Skip to main content

Abstract

The origin and the fate of sulphate in groundwater has concerned hydrogeologists for many decades. With increasing industrialisation throughout this century, the differentiation between natural and ‘man-made’sulphate became important. A particular challenge is evaluating potential and existing additions of the latter to groundwater and drinking water supplies. On regional and even global scales, sulphate as a component of ‘acid rain’captured scientific and public awareness in the 1970s and 1980s. Subsequently, intensive research programs on the effects of atmospheric sulphate deposition on terrestrial and aquatic ecosystems were initiated. Today, more than two-thirds of the sulphate in atmospheric deposition in heavily industrialised regions of the northern hemisphere is of anthropogenic origin (Section 7.3.2.4). The rate and the degree to which these increased sulphate inputs have led to acidification of surface water and groundwater has been a matter of considerable scientific debate in the past two decades.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andreae M.O. (1990) Ocean-atmosphere interactions in the global biogeochemical sulfur cycle. Mar. Chem. 30, 1–29.

    CAS  Google Scholar 

  • Bailey S.A. and Smith J.W. (1972) Improved method for the preparation of sulfur dioxide from barium sulfate for isotope ratio studies. Anal. Chem. 44, 1542–1543.

    CAS  Google Scholar 

  • Balderer W., Fontes J.-C. and Michelot J.L. (1987) Isotopic investigations of the water-rock system in the deep crystalline rock of northern Switzerland. In Saline Water and Gases in Crystalline Rocks, eds. P. Fritz and S.K. Frape, pp. 175–195. Geol. Assoc. Canada, Toronto.

    Google Scholar 

  • Balderer W., Pearson F.J. and Soreau S. (1991) Sulphur and oxygen isotopes in sulphate and sulphide. In Applied Isotope Hydrogeology: A Case Study in Northern Switzerland, eds. F.J. Pearson et al., pp.297–322. Elsevier, Amsterdam.

    Google Scholar 

  • Barker A.P., Newton R.J., Bottrell S.H. and Tellam J.H. (1998) Processes affecting groundwater chemistry in a zone of saline intrusion into an urban sandstone aquifer. Appl. Geochem. 13, 735–749.

    CAS  Google Scholar 

  • Beaudoin G., Taylor B.E., Rumble III D. and Thiemens M. (1994) Variations in the sulfur isotope composition of troilite from Canyon Diablo iron meteorite. Geochim. Cosmochim. Acta 58, 4253–4255.

    CAS  Google Scholar 

  • Benkovitz C.M., Scholtz M.T., Pacyna J., Tarrrason L., Dignon J., Voldner E.C., Spiro P.A., Logan J.A. and Graedel T.E. (1996) Global gridded inventories of anthropogenic emissions of sulfur and nitrogen. J. Geophys. Res. 101(D22), 29239–29253.

    CAS  Google Scholar 

  • Bottrell S.H., Raiswell R. and Leosson M.A. (1996) The influence of sulphur redox reactions and mixing on the chemistry of shallow groundwaters: the Harrogate mineral waters. J. Geol. Soc. London 153, 231–242.

    CAS  Google Scholar 

  • Calhoun J.A., Bates T.S. and Charlson R.J. (1991) Sulfur isotope measurements on submicrometer sulfate aerosol particles over the Pacific Ocean. Geophys. Res. Lett. 18, 1877–1880.

    CAS  Google Scholar 

  • Carmody R.W., Plummer L.N., Busenberg E. and Coplen T.B. (1998) Methods for collection of dissolved sulfate and sulfide and analysis of their sulfur isotopic composition. U.S. Geological Survey, Open File Report No. 97-234.

    Google Scholar 

  • Chambers L.A. and Trudinger P.A. (1979) Microbiological fractionation of stable sulfur isotopes: a review and critique. Geomicrobiol. J. 1, 249–293.

    CAS  Google Scholar 

  • Chiba H. and Sakai H. (1985) Oxygen isotope exchange rate between dissolved sulfate and water at hydrothermal temperatures. Geochim. Cosmochim. Acta 49, 993–1000.

    CAS  Google Scholar 

  • Clark I. and Fritz P. (1997) Environmental Isotopes in Hydrogeology. Lewis, Boca Raton. 328 pp.

