Skip to main content
Log in

In Situ Experiments with X ray Tomography: an Attractive Tool for Experimental Mechanics

  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

This paper aims at illustrating the potential of X-ray tomography for studying the mechanical behaviour of materials through in situ experiments. Typical experimental tomography set ups which use laboratory and synchrotron X ray sources are described; advantages and limitations of both types of sources are presented. Dedicated experimental devices which allow deformation and/or temperature changes to be applied to various types of materials are described. Examples of results of in situ mechanical experiments are presented and discussed; they include monotonic tensile testing of steel fiber entanglements, high temperature compression and room temperature fatigue of Al alloys. Examples of quantitative assessment of localisation of deformation in the interior of optically opaque samples under mechanical loading are also described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. 3D equivalent to the 2D pixel.

  2. Non circular movement of the sample during rotation.

  3. See for example the following website http://www.esrf. eu/UsersAndScience/Experiments/Imaging/ID19/Software/ring correction for an implementation of a software which removes those rings on reconstructed images.

  4. www.esrf.fr/computing/scientific/HST/HST_REF/hst.html

  5. This design was originally used by an American group for studying composites under load [38].

  6. Compared to PMMA used for the mechanical devices, quartz gives a slightly higher but still acceptable attenuation.

  7. The image quality is slightly reduced by the binning mode as well as by the reduced number of views but it remains sufficiently good to allow a precise analysis of the microstructure.

  8. Diffraction contrast tomography, mentioned above is sensitive to the internal stress level but has not yet been applied as such.

References

  1. Dalmaz A, Ducret D, El Guerjouma R, Reynaud P, Franciosi P, Rouby D, Fantozzi G, Baboux JC (2000) Elastic moduli of a 2.5D C-f/SiC composite: experimental and theoretical estimates. Compos Sci Technol 60(6):913–925

    Article  Google Scholar 

  2. Baste S, Elguerjouma R, Audoin B (1992) Effect of microcracking on the macroscopic behavior of ceramic matrix composites—ultrasonic evaluation of anisotropic damage. Mech Mater 14(1):15–31

    Article  Google Scholar 

  3. Martin CF, Josserond C, Salvo L, Blandin J-J, Cloetens P, Boller E (2000) Characterisation by X-ray micro-tomography of cavity coalescence during superplastic deformation. Scr Mater 42:375–381

    Article  Google Scholar 

  4. Buffiere JY, Maire E, Cloetens P, Lormand G, Fougeres R (1999) Characterization of internal damage in a MMCp using X-ray synchrotron phase contrast microtomography. Acta Mater 47(5):1613–1625

    Article  Google Scholar 

  5. Babout L, Maire E, Buffiere JY, Fougeres R (2001) Characterization by X-ray computed tomography of decohesion, porosity growth and coalescence in model metal matrix composites. Acta Mater 49(11):2055–2063

    Article  Google Scholar 

  6. Liu XC, Bathias C (1993) Defects in squeeze-cast AL2O3/AL alloy composites and their effects on mechanical-properties. Compos Sci Technol 6(3):245–252

    Article  Google Scholar 

  7. Kinney JH, Breunig TM, Starr TL, Haupt D, Nichols MC, Stock SR, Butts MD, Saroyan RA (1993) X-ray tomographic study of chemical vapor infiltration processing of ceramic composites. Science 260(5109):789–792

    Article  Google Scholar 

  8. Baaklini GY, Bhatt RT, Eckel AJ, Engler P, Casstelli MG, Rauser RW (1995) X-ray microtomography of ceramic and metal-matrix composites. Mater Eval 53(9):1040–1044

    Google Scholar 

  9. London B, Yancey RN, Smith JA (1990) High-resolution X-ray computed-tomography of composite-materials. Mater Eval 48(5):604–608

    Google Scholar 

  10. Hirano T, Usami K, Tanaka Y, Masuda C (1995) In situ X-ray ct under tensile loading using synchrotron-radiation. J Mater Res 10(2):381–386

