Skip to main content
Log in

In situ μ CT-scan Mechanical Tests: Fast 4D Mechanical Identification

  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

A recently proposed “Projection-based Digital Volume Correlation” (P-DVC) method is extended in this work to a cone-beam lab-tomograph in which a mechanical test is performed. This consists of a crack propagation test in an elastic-brittle gypsum specimen. Kinematic analysis is performed based on a reduced finite element modeling for which the appropriate boundary conditions and crack propagation stage are determined from the radiographs. By considering only two projections per loading step, an integrated model-based analysis of the entire test provides a full space and time identification of the kinematics, including the crack position and the determination of two material parameters. This is achieved with a drastic reduction in the acquisition time compared to classical digital volume correlation analysis. In the examples presented, the acquisition time was reduced by a factor of 350.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Maire E (2001) On the application of X-ray microtomography in the field of materials science. Adv Eng Mater 3(8):539–546

    Article  Google Scholar 

  2. Salvo L, Cloetens P, Maire E, Zabler S, Blandin JJ, Buffière JY, Ludwig W, Boller E, Bellet D, Josserond C (2003) X-ray micro-tomography an attractive characterisation technique in materials science. Nuclear instruments and methods in physics research section B. Beam Interac Mater Atoms 200:273–286

    Google Scholar 

  3. Salvo L, Suéry M, Marmottant A, Limodin N, Bernard D (2010) 3D imaging in material science: application of X-ray tomography. Comptes Rendus Physique 11(9):641–649

    Article  Google Scholar 

  4. Guvenilir A, Breunig TM, Kinney JH, Stock SR (1997) Direct observation of crack opening as a function of applied load in the interior of a notched tensile sample of AlLi 2090. Acta Materialia 45(5):1977–1987

    Article  Google Scholar 

  5. Beckmann F, Grupp R, Haibel A, Huppmann M, Nöthe M, Pyzalla A, Reimers W, Schreyer A, Zettler R (2007) In-Situ synchrotron X-Ray microtomography studies of microstructure and damage evolution in engineering materials. Adv Eng Mater 9(11):939–950

    Article  Google Scholar 

  6. Maire E, Withers PJ (2014) Quantitative X-ray tomography. Int Mater Rev 59(1):1–43

    Article  Google Scholar 

  7. Toda H, Maire E, Yamauchi S, Tsuruta H, Hiramatsu T, Kobayashi M (2011) In situ observation of ductile fracture using X-ray tomography technique. Acta Mater 59(5):1995–2008

    Article  Google Scholar 

  8. Vogelgesang M, Farago T, Morgeneyer TF, Helfen L, dos Santos Rolo T, Myagotin A, Baumbach T (2016) Real-time image-content-based beamline control for smart 4D X-ray imaging. J Synchrotron Radiat 23 (5):1254–1263

    Article  Google Scholar 

  9. Ludwig O, Dimichiel M, Salvo L, Suéry M, Falus P (2005) In-situ three-dimensional microstructural investigation of solidification of an Al-Cu alloy by ultrafast X-ray microtomography. Metall Mater Trans A 36(6):1515–1523

    Article  Google Scholar 

  10. Uesugi K, Hoshino M, Takeuchi A, Suzuki Y, Yagi N (2012) Development of fast and high throughput tomography using CMOS image detector at SPring-8

  11. Maire E, Le Bourlot C, Adrien J, Mortensen A, Mokso R (2016) 20 Hz X-ray tomography during an in situ tensile test. Int J Fract 200(1):3–12

    Article  Google Scholar 

  12. Bay BK, Smith TS, Fyhrie DP, Saad M (1999) Digital volume correlation: three-dimensional strain mapping using X-ray tomography. Exper Mech 39(3):217–226

    Article  Google Scholar 

  13. Smith TS, Bay BK, Rashid MM (2002) Digital volume correlation including rotational degrees of freedom during minimization. Exp Mech 42(3):272–278

    Article  Google Scholar 

  14. Hild F, Bouterf A, Chamoin L, Leclerc H, Mathieu F, Neggers J, Pled F, Tomičević Z, Roux S (2016) Toward 4D mechanical correlation. Adv Model Simul Eng Sci 3(1):17

    Article  Google Scholar 

  15. Bouterf A, Adrien J, Maire E, Brajer X, Hild F, Roux S (2016) Failure mechanisms of plasterboard in nail pull test determined by X-ray microtomography and digital volume correlation. Exper Mech 56:1427–1437

    Article  Google Scholar 

  16. Prade F, Fischer K, Heinz D, Meyer P, Mohr J, Pfeiffer F (2016) Time resolved X-ray dark-field tomography revealing water transport in a fresh cement sample. Sci Rep 6

  17. White RT, Najm M, Dutta M, Orfino FP, Kjeang E (2016) Communication—effect of micro-XCT X-ray exposure on the performance of polymer electrolyte fuel cells. J Electrochem Soc 163(10):F1206–F1208

    Article  Google Scholar 

  18. Hufenbach W, Böhm R, Gude M, Berthel M, Hornig A, Ručevskis S, Andrich M (2012) A test device for damage characterisation of composites based on in situ computed tomography. Compos Sci Technol 72(12):1361–1367

