, Edwards M (2005) Boron in the environment. Crit Rev Environ Sci Technol 35(2):81–114

    Article  CAS  Google Scholar 

  • Prats D, Chillon-Arias MF, Rodriguez-Pastor M (2000) Analysis of the influence of pH and pressure on the elimination of boron in reverse osmosis. Desalination 128:269–273

    Article  CAS  Google Scholar 

  • Ranjan SP, Kazama S, Sawamoto M (2006) Effects of climate change on coastal fresh groundwater resources. Glob Environ Chang 16:388–399

    Article  Google Scholar 

  • Ravenscroft P, McArthur JM (2004) Mechanism of regional enrichment of groundwater by boron: the examples of Bangladesh and Michigan, USA. Appl Geochem 19:1413–1430

    Article  CAS  Google Scholar 

  • Reilly TE, Goodman AS (1985) Quantitative analysis of saltwater-freshwater relationships in groundwater systems—a historical perspective. J Hydrol 80(1-2):125–160

    Article  CAS  Google Scholar 

  • Rengasamy P (2006) World salinization with emphasis on Australia. J Exp Bot 57:1017–1023

    Article  CAS  Google Scholar 

  • Riley JP, Skirrow G (eds) (1975) Chemical oceanography. Acad Press, London

    Google Scholar 

  • Sagiv A, Semiat R (2004) Analysis of parameters affecting boron permeation through reverse osmosis membranes. J Membr Sci 243:79–87

    Article  CAS  Google Scholar 

  • Samani S, Asghari Moghaddam A (2015) Hydrogeochemical characteristics and origin of salinity in Ajabshir aquifer, East Azerbaijan, Iran. Q J Eng Geol Hydrogeol. doi:10.1144/qjegh2014-070

    Google Scholar 

  • Schroeder RA, Rivera M (1993) Physical, chemical and biological data for detailed study of irrigation drainage in the Salton Sea area, California. US Geological Survey Open-File report 93-83. Menlo Park, CA: US Geological Survey

  • Shamsi A, Kazemi GA (2014) A review of research dealing with isotope hydrology in Iran and the first Iranian meteoric water line. Geopersia 4(1):73–86

    Google Scholar 

  • Skrzypek G, Dogramaci S, Grierson PF (2013) Geochemical and hydrological processes controlling groundwater salinity of a large inland wetland of northwest Australia. Chem Geol 357:164–177

    Article  CAS  Google Scholar 

  • Sowers J, Vengosh A, Weinthal E (2011) Climate change, water resources, and the politics of adaptation in the Middle East and North Africa. Clim Chang 104:599–627

    Article  Google Scholar 

  • Sprenger C, Renganayaki SP, Schneider M, Elango L (2015) Hydrochemistry and stable isotopes during salinity ingress and refreshment in surface- and groundwater from the Arani-Koratallai (A-K) basin north of Chennai (India). Environ Earth Sci 73(12):7769–7780

    Article  CAS  Google Scholar 

  • Starinsky A (1974) Relationship between calcium-chloride brines and sedimentary rocks in Israel. PhD Thesis, The Hebrew University

  • Stuyfzand PJ (2008) Base-exchange indices as indicators of salinization or freshening of (coastal) aquifers. In Proceedings of 20th Salt Water Intrusion Meeting. Florida, June 23-27. pp. 262-265

  • Trabelsi R, Abid K, Zouari K, Yahyaoui H (2012) Groundwater salinization processes in shallow coastal aquifer of Djeffara plain of Medenine, Southeastern Tunisia. Environ Earth Sci 66:641–653

    Article  CAS  Google Scholar 

  • Tu KL, Nghiem LD, Chivas AR (2011) Coupling effects of feed solution pH and ionic strength on the rejection of boron by NF/RO membranes. Chem Eng J 168:700–706

    Article  CAS  Google Scholar 

  • Vandenbohede A, Van Houtte E, Lebbe L (2009) Water quality changes in the dunes of the western Belgian coastal plain due to artificial recharge of tertiary treated wastewater. Appl Geochem 24:370–382

    Article  CAS  Google Scholar 

  • Vengosh A (1998) The isotopic composition of anthropogenic boron and its potential impact on the environment. Biol Trace Elem Res 66:145–151

    Article  CAS  Google Scholar 

  • Vengosh A (2014) Treatise on Geochemistry (Second Edition). Volume 11: Environmental Geochemistry, 11.9 Salinization and Saline Environments, 325-378 p, doi:10.1016/B978-0-08-095975-7.00909-8

  • Vengosh A, Keren R (1996) Chemical modifications of groundwater contaminated by recharge of treated sewage effluent. J Contam Hydrol 23:347–360

    Article  CAS  Google Scholar 

  • Vengosh A, Rosenthal E (1994) Saline groundwater in Israel: its bearing on the water crisis in the country. J Hydrol 156:389–430

    Article  CAS  Google Scholar 

  • Vengosh A, Heumann KG, Juraske S, Kasher R (1994) Boron isotope application for tracing sources of contamination in groundwater. Environ Sci Technol 28:1968–1974

    Article  CAS  Google Scholar 

  • Vengosh A, Barth S, Heumann KG, Eisenhut S (1999a) Boron isotopic composition of freshwater lakes from central Europe and possible contamination sources. Acta Hydrochim Hydrobiol 27:416–421

    Article  CAS  Google Scholar 

  • Vengosh A, Spivack AJ, Artzi Y, Ayalon A (1999b) Geochemical and boron, strontium, and oxygen isotopic constraints on the origin of the salinity in groundwater from the Mediterranean coast of Israel. Water Resour Res 35:1877–1894