    Article  Google Scholar 

  11. Stock SR (2008) Recent advances in X-ray microtomography applied to materials. Int Mater Rev 53(3):129–181

    Article  Google Scholar 

  12. Stock SR (1999) X-ray microtomography of materials. Int Mater Rev 44(4):141–164

    Article  Google Scholar 

  13. Guvenilir A, Breunig TM, Kinney JH, Stock SR (1997) Direct observation of crack opening as a function of applied load in the interior of a notched tensile sample of Al-Li 2090. Acta Mater 45(5):1977–1987

    Article  Google Scholar 

  14. Beckmann F, Grupp R, Haibel A, Huppmann M, Nothe M, Pyzalla A, Reimers W, Schreyer A, Zettler R (2007) In situ syncrotron X-ray microtomography studies of microstructure and damage evolution in engineering materials. Adv Eng Mater 9(11):939–950

    Article  Google Scholar 

  15. http://rsbweb.nih.gov/ij/—freeware. Accessed 24/09/09

  16. www.vsg3d.com. Accessed 24/09/09

  17. www.volumegraphics.com. Accessed 24/09/09

  18. Youssef S, Maire E, Gartner R (2005) Finite element modelling of the actual structure of cellular materials determined by X ray tomography. Acta Mater 53:719–730

    Article  Google Scholar 

  19. Caty O, Maire E, Youssef S, Bouchet R (2008) Modeling the properties of closed-cell cellular materials from tomography images using finite shell elements. Acta Mater 56:5524–5534

    Article  Google Scholar 

  20. Madi K, Forest S, Boussuge M, Gailliegue S, Lataste E, Buffiere J-Y, Bernard D, Jeulin D (2007) Finite element simulations of the deformation of fused-cast refractories based on X-ray computed tomography. Comput Mater Sci 39(1):224–229

    Article  Google Scholar 

  21. Buffiere JY, Cloetens P, Ludwig W, Maire E, Salvo L (2008) In situ X-ray tomography studies of microstructural evolution combined with 3D modeling. MRS Bull 33(6):611–619

    Google Scholar 

  22. Kak AC, Slaney M (1988) Principles of computerized tomographic imaging. IEEE, New York

    MATH  Google Scholar 

  23. Stock S (2008) MicroComputed tomography: methodology and applications. CRC

  24. Banhart J (2008) Advanced tomographic methods in materials research and engineering. Oxford University Press

  25. Mokso R, Cloetens P, Maire E, Ludwig W, Buffiere JY (2007) Nanoscale zoom tomography with hard X rays using Kirkpatrick–Baez optics. Appl Phys Lett 90(14):144104

    Article  Google Scholar 

  26. Feldkamp LA, Davis LC, Kress JW (1984) Practical cone beam algorithm. J Opt Soc Am A1:612–619

    Article  Google Scholar 

  27. Cloetens P, PateyronSalome M, Buffiere JY, Peix G, Baruchel J, Peyrin F, Schlenker M (1997) Observation of microstructure and damage in materials by phase sensitive radiography and tomography. J Appl Phys 81(9):5878–5886

    Article  Google Scholar 

  28. Cloetens P, Ludwig W, Baruchel J, VanDyck D, Van Landuyt J, Guigay JP, Schlenker M (1999) Holotomography: quantitative phase tomography with micrometer resolution using hard synchrotron X rays. Appl Phys Lett 75:2912

    Article  Google Scholar 

  29. Salvo L, Cloetens P, Maire E, Zabler S, Blandin JJ, Buffiere JY, Ludwig W, Boller E, Bellet D, Josserond C (2003) X-ray micro-tomography an attractive characterisation technique in materials science. Nucl Instrum Methods Phys Res, B 200:273–286

    Article  Google Scholar 

  30. Borbely A, Csikor FF, Zabler S, Cloetens P, Biermann H (2004) Three-dimensional characterization of the microstructure of a metal matrix composite by holotomography. Mater Sci Eng, A 367:40–50

    Article  Google Scholar 

  31. Toda H, Sinclair I, Buffiere JY, Maire E, Connolley T, Joyce M, Khor KH, Gregson P (2003) Assessment of the fatigue crack closure phenomenon in damage-tolerant aluminium alloy by in situ high-resolution synchrotron X-ray microtomography. Philos Mag 83(21):2429–2448