    Google Scholar 

  • Clark I.D., Phipps G.C. and Bajjali W.T. (1996) Contrasting 14C ages in sulphate reducing groundwaters. Isotopes in Water Resources Management, Vol. 1, pp.43–56. IAEA, Vienna.

    Google Scholar 

  • Claypool G.E., Holser W.T., Kaplan I.R., Sakai H. and Zak I. (1980) The age curves of sulfur and oxygen isotopes in marine sulfate and their mutual interpretation. Chem. Geol. 28, 199–260.

    CAS  Google Scholar 

  • Coleman M.L. and Moore M.P. (1978) Direct reduction of sulfates to sulfur dioxide for isotopic analysis. Anal. Chem. 50, 1594–1595.

    CAS  Google Scholar 

  • Coplen T. and Krouse H.R. (1998) Sulphur isotope data consistency improved. Nature 392, 32.

    CAS  Google Scholar 

  • Cortecci G. (1974) Oxygen isotopic ratios of sulfate ions-water pairs as a possible geothermometer. Geothermics 3, 60–64.

    CAS  Google Scholar 

  • Craig H. (1961) Isotopic variations in meteoric waters. Science 133, 1833–1834.

    CAS  Google Scholar 

  • Dansgaard W. (1964) Stable isotopes in precipitation. Tellus 16, 436–468.

    Google Scholar 

  • Dogramaci S.S., Herczeg A.L., Schiff S.L. and Bone Y. (1999) δ34S and δ18O of dissolved sulfate in regional aquifers of the Murray Basin, Australia: their use in estimating processes and inter-aquifer leakage. Appl. Geochem. in press.

    Google Scholar 

  • Edmunds W.M., Smedley P.L. and Spiro B. (1996) Controls on the geochemistry of sulphur in the East Midlands Triassic aquifer, United Kingdom Isotopes in Water Resources Management, Vol. 2, pp. 107–122. IAEA, Vienna.

    Google Scholar 

  • Epstein S. and Mayeda T. (1953) Variation of O-18 content of waters from natural sources. Geochim. Cosmochim. Acta 4, 213–224.

    CAS  Google Scholar 

  • Fennell J. and Bentley L.R. (1998) Distribution of sulfate and organic carbon in a prairie till setting: natural versus industrial sources. Water Resour. Res. 34, 1781–1794.

    CAS  Google Scholar 

  • Field C.W. and Gustafson L.B. (1976) Sulfur isotopes in the porphyry copper deposit at El Salvador, Chile. Econ. Geol. 71, 1533–1548.

    CAS  Google Scholar 

  • Fontes J.-C., Andrews J.N., Edmunds W.M., Guerre A. and Travi Y. (1991) Paleorecharge by the Niger River (Mali) deduced from groundwater geochemistry. Water Resour. Res. 27, 199–214.

    CAS  Google Scholar 

  • Fontes J.-C., Fritz P., Louvat D. and Michelot J.-L. (1989) Aqueous sulphates from the Stripa groundwater system. Geochim. Cosmochim. Acta 53, 1783–1789.

    CAS  Google Scholar 

  • Freney J.R. and Stevenson F.J. (1966) Organic sulfur transformations in soils. Soil Sci. 101, 307–316.

    CAS  Google Scholar 

  • Fritz P., Basharmal G.M., Drimmie R.J., Ibsen J. and Qureshi R.M. (1989) Oxygen isotope exchange between sulphate and water during bacterial reduction of sulphate. Chem. Geol. 79, 99–105.

    Google Scholar 

  • Fritz P. and Drimmie RJ. (1991) Ground Water. In Stable Isotopes: Natural and Anthropogenic Sulphur in the Environment, SCOPE 43, eds. H.R. Krouse and V.A. Grinenko, pp.228–241. Wiley and Sons, Chichester.

    Google Scholar 

  • Fritz P., Drimmie R.J. and Nowicki V.K. (1974) Preparation of sulfur dioxide for mass spectrometer analyses by combustion of sulfides with copper oxide. Anal. Chem. 46, 164–166.

    CAS  Google Scholar 

  • Fritz P. and Frape S.K. (1987) Saline Water and Gases in Crystalline Rocks. Spec. Paper 33, Geol. Assoc. Canada, Toronto.