    Article  Google Scholar 

  19. Zhang H, Toda H, Qu PC, Sakaguchi Y, Kobayashi M, Uesugi K, Suzuki Y (2009) Three-dimensional fatigue crack growth behavior in an aluminum alloy investigated with in situ high-resolution synchrotron X-ray microtomography. Acta Mater 57(11):3287–3300

    Article  Google Scholar 

  20. Roth J, Eller J, Büchi FN (2012) Effects of synchrotron radiation on fuel cell materials. J Electrochem Soc 159(8):F449–F455

    Article  Google Scholar 

  21. Leclerc H, Roux S, Hild F (2015) Projection savings in CT-based digital volume correlation. Exp Mech 55(1):275–287

    Article  Google Scholar 

  22. Taillandier-Thomas T, Jailin C, Roux S, Hild F (2016) Measurement of 3D displacement fields from few tomographic projections. In: SPIE Photonics Europe. International Society for Optics and Photonics, p 98960

  23. Taillandier-Thomas T, Roux S, Hild F (2016) A soft route toward 4D tomography. Phys Rev Lett 117 (2):025501

    Article  MathSciNet  Google Scholar 

  24. Khalili MH (2016) Tracking and modeling small motions at grain scale in granular materials under compression by X-Ray microtomography and discrete simulations. PhD thesis, Univ. Paris Est

  25. Roux S, Hild F, Viot P, Bernard D (2008) Three-dimensional image correlation from X-ray computed tomography of solid foam. Compos Part A: Appl Sci Manuf 39(8):1253–1265

    Article  Google Scholar 

  26. Taillandier-Thomas T, Roux S, Morgeneyer TF, Hild F (2014) Localized strain field measurement on laminography data with mechanical regularization. Nuclear Instrum Methods Phys Res Sect B Beam Inter Mater Atoms 324:70–79

    Article  Google Scholar 

  27. Mathieu F, Leclerc H, Hild F, Roux S (2015) Estimation of elastoplastic parameters via weighted FEMU and integrated-DIC. Exper Mech 55(1):105–119

    Article  Google Scholar 

  28. Bertin M, HILD F, Roux S, Mathieu F, Leclerc H, Aimedieu P (2016) Integrated digital image correlation applied to elasto-plastic identification in a biaxial experiment. J Strain Anal Eng Des 51(2):118–131

    Article  Google Scholar 

  29. Besnard G, Guérard S, Roux S, Hild F (2011) A space–time approach in digital image correlation Movie-DIC. Opt Lasers Eng 49(1):71–81

    Article  Google Scholar 

  30. Janssen C (1977) Specimen for fracture mechanics studies on glass. Revue de Physique Appliquée 12(5):803–803

    Article  Google Scholar 

  31. Célarié F, Prades S, Bonamy D, Ferrero L, Bouchaud E, Guillot C, Marliere C (2003) Glass breaks like metal, but at the nanometer scale. Phys Rev Lett 90(7):075504

    Article  Google Scholar 

  32. Plaisted TA, Amirkhizi AV, Nemat-Nasser S (2006) Compression-induced axial crack propagation in DCDC polymer samples: experiments and modeling. Int J Fract 141(3-4):447–457

    Article  Google Scholar 

  33. Fett T, Rizzi G, Guin JP, López-Cepero JM, Wiederhorn SM (2009) A fracture mechanics analysis of the double cleavage drilled compression test specimen. Eng Fract Mech 76(7):921–934

    Article  Google Scholar 

  34. Pallares G, Ponson L, Grimaldi A, George M, Prevot G, Ciccotti M (2009) Crack opening profile in DCDC specimen. Int J Fract 156(1):11–20

    Article  Google Scholar 

  35. Buffière J-Y, Maire E, Adrien J, Masse J-P, Boller E (2010) In situ experiments with X ray tomography: an attractive tool for experimental mechanics. Exper Mech 50(3):289–305

    Article  Google Scholar 

  36. Van Aarle W, Palenstijn WJ, De Beenhouwer J, Altantzis T, Bals S, Batenburg KJ, Sijbers J (2015) The ASTRA Toolbox: a platform for advanced algorithm development in electron tomography. Ultramicroscopy 157:35–47

    Article  Google Scholar 

  37. Coquard P, Boistelle R (1996) Thermodynamical approach to the brittle fracture of dry plasters. J Mater Sci 31(17):4573–4580

    Article  Google Scholar 

  38. Meille S (2010) Etude du comportement mécanique du plâtre pris en relation avec sa microstructure. PhD thesis, INSA Lyon

  39. He MY, Turner MR, Evans AG (1995) Analysis of the double cleavage drilled compression specimen for interface fracture energy measurements over a range of mode mixities. Acta Metall Mater 43(9):3453–3458

    Article  Google Scholar 

Download references

Acknowledgements

This work has benefited from the support of the French “Agence Nationale de la Recherche” through the “Investissements d’avenir” Program under the reference “ANR-10-EQPX-37 MATMECA”. We acknowledge Bumedijen Raka for his help in the ex situ pre-tests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Jailin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jailin, C., Bouterf, A., Poncelet, M. et al. In situ μ CT-scan Mechanical Tests: Fast 4D Mechanical Identification. Exp Mech 57, 1327–1340 (2017). https://doi.org/10.1007/s11340-017-0305-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11340-017-0305-z

Keywords

Navigation