    Article  Google Scholar 

  32. Engelhardt M, Baumann J, Schuster M, Kottler C, Pfeiffer F, Bunk O, David C (2007) High-resolution differential phase contrast imaging using a magnifying projection geometry with a microfocus X-ray source. Appl Phys Lett 90(22):224101

    Article  Google Scholar 

  33. Davis GR, Elliott JC (2006) Artefacts in X-ray microtomography of materials. Mater Sci Technol 22(9):1011–1018

    Article  Google Scholar 

  34. Ludwig W, Buffiere JY, Savelli S, Cloetens P (2003) Study of the interaction of a short fatigue crack with grain boundaries in a cast Al alloy using X-ray microtomography. Acta Mater 51(3):585–598

    Article  Google Scholar 

  35. Labiche J-C, Mathon O, Pascarelli S, Newton MA, Ferre G, Curfs C, Vaughan G, Homs A, Fernandez Carreiras D (2007) Invited article: the fast readout low noise camera as a versatile X-ray detector for time resolved dispersive extended X-ray absorption fine structure and diffraction studies of dynamic problems in materials science, chemistry, and catalysis. Rev Sci Instrum 78(9):091301

    Article  Google Scholar 

  36. Sinclair R, Preuss M, Maire E, Buffiere JY, Bowen P, Withers PJ (2004) The effect of fibre fractures in the bridging zone of fatigue cracked Ti-6Al-4V/SiC fibre composites. Acta Mater 52(6):1423–1438

    Article  Google Scholar 

  37. Preuss M, Withers PJ, Maire E, Buffiere JY (2002) SiC single fibre full-fragmentation during straining in a Ti-6Al-4V matrix studied by synchrotron X-rays. Acta Mater 50(12):3175–3190

    Article  Google Scholar 

  38. Breunig TM, Stock SR, Brown RC (1993) Simple load frame for in situ computed tomography and X-ray tomographic microscopy. Mater Eval 51:596–600

    Google Scholar 

  39. Buffiere JY, Ferrie E, Proudhon H, Ludwig W (2006) Three-dimensional visualisation of fatigue cracks in metals using high resolution synchrotron X-ray micro-tomography. Mater Sci Technol 22(9):1019–1024

    Article  Google Scholar 

  40. Ferrie E, Buffiere JY, Ludwig W, Gravouil A, Edwards L (2006) Fatigue crack propagation: in situ visualization using X-ray microtomography and 3D simulation using the extended finite element method. Acta Mater 54(4):1111–1122

    Article  Google Scholar 

  41. Verdu C, Adrien J, Buffiere JY (2008) Three-dimensional shape of the early stages of fatigue cracks nucleated in nodular cast iron. Mater Sci Eng, A 483:402–405

    Article  Google Scholar 

  42. Birosca S, Buffiere JY, Garcia-Pastor FA, Karadge M, Babout L, Preuss M (2009) Three-dimensional characterization of fatigue cracks in Ti-6246 using X-ray tomography and electron backscatter diffraction. Acta Mater 57(19):5834–5847

    Article  Google Scholar 

  43. Bellet D, Gorges B, Dallery A, Bernard P, Pereiro E, Baruchel J (2003) A 1300 K furnace for in situ X-ray microtomography. J Appl Crystallogr 36(Part 2):366–367

    Article  Google Scholar 

  44. Coleou C, Lesaffre B, Brzoska JB, Ludwig W, Boller E (2001) Three-dimensional snow images by X-ray microtomography. In: Hutter K (ed) Annals of glaciology, vol 32, pp 75–81

  45. http://www.esrf.eu/Industry/case-studies/icecream-tomography/icecream-tomography. Accessed Dec 2008

  46. Deville S, Maire E, Bernard-Granger A, Lasalle G, Bogner A, Gauthier C, Leloup J, Guizard C (2009) Metastable and unstable cellular solidification of colloidal suspensions. Nat Mater 8:966–972

    Article  Google Scholar 

  47. Flin F, Brzoska JB, Lesaffre B, Coleou CC, Pieritz RA (2004) Three-dimensional geometric measurements of snow microstructural evolution under isothermal conditions. In: Fohn PMB (ed) Annals of glaciology, vol 38, pp 39–44