    Google Scholar 

  • Fritz P., Frape S.K., Drimmie R.J., Appleyard E.C. and Hattori K. (1994) Sulfate in brines in the crystalline rocks of the Canadian Shield. Geochim. Cosmochim. Acta 58, 57–65.

    CAS  Google Scholar 

  • Fry B., Ruf W., Gest H. and Hayes J.M. (1988) Sulfur isotope effects associated with oxidation of sulfide by O2 in aqueous solution. Chem. Geol. 73, 205–210.

    CAS  Google Scholar 

  • Garlick G.D. and Eugster H.P. (1969) Oxygen. In Handbook of Geochemistry, Chapter 8, ed. K.H. Wedepohl. Springer, Berlin.

    Google Scholar 

  • Giesemann A., Jaeger H.J., Norman A.-L., Krouse H.R. and Brand W.A. (1994) On-line sulfur-isotope determination using an elemental analyzer coupled to a mass spectrometer. Anal. Chem. 66, 2816–2819.

    CAS  Google Scholar 

  • Halas S. and Wolacewicz W.P. (1981) Direct extraction of sulfur dioxide from sulfates for isotopic analysis. Anal. Chem. 53, 686–689.

    Google Scholar 

  • Harrison A.G. and Thode H.G. (1957) The kinetic isotope effect in the chemical reduction of sulphate. Trans. Faraday Soc. 54, 84–92.

    Google Scholar 

  • Hendry M.J., Krouse H.R. and Shakur M.A. (1989) Interpretation of oxygen and sulfur isotopes from dissolved sulfates in tills of Southern Alberta, Canada. Water Resour. Res. 25, 567–572.

    CAS  Google Scholar 

  • Hoefs J. (1997) Stable Isotope Geochemistry. Springer-Verlag, Berlin, 201 pp.

    Google Scholar 

  • Holser W.T. and Kaplan I.R. (1966) Isotope geochemistry of sedimentary sulfates. Chem. Geol. 1, 93–135.

    CAS  Google Scholar 

  • Holt B.D. and Engelkemeir A.G. (1970) Thermal decomposition of barium sulfate to sulfur dioxide for mass spectrometric analysis. Anal. Chem. 42, 1451–1453.

    CAS  Google Scholar 

  • Holt B.D. and Kumar R. (1991) Oxygen isotope fractionation for understanding the sulfur cycle. In Stable Isotopes: Natural and Anthropogenic Sulphur in the Environment, SCOPE 43, eds. H.R. Krouse and V.A. Grinenko, pp.55–64. Wiley and Sons, Chichester.

    Google Scholar 

  • Horibe Y., Shigehara K. and Takakuwa Y. (1973) Isotopic separation factors of carbon-dioxide-water system and isotopic composition of atmospheric oxygen. J. Geophys. Res. 78, 2625–2629.

    CAS  Google Scholar 

  • Ivanov M.V. and Freney J.R. (1983) The Global Biogeochemical Sulphur Cycle, SCOPE 19. John Wiley and Sons, Chichester, 470 pp.

    Google Scholar 

  • Jambor J.L. and Blowes D.W. (1994) Short Course Handbook on Environmental Geochemistry of Sulfide Mine-Wastes. Mineral. Assoc. Canada, Ottawa, 438 pp.

    Google Scholar 

  • Kaplan I.R. and Rittenberg S.C. (1964) Microbiological fractionation of sulphur isotopes. J. Gen. Microbiol. 34, 195–212.

    CAS  Google Scholar 

  • Kendall C. (1998) Tracing nitrogen sources and cycling in catchments. In Isotope Tracers in Catchment Hydrology, eds. C. Kendall and J.J. McDonnell, pp.519–576. Elsevier, Amsterdam.

    Google Scholar 

  • Kendall C. and McDonnell J.J. eds. (1998) Isotope Tracers in Catchment Hydrology. Elsevier, Amsterdam, 839 pp.

    Google Scholar 

  • Koelle W., Werner P., Strebel O. and Boettcher J. (1983) Denitrifikation in einem reduzierenden Grundwasserleiter. Vom Wasser 61, 125–147.