    Article  CAS  Google Scholar 

  • Vengosh A, Farber E, Shavit U, Holtzman R, Segal M, Gavrieli I, Bullen TM (2001) Exploring the sources of salinity in the Middle East: a hydrologic, geochemical and isotopic study of the Jordan River. In: Cidu R (ed.) 10th International Symposium on Water-Rock Interaction, WRI-10, 2001b Sardinia, Italy, pp. 71-79. Amsterdam: A.A. Balkema

  • Vengosh A, Gill J, Davisson ML, Hudson GB (2002) A multi-isotope (B, Sr, O, H, and C) and age dating (3H - 3He and 14C) study of groundwater from Salinas Valley, California: hydrochemistry, dynamics, and contamination processes. Water Resour Res 38(1):9-1–9-17, 1008

  • Vengosh A, Kloppmann W, Marei A, Livshitz Y, Gutierrez A, Banna M, Guerrot C, Pankratov I, Raanan H (2005) Sources of salinity and boron in the Gaza strip: natural contaminant flow in the southern Mediterranean coastal aquifer. Water Resour Res 41:W01013

    Article  Google Scholar 

  • Vinson DS (2011) Radium isotope geochemistry in groundwater systems: the role of environmental factors. PhD Thesis, Duke University

  • Wada Y, van Beek L, van Kempen C, Reckman J, Vasak S, Bierkens M (2010) Global depletion of groundwater resources. Geophys Res Lett 37(20). Doi:10.1029/2010gl044571

  • Wahi AK, Hogan JF, Ekwurzel B, Baillie MN, Eastoe CJ (2008) Geochemical quantification of semiarid mountain recharge. Ground Water 46(3):414–425

    Article  CAS  Google Scholar 

  • Warner N, Lgourna Z, Boutaleb S, Tagma T, Vinson DS, Ettayfi N, Bouchaou L, Vengosh A (2010) A geochemical approach for the evaluation of water availability and salinity in closed basins: The Draa Basin, Morocco. American Geophysical Union, Fall Meeting, San Francisco

  • Warner NR, Jackson RB, Darrah TH, Osborn SG, Down A, Zhao K, White A, Vengosh A (2012) Geochemical evidence for possible natural migration of Marcellus formation brine to shallow aquifers in Pennsylvania. Proc Natl Acad Sci U S A 109:11961–11966

    Article  CAS  Google Scholar 

  • Warner NR, Lgourna Z, Bouchaou L, Boutaleb S, Tagma T, Hsaissoune M, Vengosh A (2013) Integration of geochemical and isotopic tracers for elucidating water sources and salinization of shallow aquifers in the sub-Saharan Drâa Basin, Morocco. Appl Geochem 34:140–151

    Article  CAS  Google Scholar 

  • Williams WD (2001a) Anthropogenic salinisation of inland waters. Hydrobiologia 466:329–337

    Article  Google Scholar 

  • Williams WD (2001b) Salinization: unplumbed salt in a parched landscape. Water Sci Technol 43:85–91

    CAS  Google Scholar 

  • Williams J, Walker GR, Hatton TJ (2002) Dryland salinization: a challenge for land and water management in the Australian landscape. In: Haygarth PM, Jarvis SC (eds) Agriculture, hydrology, and water quality. CAB International, Wallingford

    Google Scholar 

  • Wilson TP, Long DT (1993) Geochemistry and isotope chemistry of Ca-Na-Cl brines in Silurian strata, Michigan Basin, U.S.A. Appl Geochem 8:507–524

    Article  CAS  Google Scholar 

  • Wilson SR, Ingham M, McConchie JA (2006) The applicability of earth resistivity methods for saline interface definition. J Hydrol 316:301–312

    Article  Google Scholar 

  • WMO (World Meteorological Organisation) (2014). http://worldweather.wmo.int/en/city.html?cityId=1454

  • Zarghami M (2011) Effective watershed management; case study of Urmia Lake, Iran. Lake Reservior Manage 27(1):87–94

    Article  Google Scholar 

  • Zarroca M, Bach J, Linares R, Pellicer XM (2011) Electrical methods (VES and ERT) for identifying, mapping and monitoring different saline domains in a coastal plain region (Alt Empordà, Northern Spain). J Hydrol 409:407–422

    Article  CAS  Google Scholar 

  • Zimmerman U, Ehhalt D, Munnich KO (1967) Soil water movement and evapotranspitation: change in the isotopic composition of the water. In: Isotopes in Hydrology. IAEA, Vienna p. 567-585

Download references

Acknowledgments

This is a part of Ph.D. dissertation of the senior author (V. Amiri), and he would like to thank the Geological Survey of Iran (GSI) for the financial support. The authors would like to thank Dr. Matthew Currell and another anonymous reviewer for their insightful comments. The first author would like to thank Mr. Ebrahim Naderi for his efficient help for drawing freshwater-saltwater profiles.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vahab Amiri.

Additional information

Responsible editor: Philippe Garrigues

An erratum to this article is available at http://dx.doi.org/10.1007/s11356-016-7380-z.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amiri, V., Nakhaei, M., Lak, R. et al. Geophysical, isotopic, and hydrogeochemical tools to identify potential impacts on coastal groundwater resources from Urmia hypersaline Lake, NW Iran. Environ Sci Pollut Res 23, 16738–16760 (2016). https://doi.org/10.1007/s11356-016-6859-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-6859-y

Keywords

Navigation