  48. Pieritz RA, Brzoska JB, Flin FD, Lesaffre B, Coleou U (2004) From snow X-ray microtomograph raw volume data to micromechanics modeling: first results. In: Fohn PMB (ed) Annals of glaciology, vol 38, pp 52–58

  49. Terzi S, Salvo L, Suery M, Limodin N, Adrien J, Maire E, Pannier Y, Bornert M, Bernard D, Felberbaum M, Rappaz M, Boller E (2009) In situ X-ray tomography observation of inhomogeneous deformation in semi-solid aluminium alloys. Scr Mater 61(5):449–452

    Article  Google Scholar 

  50. Masse JP, Salvo L, Rodney D, Brechet Y, Bouaziz O (2006) Influence of relative density on the architecture and mechanical behaviour of a steel metallic wool. Scr Mater 54(7):1379–1383

    Article  Google Scholar 

  51. Toll S (1998) Packing mechanics of fiber reinforcements. Polym Eng Sci 38(8):1337–1350

    Article  Google Scholar 

  52. Maire E, Carmona V, Courbon J, Ludwig W (2007) Fast X-ray tomography and acoustic emission study of damage in metals during continuous tensile tests. Acta Mater 55:6806–6815

    Article  Google Scholar 

  53. Suresh S (1994) Fatigue of materials, 1st edn. Cambridge University Press, Cambridge

    Google Scholar 

  54. Buffiere JY, Savelli S, Jouneau PH, Maire E, Fougeres R (2001) Experimental study of porosity and its relation to fatigue mechanisms of model Al-Si7-Mg0.3 cast Al alloys. Mater Sci Eng, A 316(1–2):115–126

    Google Scholar 

  55. Ferrie E, Buffiere JY, Ludwig W (2005) 3d characterisation of the nucleation of a short fatigue crack at a pore in a cast al alloy using high resolution synchrotron microtomography. Int J Fatigue 27(10):1215–1220

    Article  Google Scholar 

  56. Ludwig W, Reischig P, King A, Herbig M, Lauridsen EM, Johnson G, Marrow TJ, Buffiere JY (2009) Three-dimensional grain mapping by X-ray diffraction contrast tomography and the use of Friedel pairs in diffraction data analysis. Rev Sci Instrum 80(3):033905

    Article  Google Scholar 

  57. Newman JC, Raju IS (1981) An empirical stress-intensity factor equation for the surface crack. Eng Fract Mech 15(1–2):185–192

    Article  Google Scholar 

  58. Elber W (1970) Fatigue crack closure under cyclic tension. Eng Fract Mech 2:37–45

    Article  Google Scholar 

  59. Nielsen SF, Poulsen HF, Beckmann F, Thorning C, Wert JA (2003) Measurements of plastic displacement gradient components in three dimensions using marker particles and synchrotron X-ray absorption microtomography. Acta Mater 51(8):2407–2415

    Article  Google Scholar 

  60. Germaneau A, Doumalin P, Dupre JC (2007) 3D strain field measurement by correlation of volume images using scattered light: recording of images and choice of marks. Strain 43(3):207–218

    Article  Google Scholar 

  61. Haldrup K, Nielsen SF, Wert JA (2008) A general methodology for full-field plastic strain measurements using X-ray absorption tomography and internal markers. Exp Mech 48(2):199–211

    Article  Google Scholar 

  62. Barranger Y, Doumalin P, Dupre J-C, Germaneau A, Hedan S, Valle V (2009) Evaluation of three-dimensional and two-dimensional full displacement fields of a single edge notch fracture mechanics specimen, in light of experimental data using X-ray tomography. Eng Fract Mech 76(15):2371–2383

    Article  Google Scholar 

  63. Bay BK, Smith TS, Fyhrie DP, Saad M (1999) Digital volume correlation: three-dimensional strain mapping using X-ray tomography. Exp Mech 39(3):217–226

    Article  Google Scholar 

  64. Verhulp E, van Rietbergen B, Huiskes R (2004) A three-dimensional digital image correlation technique for strain measurements in microstructures. J Biomech 37(9):1313–1320