    CAS  Google Scholar 

  • Kroopnick P. and Craig H. (1972) Atmospheric oxygen: isotopic composition and solubility fractionation. Science 175, 54–55.

    CAS  Google Scholar 

  • Krouse H.R. (1980) Sulphur isotopes in our environment. In Handbook of Environmental Isotope Geochemistry, eds. P. Fritz and J.-C. Fontes, pp.435–471. Elsevier, Amsterdam.

    Google Scholar 

  • Krouse H.R. (1987) Relationships between the sulphur and oxygen isotope composition of dissolved sulphate. Hydrology and Geochemistry of Sulphur Isotopes, pp. 19–29. IAEA, Vienna.

    Google Scholar 

  • Krouse H.R., Cook F.D., Sasaki A. and Smejkal V. (1970) Microbial isotope fractionation in springs in Western Canada. In Recent Developments in Mass Spectrometry, eds. K. Ogata and T. Hayakawa, pp.629–639. University Park Press, Chicago.

    Google Scholar 

  • Krouse H.R. and Grinenko V.A. eds. (1991) Stable Isotopes: Natural and Anthropogenic Sulphur in the Environment, SCOPE 43. John Wiley and Sons, Chichester. 440 pp.

    Google Scholar 

  • Krouse H.R. and McCready R.G.L. (1979) Reductive processes. In Biological Factors in Mineral Cycling, eds. P.A. Trudinger and D. Swaine, pp.315–368. Elsevier, Amsterdam.

    Google Scholar 

  • Krouse H.R. and Tabatabai M.A. (1986) Stable sulfur isotopes. In Sulfur in Agriculture, ed. M.A. Tabatabai, pp. 169–205. Amer. Soc. Agronomy, Crop Sci. Soc. Amer., Soil Sci. Soc. Amer., Madison.

    Google Scholar 

  • Kusakabe M. (1974) Sulphur isotope variations in nature. 10: Oxygen and sulphur isotope study of Wairakei geothermal well discharges. N.Z. J. Sci. 17, 183–191.

    CAS  Google Scholar 

  • Kusakabe M. and Robinson B.W. (1977) Oxygen and sulfur isotope equilibria in the BaSO4-HSO4 — H2O system from 100 to 350°C and applications. Geochim. Cosmochim. Acta 41, 1033–1040.

    CAS  Google Scholar 

  • Lein A.Y. (1991) Flux of volcanic sulphur to the atmosphere and isotopic composition of total sulphur. In Stable Isotopes: Natural and Anthropogenic Sulfur in the Environment, SCOPE 43, eds. H.R. Krouse and V.A. Grinenko, pp.116–125. Wiley and Sons, Chichester.

    Google Scholar 

  • Lloyd R.M. (1967) Oxygen-18 composition of oceanic sulfate. Science 156, 1228–1231.

    CAS  Google Scholar 

  • Lloyd R.M. (1968) Oxygen isotope behavior in the sulfate-water system. J. Geophys. Res. 73, 6099–6110.

    CAS  Google Scholar 

  • Lodemann M., Fritz P., Wolf M., Ivanovich M., Hansen B.T. and Nolte E. (1997) On the origin of saline fluids in the KTB (continental deep drilling project of Germany). Appl. Geochem. 12, 831–849.

    CAS  Google Scholar 

  • Longinelli A. and Craig H. (1967) Oxygen-18 variations in sulfate ions in sea water and saline lakes. Science 156, 56–59.

    CAS  Google Scholar 

  • MacNamara J. and Thode H.G. (1950) Comparison of the isotopic composition of terrestrial and meteoritic sulfur. The Physical Review 78, 307–308.

    CAS  Google Scholar 

  • Mayer B. (1998) Potential and limitations of using sulfur isotope abundance ratios as an indicator for natural and anthropogenic induced environmental change. Isotope Techniques in the Study of Past and Current Environmental Changes in the Hydrosphere and the Atmosphere, pp. 423–435. IAEA, Vienna.

    Google Scholar 

  • Mayer B., Feger K.H., Giesemann A. and Jaeger H.-J. (1995a) Interpretation of sulfur cycling in two catchments in the Black Forest (Germany) using stable sulfur and oxygen isotope data. Biogeochem. 30, 31–58.

    CAS  Google Scholar 

  • Mayer B., Krouse H.R. and Legge A.H. (1995b) The fate of sulfur of industrial origin in the pedosphere and hydrosphere near a sour gas plant in Alberta, Canada. In Water-Rock Interaction. eds. Y.K. Kharaka and O.V. Chudaev, pp. 207–210. Balkema, Rotterdam.

    Google Scholar 

  • McCready R.G.L., Kaplan I.R. and Din G.A. (1974) Fractionation of sulfur isotopes by the yeast Saccharomyces cerevisiae. Geochim. Cosmochim. Acta 38, 1239–1253.

    CAS  Google Scholar 

  • McKenzie W.F. and Truesdell A.H. (1977) Geothermal reservoir temperatures estimated from the oxygen isotope composition of dissolved sulphate and water from hot springs and shallow drill holes. Geothermics 5, 51–62.

    CAS  Google Scholar 

  • McKibben M.A. and Eldridge C.S. (1995) Microscopic sulfur isotope variations in ore minerals from the Viburnum Trend, Southeast Missouri: a SHRIMP study. Econ. Geol. 90, 228–245.

    CAS  Google Scholar 

  • Michelot J.-L., Dotsika E. and Fytikas M. (1993) A hydrochemical and isotopic study of thermal waters on Lesbos Island (Greece). Geothermics 22, 91–99.

    CAS  Google Scholar 

  • Migdisov A.A., Ronov A.B. and Grinenko V.A. (1983) The sulphur cycle in the lithosphere. In The Global Biogeochemical Sulphur Cycle, SCOPE 19, eds. M.V. Ivanov and J.R. Freney, pp.25–95. John Wiley and Sons, Chichester.

    Google Scholar 

  • Mizutani Y. (1972) Isotopic composition and underground temperature of the Otake geothermal water, Kyushu, Japan. Geochem. J. 6, 67–73.

    CAS  Google Scholar 

  • Mizutani Y. and Rafter T.A. (1969) Oxygen isotopic composition of sulphates: Part 4. Bacterial fractionation of oxygen isotopes in reduction of sulphate and in the oxidation of sulphur. N.Z. J. Sci. 12, 60–68.

    CAS  Google Scholar 

  • Mizutani Y. and Rafter T.A. (1973) Isotopic behaviour of sulphate oxygen in the bacterial reduction of sulphate. Geochem. J. 6, 183–191.

    CAS  Google Scholar 

  • Moncaster S.J. and Bottrell S.H. (1991) Extraction of low-level sulphide from groundwaters for sulphur isotope analysis. Chem. Geol. 94, 79–82.

    CAS  Google Scholar 

  • Morrison J., France-Lanord C. and Pierson-Wickmann A.C. (1999) Oxygen-sulphur-isotopic measurement in continuous flow mode: application to the origin of dissolved sulfates in Himalayan rivers using elemental analyzer stable isotope ratio mass spectrometry. Ninth Annual V.M. Goldschmich Conference, pp. 203–204. Lunar and Planetary Institue, Houston.

    Google Scholar 

  • Moser H. and Rauert W. (1980) Isotopenmethoden in der Hydrologie. Lehrbuch der Hydrogeologie, Band 8. Gebrueder Borntraeger, Berlin, Stuttgart, 400 pp.

    Google Scholar 

  • Nakai N. and Jensen M.L. (1964) The kinetic isotope effect in the bacterial reduction and oxidation of sulfur. Geochim. Cosmochim. Acta 28, 1893–1912.

    CAS  Google Scholar 

  • Newman L. and Forrest J. (1991) Sulphur isotope measurements relevant to power plant emissions in the Northeastern United States. In Stable Isotopes: Natural and Anthropogenic Sulfur in the Environment, SCOPE 43, eds. H.R. Krouse and V.A. Grinenko, pp.87–91. Wiley and Sons, Chichester.

    Google Scholar 

  • Nielsen H. (1974) Isotopic composition of the major contributors to the atmospheric sulfur. Tellus 26, 213–221.

    CAS  Google Scholar 

  • Nielsen H. (1979) Sulfur isotopes. In Lectures in Isotope Geology, eds. E. Jager and J. Hunziker, pp.283–312. Springer-Verlag, Berlin.