    Article  Google Scholar 

  65. Roux S, Hild F, Viot P, Bernard D (2008) Three-dimensional image correlation from X-ray computed tomography of solid foam. Compos, Part A Appl Sci Manuf 39(8):1253–1265

    Article  Google Scholar 

  66. Rethore J, Tinnes J-P, Roux S, Buffiere J-Y, Hild F (2008) Extended three-dimensional digital image correlation (X3D-DIC). C R Mec 336(8):643–649

    MATH  Google Scholar 

  67. Forsberg F, Mooser R, Arnold M, Hack E, Wyss P (2008) 3D micro-scale deformations of wood in bending: synchrotron radiation mcro CT data analyzed with digital volume correlation. J Struct Biol 164(3):255–262

    Article  Google Scholar 

  68. Hild F, Maire E, Roux S, Witz JF (2009) Three-dimensional analysis of a compression test on stone wool. Acta Mater 57:3310–3320

    Article  Google Scholar 

  69. Limodin N, Rethore J, Buffiere JY, Gravouil A, Hild F, Roux S (2009) Crack closure and stress intensity factor measurements in nodular graphite cast iron using three-dimensional correlation of laboratory X-ray microtomography images. Acta Mater 57(14):4090–4101

    Article  Google Scholar 

  70. Lenoir N, Bornert M, Desrues J, Besuelle P, Viggiani G (2007) Volumetric digital image correlation applied to X-ray microtomography images from triaxial compression tests on argillaceous rock. Strain 43(3):193–205

    Article  Google Scholar 

  71. Toda H, Sinclair I, Buffiere JY, Maire E, Khor KH, Gregson P, Kobayashi T (2004) A 3D measurement procedure for internal local crack driving forces via synchrotron X-ray microtomography. Acta Mater 52(5):1305–1317

    Article  Google Scholar 

  72. Qu P, Toda H, Zhang H, Sakaguchi Y, Qian L, Kobayashi M, Uesugi K (2009) Local crack driving force analysis of a fatigue crack by a microstructural tracking method. Scr Mater 61(5):489–492

    Article  Google Scholar 

  73. Kobayashi M, Toda H, Kawai Y, Ohgaki T, Uesugi K, Wilkinson D, Kobayashi T, Aoki Y, Nakazawa M (2008) High-density three-dimensional mapping of internal strain by tracking microstructural features. Acta Mater 56(10):2167–2181

    Article  Google Scholar 

  74. Scheuerlein C, Di Michiel M, Haibel A (2007) On the formation of voids in internal tin Nb3Sn superconductors. Appl Phys Lett 90(13):132510

    Article  Google Scholar 

  75. Pyzalla A, Camin B, Buslaps T, Di Michiel M, Kaminski H, Kottar A, Pernack A, Reimers W (2005) Simultaneous tomography and diffraction analysis of creep damage. Science 308(5718):92–95

    Article  Google Scholar 

  76. Maire E, Owen A, Buffiere JY, Withers PJ (2001) A synchrotron X-ray study of a Ti/SiCf composite during in situ straining. Acta Mater 49(1):153–163

    Article  Google Scholar 

  77. Salmon PL, Liu X, Sasov A (2009) A post-scan method for correcting artefacts of slow geometry changes during micro-tomographic scans. J X-ray Sci Technol 17(2):161–174

    Google Scholar 

Download references

Acknowledgements

P. Michaud and C. Touboulic from INSA Lyon are acknowledged for the design and manufacturing of the various deformation stages shown in this paper. The steel wool was kindly provided by O Bouaziz, Arcelor research. The authors also whish to acknowledge H. Kloecker (Ecole des Mines, Saint Etienne) for providing the machined AA5182 hot deformation samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. -Y. Buffiere.

Additional information

This is the 3rd in a series of featured review articles to celebrate the 50th anniversary of Experimental Mechanics. These articles serve to touch on both areas of mechanics where the journal has contributed extensively in the past and emergent areas for the future.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buffiere, J.Y., Maire, E., Adrien, J. et al. In Situ Experiments with X ray Tomography: an Attractive Tool for Experimental Mechanics. Exp Mech 50, 289–305 (2010). https://doi.org/10.1007/s11340-010-9333-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11340-010-9333-7

Keywords

Navigation