    Google Scholar 

  • Norman A.-L. and Krouse H.R. (1992) Stable isotope studies of atmospheric sulphur: Comparison of Calgary and Bermuda. 9th World Clean Air Congress. Air and Waste Management Association, Montreal, Paper IU-8.01 in Atmospheric Chemistry.

    Google Scholar 

  • Nriagu J.O. and Coker R.D. (1978) Isotopic composition of sulfur in precipitation within the Great Lakes Basin. Tellus 30, 365–375.

    CAS  Google Scholar 

  • Olivero G.F., Zauli M., Zuppi G.M. and Ricchiuto T.E. (1987) Isotopic composition and origin of sulfur compounds in groundwaters and brines in the Po Valley (Northern Italy). Studies on Sulphur Isotope Variations in Nature, pp. 49–64. IAEA, Vienna.

    Google Scholar 

  • Pearson F.J. and Rightmire C.T. (1980) Sulphur and oxygen isotopes in aqueous sulphur compounds. In Handbook of Environmental Isotope Geochemistry, Vol. 1, eds. P. Fritz and J.-C. Fontes, pp.227–258. Elsevier, Amsterdam.

    Google Scholar 

  • Pichlmayer F. and Blochberger K. (1988) Isotopenhaeufigkeitsanalyse von Kohlenstoff, Stickstoff und Schwefel mittels Geraetekopplung Elementaranalysator-Massenspektrometer. Fresenius Z. Anal. Chem. 331, 1961-1201.

    Google Scholar 

  • Plummer L.N., Busby J.F., Lee R.W. and Hanshaw B.B. (1990) Geochemical modeling of the Madison Aquifer in Parts of Montana, Wyoming, and South Dakota. Water Resour. Res. 26, 1981–2014.

    Google Scholar 

  • Rafter T.A. (1967) Oxygen isotopic composition of sulphates. N.Z. J. Sci. 10, 493–510.

    CAS  Google Scholar 

  • Rees C.E. (1973) A steady-state model for sulphur isotope fractionation in bacterial reduction processes. Geochim. Cosmochim. Acta 37, 1141–1162.

    CAS  Google Scholar 

  • Rees C.E. (1978) Sulphur isotope measurements using SO2 and SF6. Geochim. Cosmochim. Acta 42, 383–389.

    CAS  Google Scholar 

  • Rees C.E., Jenkins W.J. and Monster J. (1978) The sulphur isotopic composition of ocean water sulphate. Geochim. Cosmochim. Acta 42, 377–381.

    CAS  Google Scholar 

  • Ricke W. (1964) Praeparation von Schwefeldioxid zur massenspektrometrischen Bestimmung des S-Isotopenverhaeltnisses in natuerlichen S-Verbindungen. Zeitschrift fuer Analytische Chemie 199, 401–413.

    CAS  Google Scholar 

  • Rightmire C.T., Pearson F.J., Back W., Rye R.O. and Hanshaw B.B. (1974) Distribution of sulfur isotopes of sulfates in ground waters from the principal artesian aquifer of Florida and the Edwards aquifer of Texas, United States of America. Isotope Techniques in Ground Water Hydrology, Vol. II, pp.191–207. IAEA, Vienna.

    Google Scholar 

  • Robertson W.D., Cherry J.A. and Schiff S.L. (1989) Atmospheric sulfur deposition 1950-1985 inferred from sulfate in groundwater. Water Resour. Res. 25, 1111–1123.

    CAS  Google Scholar 

  • Robertson W.D. and Schiff S.L. (1994) Fractionation of sulphur isotopes during biogenic sulphate reduction below a sandy forested recharge area in south-central Canada. J.Hydrol. 158, 123–134.

    CAS  Google Scholar 

  • Robinson B.W. (1987) Sulphur and sulphate-oxygen isotopes in New Zealand geothermal systems and volcanic discharges. Studies on Sulphur Isotope Variations in Nature, pp.31–48. IAEA, Vienna.

    Google Scholar 

  • Robinson B.W. and Gunatilaka A. (1991) Stable isotope studies and the hydrological regime of sabkhas in southern Kuwait, Arabian Gulf. Sed. Geol. 73, 141–159.

    CAS  Google Scholar 

  • Robinson B.W. and Kusakabe M. (1975) Quantitative preparation of sulfur dioxide for 34S/32S analyses from sulfides by combustion with cuprous oxide. Anal. Chem. 47, 1179–1181.

    CAS  Google Scholar 

  • Sakai H. (1968) Isotopic properties of sulfur compounds in hydrothermal processes. Geochem. J. 2, 29–49.

    CAS  Google Scholar 

  • Sakai H. and Krouse H.R. (1971) Elimination of memory effects in 18O/16O determinations in sulfate. Earth Planet. Sci. Lett. 11, 369–373.

    CAS  Google Scholar 

  • Schlesinger W.H. (1997) Bio geochemistry—An Analysis of Global Change. Academic Press, San Diego, 588 pp.

    Google Scholar 

  • Schulte U., Strauss H., Bergmann A. and Obermann P. (1997) Isotopenverhaeltnisse der Schwefel-und Kohlenstoffspezies aus Sedimenten und tiefen Grundwaessern der Niederrheinischen Bucht. Grundwasser 3/97, 103–110.

    Google Scholar 

  • Shelton K.L. and Rye D.M. (1982) Sulfur isotopic composition of ores from Mines Gaspe, Quebec: an example of sulfate-sulfide isotopic disequilibria in ore forming fluids with applications to other porphyry type deposits. Econ. Geol. 77, 1688–1709.

    CAS  Google Scholar 

  • Sonntag C. (1991) Environmental isotopes and noble gases in brines from the Konrad iron mine, Salzgitter. Isotope Techniques in Water Resources Development, pp.447–462. IAEA, Vienna.

    Google Scholar 

  • Staudt W.J. and Schoonen M.A.A. (1994) Sulfate incorporation into sedimentary carbonates. In Geochemical Transformations of Sedimentary Sulfur, eds. M.A. Vairavamurthy, M.A.A. Schoonen, T.I. Eglinton, G.W. Luther and B. Manowitz, pp.332–345. Amer. Chem. Soc, Washington DC.

    Google Scholar 

  • Strauss H. (1993) The sulfur isotopic record of Precambrian sulfates; new data and a critical evaluation of the existing record. Precambrian Research 63, 225–246.

    CAS  Google Scholar 

  • Strauss H. (1997) The isotopic composition of sedimentary sulfur through time. Palaeogeogr. Palaeoclimatol. Palaeoecol. 132, 97–118.

    Google Scholar 

  • Strebel O., Boettcher J. and Fritz P. (1990) Use of isotope fractionation of sulfate-sulfur and sulfate-oxygen to assess bacterial desulfurication in a sandy aquifer. J. Hydrol. 121, 155–172.

    CAS  Google Scholar 

  • Szaran J., Niezgoda H. and Halas S. (1998) New determination of oxygen and sulphur isotope fractionation between gypsum and dissolved sulphate. RMZ—Materials and Geoenvironment 45, 180–182.

    Google Scholar 

  • Taylor B.E. and Wheeler M.C. (1994) Sulfur-and oxygen-isotope geochemistry of acid mine drainage in the Western United States: field and experimental studies revisited. In Environmental Geochemistry of Sulfide Oxidation, eds. C.N. Alpers and D.W. Blowes, pp.481–514. Amer. Chem. Soc, Washington DC.

    Google Scholar 

  • Taylor B.E., Wheeler M.C. and Nordstrom D.K. (1984) Isotope composition of sulphate in acid mine drainage as a measure of bacterial oxidation. Nature 308, 538–541.

    CAS  Google Scholar 

  • Thode H., Macnamara J. and Collins C.B. (1949) Natural variations in the isotopic content of sulphur and their significance. Can. J. Res. 27, 361–373.

    CAS  Google Scholar 

  • Thode H.G., Monster J. and Dunford H.B. (1961) Sulphur isotope geochemistry. Geochim. Cosmochim. Acta 25, 159–174.

    CAS  Google Scholar 

  • Toran L. and Harris R.F. (1989) Interpretation of sulfur and oxygen isotopes in biological and abiological sulfide oxidation. Geochim. Cosmochim. Acta 53, 2341–2348.

    CAS  Google Scholar 

  • Truesdell A.H. and Hulston J.R. (1980) Isotopic evidence on environments of geothermal systems. In Handbook of Environmental Isotope Geochemistry, Vol. 1, eds. P. Fritz and J.-C. Fontes, pp. 170–226. Elsevier, Amsterdam.

    Google Scholar 

  • Ueda A. and Krouse H.R. (1986) Direct conversion of sulphide and sulphate minerals to SO2 for isotope analyses. Geochem. J. 20, 209–212.

    CAS  Google Scholar 

  • Ueda A. and Sakai S. (1984) Sulfur isotope study of Quaternary volcanic rocks from the Japanese Island Arc. Geochim. Cosmochim. Acta 48, 1837–1848.

    CAS  Google Scholar 

  • Van Donkelaar C., Hutcheon I.E. and Krouse H.R. (1995) δ34S, δ180, δD in shallow groundwater: tracing anthropogenic sulfate and accompanying groundwater/rock interactions. Water Air Soil Pollut. 79, 279–298.

    CAS  Google Scholar 

  • Van Stempvoort D.R., Hendry M.J., Schoenau J.J. and Krouse H.R. (1994) Sources and dynamics of sulfur in weathered till, Western Glaciated Plains of North America. Chem. Geol. 111, 35–56.

    Google Scholar 

  • Van Stempvoort D.R. and Krouse H.R. (1994) Controls of δ18O in sulfate: review of experimental data and application to specific environments. In Environmental Geochemistry of Sulfide Oxidation, eds. C.N. Alpers and D.W. Blowes, pp.446–480. Amer. Chem. Soc, Washington DC.

    Google Scholar 

  • Van Stempvoort D.R., Reardon E.J. and Fritz P. (1990) Fractionation of sulfur and oxygen isotopes in sulfate by soil Sorption. Geochim. Cosmochim. Acta 54, 2817–2826.

    Google Scholar 

  • Wadleigh M.A., Schwarcz H.P. and Kramer J.R. (1994) Sulphur isotope tests of seasalt correction factors in precipitation: Nova Scotia, Canada. Water Air Soil Pollut. 77, 1–16.

    CAS  Google Scholar 

  • Wadleigh M.A., Schwarcz H.P. and Kramer J.R. (1996) Isotopic evidence for the origin of sulphate in coastal rain. Tellus 48B, 44–59.

    CAS  Google Scholar 

  • Weyer U., Krouse H.R. and Horwood W.C. (1979) Investigation of regional geohydrology south of Great Slave Lake, Canada, utilizing natural sulphur and hydrogen isotope variations. Isotope Hydrology 1978, pp.251–264. IAEA, Vienna.

    Google Scholar 

  • Yanagisawa F. and Sakai H. (1983) Thermal decomposition of barium sulfate—vanadium pentaoxide—silica glass mixtures for preparation of sulfur dioxide in sulfur isotope measurements. Anal. Chem. 55, 985–987.

    CAS  Google Scholar 

  • Yang W., Spencer R.J. and Krouse H.R. (1996) Stable isotope hydrogeochemical studies using desert shrubs and tree rings, Death Valley, California, USA. Geochim. Cosmochim. Acta 60, 3015–3022.

    CAS  Google Scholar 

  • Yang W., Spencer R.J. and Krouse H.R. (1997) Stable isotope composition of waters and sulfate species therein, Death Valley, California, USA: implications for inflow and sulfate sources, and arid basin climate. Earth Planet. Sci. Lett. 147, 69–82.

    CAS  Google Scholar 

  • Zhong-He P., Ji-Yang W. and Michelot J.-L. (1995) Reservoir temperatures of geothermal fields and residence time of thermal waters derived from isotope data on dissolved sulfate. In Water-Rock Interaction, eds. Y.K. Kharaka and O.V. Chudaev, pp.215–218. Balkema, Rotterdam.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Krouse, H.R., Mayer, B. (2000). Sulphur and Oxygen Isotopes in Sulphate. In: Cook, P.G., Herczeg, A.L. (eds) Environmental Tracers in Subsurface Hydrology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4557-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4557-6_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7057-4

  • Online ISBN: 978-1-4615-4557-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics