Skip to main content
Log in

The hepatic extracellular matrix

I. Components and distribution in normal liver

  • Editorial
  • Published:
Virchows Archiv A Aims and scope Submit manuscript

Abstract

The unique nature of the hepatic extracellular matrix (ECM) is predicated by the special configuration of the space of Disse. Whereas other epithelial organs have two basement membranes (BM) and a substantial ECM interposed between endothelial and epithelial cells, the liver lobule has no BM and only an attenuated ECM, consisting mostly of fibronectin, some collagen type I, and minor quantities of types III, IV, V, and VI. This configuration, together with the abundant fenestrations and gaps of the sinusoidal endothelial cells, seems ideally suited to facilitate the rapid bidirectional exchange of macromolecules normally taking place between plasma and hepatocytes. During organogenesis, the liver anlage is vascularized by continuous capillaries with BM, but by day 13.5 of development (in the rat) the vessels in the immediate proximity of hepatocytes become fenestrated, lacking specialized junctions and BM, suggesting that the hepatocytes produce signals capable of modulating the endothelial phenotype. In regeneration, hepatocyte proliferation precedes vascular proliferation resulting in the formation of hepatocyte clusters that, temporarily, lack sinusoids. Eventually, vascular proliferation follows and the normal hepatocyte-vascular relationships are restored. During this period laminin synthesis by Ito cells is prominent. As soon as hepatocytes become stable, secretion of the sinusoid phenotype-maintaining factors resumes and laminin synthesis and secretion terminates. The interplay between extracellular matrix and liver cells is essential for normal homeostasis and its modification results in derranged hepatic function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Abe N, Katsukura Y, Watabe N, Tsuchiya T (1984) Fibronectin and type I collagen distribution in primary stage of experimental hepatic fibrosis. Acta Histochem Cytochem 17:623–629

    Google Scholar 

  • Abrahamson DR, Caulfield JP (1985) Distribution of laminin within rat and mouse renal, splenic, intestinal, and hepatic basement membranes identified after the intravenous injection of heterologous antilaminin IgG. Lab Invest 52:169–181

    Google Scholar 

  • Amenta PS, Clark CC, Martinez-Hernandez A (1983) Deposition of fibronectin and laminin in the basement membrane of the rat parietal yolk sac: immunohistochemical and biosynthetic studies. J Cell Biol 96:104–111

    Google Scholar 

  • Amenta PS, Gay S, Vaheri A, Martinez-Hernandez A (1986) The extracellular matrix is an integrated unit: ultrastructural localization of collagen types I, III, IV, V, VI, fibronectin, and laminin in human term placenta. Coll Relat Res 6:125–152

    Google Scholar 

  • Amenta PS, Gil J, Martinez-Hernandez A (1988) Connective tissue of rat lung. II: ultrastructural localization of collagen types III, IV, and VI. J Histochem Cytochem 36:1167–1173

    Google Scholar 

  • Ayad S, Chambers CA, Shuttleworth CA, Grant ME (1985) Isolation from bovine elastic tissues of collagen type VI and characterization of its form in vivo. Biochem J 230:465–474

    Google Scholar 

  • Barlow DP, Green NM, Kurkinen M, Hogan BL (1984) Sequencing of laminin B chain cDNAs reveals C-terminal regions of coiled-coil alpha-helix. EMBO J 3:2355–2362

    Google Scholar 

  • Bentz H, Morris NP, Murray LW, Sakai LY, Hollister DW, Burgeson RE (1983) Isolation and partial characterization of a new human collagen with an extended triple-helical structural domain. Proc Natl Acad Sci USA 80:3168–3172

    Google Scholar 

  • Biempica L, Morecki R, Wu CH, Giambrone MA, Rojkind M (1980) Immunocytochemical localization of type B collagen: a component of basement membrane in human liver. Am J Pathol 98:591–602

    Google Scholar 

  • Bissell DM, Arenson DM, Maher JJ, Roll FJ (1987) Support of cultured hepatocytes by a laminin-rich gel. Evidence for a functionally significant subendothelial matrix in normal rat liver. J Clin Invest 79:801–812

    Google Scholar 

  • Boselli JM, Macarak EJ, Clark CC, Brownell AG, Martinez-Hernandez A (1981) Fibronectin: its relationship to basement membranes. I. Light microscopic studies. Coll Relat Res 1:391–404

    Google Scholar 

  • Bronckers AL, Gay S, Lyaruu DM, Gay RE, Miller EJ (1986) Localization of type V collagen with monoclonal antibodies in developing dental and peridental tissues of the rat and hamster. Coll Relat Res 6:1–13

    Google Scholar 

  • Bruns RR (1984) Beaded filaments and long-spacing fibrils: relation to type VI collagen. J Ultrastruct Res 89:136–145

    Google Scholar 

  • Bruns RR, Press W, Engvall E, Timpl R, Gross J (1986) Type VI collagen in extracellular, 100-nm periodic filaments and fibrils: identification by immunoelectron microscopy. J Cell Biol 103:393–404

    Google Scholar 

  • Carlin B, Jaffe R, Bender B, Chung AE (1981) Entactin, a novel basal lamina-associated sulfated glycoprotein. J Biol Chem 256:5209–5214

    Google Scholar 

  • Carlsson R, Engvall E, Freeman A, Ruoslahti E (1981) Laminin and fibronectin in cell adhesion: enhanced adhesion of cells from regenerating liver to laminin. Proc Natl Acad Sci USA 78:2403–2406

    Google Scholar 

  • Chanoki M, Ishii M, Fukai K, Kobayashi H, Hamada T, Muragaki Y, Ooshima A (1988) Immunohistochemical localization of type V collagen in normal human skin. Arch Dermatol Res 280:145–151

    Google Scholar 

  • Chiquet R, Fambrough DM (1984) Chick myotendinous antigen. 1. A monoclonal antibody as a marker for tendon and muscle morp. J Cell Biol 98:1926–1036

    Google Scholar 

  • Chung AE, Freeman IL, Braginski JE (1977) A novel extracellular membrane elaborated by a mouse embryonal carcinoma-derived cell line. Biochem Biophys Res Commun 79:859–868

    Google Scholar 

  • Cleary EG, Gibson MA (1983) Elastin-associated microfibrils and microfibrillar proteins. Int Rev Connect Tissue Res 10:97–209

    Google Scholar 

  • Clement B, Grimaud JA, Campion JP, Deugnier Y, Guillouzo A (1986) Cell types involved in collagen and fibronectin production in normal and fibrotic human liver. Hepatology 6:225–234

    Google Scholar 

  • Courtoy PJ, Boyles J (1983) Fibronectin in the microvasculature: localization in the pericyte-endothelial interstitium. J Ultrastruct Res 83:258–273

    Google Scholar 

  • Courtoy PJ, Kanwar YS, Hynes RO, Farquhar MG (1980) Fibronectin localization in the rat glomerulus. J Cell Biol 87:691–696

    Google Scholar 

  • Courtoy PJ, Timpl R, Farquhar MG (1982) Comparative distribution of laminin, type IV collagen, and fibronectin in the rat glomerulus. J Histochem Cytochem 30:874–886

    Google Scholar 

  • Cunningham LW (1987a) Structural and contractile proteins. Part E. Extracellular matrix. Methods Enzymol 145

  • Cunningham LW (1987b) Structural and contractile proteins. Part D. Extracellular matrix. Methods Enzymol 144

  • Damiano VV, Tsang A, Christner P, Rosenbloom J, Weinbaum G (1979) Immunologic localization of elastin by electron microscopy. Am J Pathol 96:439–455

    Google Scholar 

  • D'Ardenne AJ, Burns J, Sykes BC, Kirkpatrick P (1983) Comparative distribution of fibronectin and type III collagen in normal human tissues. J Pathol 141:55–69

    Google Scholar 

  • D'Ardenne AJ, Kirkpatrick P, Sykes BC (1984) Distribution of laminin, fibronectin, and interstitial collagen type III in soft tissue tumours. J Clin Pathol 37:895–904

    Google Scholar 

  • Ekblom P, Miettinen M, Rapola J, Foidart JM (1982) Demonstration of laminin, a basement membrane glycoprotein, in routinely processed formalin-fixed human tissues. Histochemistry 75:301–307

    Google Scholar 

  • Engel J, Furthmayr H, Odermatt E, Mark H von der, Aumailley M, Fleischmajer R, Timpl R (1985) Structure and macromolecular organization of type VI collagen. Ann NY Acad Sci 460:25–37

    Google Scholar 

  • Engvall E, Ruoslahti E (1977) Binding of soluble form of fibroblast surface protein, fibronectin, to collagen. Int J Cancer 20:1–5

    Google Scholar 

  • Engvall E, Krusius T, Wewer U, Ruoslahti E (1983) Laminin from rat yolk sac tumor: isolation, partial characterization, and comparison with mouse laminin. Arch Biochem Biophys 222:649–656

    Google Scholar 

  • Engvall E, Earwicker D, Haaparanta T, Ruoslahti E, Sanes JR (1990) Distribution and isolation of four laminin variants; tissue restricted distribution of heterotrimers assembled from five different subunits. Cell Regulation 1:731–740

    Google Scholar 

  • Erickson HP, Iglesias JL (1984) A six armed oligomer isolated from cell surface fibronectin preparations. Nature 311:267–269

    Google Scholar 

  • Eyken P van, Sciot R, Desmet V (1990) Expression of the novel extracellular matrix component tenascin in normal and diseased human liver. J Hepatology 11:43–52

    Google Scholar 

  • Fleischmajer R (1986) Collagen fibrillogenesis: a mechanism of structural biology. J Invest Dermatol 87:553–554

    Google Scholar 

  • Fleischmajer R, Timpl R (1984) Ultrastructural localization of fibronectin to different anatomic structures of human skin. J Histochem Cytochem 32:315–321

    Google Scholar 

  • Fleischmajer R, Timpl R, Tudermann L (1981) Ultrastructural identification of extension amino propeptides of types I and III collagens in human skin. Proc Natl Acad Sci USA 78:7360–7364

    Google Scholar 

  • Fleischmajer R, Perlish JS, Timpl R (1985) Collagen fibrillogenesis in human skin. Ann N Y Acad Sci 460:246–257

    Google Scholar 

  • Furthmayr H, Wiedemann H, Timpl R, Odermatt E, Engel J (1983) Electron-microscopical approach to a structural model of intima collagen. Biochem J 211:303–311

    Google Scholar 

  • Gibson MA, Cleary EG (1985) CL glycoprotein is the tissue form of type VI collagen. J Biol Chem 260:11149–11159

    Google Scholar 

  • Gil J, Martinez-Hernandez A (1984) The connective tissue of the rat lung: electron immunohistochemical studies. J Histochem Cytochem 32:230–238

    Google Scholar 

  • Gosline MJ, Rosenbloom J (1984) Elastin. In: Piez KA, Reddi AH (eds) Extracellular matrix biochemistry. Elsevier, New York, pp 191–228

    Google Scholar 

  • Grant DS, Kleinman HK, Leblond CP, Inoue S, Chung AE, Martin GR (1985) The basement-membrane-like matrix of the mouse EHS tumor: II. Immunohistochemical quantitation of six of its components. Am J Anat 174:387–398

    Google Scholar 

  • Grimaud JA, Druguet M, Peyrol S, Chevalier O, Herbage D, El Badrawy N (1980) Collagen immunotyping in human liver: light and electron microscope study. J Histochem Cytochem 28:1145–1156

    Google Scholar 

  • Hahn E, Wick G, Pencev D, Timpl R (1980) Distribution of basement membrane proteins in normal and fibrotic human liver: collagen type IV, laminin, and fibronectin. Gut 21:63–71

    Google Scholar 

  • Haralson MA, Federspiel SJ, Martinez-Hernandez A, Rhodes RK, Miller EJ (1985) Synthesis of [pro alpha 1(IV)]3 collagen molecules by cultured embryo-derived parietal yolk sac cells. Biochemistry 24:5792–5797

    Google Scholar 

  • Hauscha PV, Lian JB, Gallop PM (1975) Direct identification of the calcium binding amino-acid b-carboxyglutamate in mineral tiss. Proc Natl Acad Sci USA 72:3925–3929

    Google Scholar 

  • Heinegard D, Paulsson M (1984) Structure and metabolism of proteoglycans. In: Piez KA, Reddi AH (eds) Extracellular matrix biochemistry. Elsevier, New York, pp 277–322

    Google Scholar 

  • Hessle H, Engvall E (1984) Type VI collagen. Studies on its localization, structure, and biosynthetic form with monoclonal antibodies. J Biol Chem 259:3955–3961

    Google Scholar 

  • Horiguchi Y, Couchman JR, Ljubimov AV, Vasiliev JM, Yamasaki H, Fine JD (1988) Organ specificity, ontogeny, and ultrastructural localization of the core protein of heparan sulfate proteoglycan, a component of human skin basement membrane. J Invest Dermatol 90:570

    Google Scholar 

  • Horiguchi Y, Fine JD, Ljubimov AV, Yamasaki H, Couchman JR (1989) Entactin: ultrastructural localization of an ubiquitous basement membrane glycoprotein in mouse skin. Arch Dermatol Res 281:427–432

    Google Scholar 

  • Hynes RO, Yamada KM (1982) Fibronectins: multifunctional modular glycoproteins. J Cell Biol 95:369–376

    Google Scholar 

  • Hynes RO, Schwarzbauer JE, Tamkun JW (1984) Fibronectin: a versatile gene for a versatile protein. Ciba Found Symp 108:75–92

    Google Scholar 

  • Iozzo RV (1984) Biosynthesis of heparan sulfate proteoglycan by human colon carcinoma cells and its localization at the cell surface. J Cell Biol 99:403–417

    Google Scholar 

  • Jander R, Rauteberg J, Glanville RW (1983) Further characterization of the three polypeptide chains of bovine and human short-chain collagen (intima collagen). Eur J Biochem 133:39

    Google Scholar 

  • Karkavelas G, Kefalides NA, Amenta PS, Martinez-Hernandez A (1988) Comparative ultrastructural localization of collagen types III, IV, VI, and laminin in rat uterus and kidney. J Ultrastruct Mol Struct Res 100:137–155

    Google Scholar 

  • Keene DR, Sakai LY, Bachinger HP, Burgeson RE (1987) Type III collagen can be present on banded collagen fibrils regardless of fibril diameter. J Cell Biol 105:2393–2402

    Google Scholar 

  • Kefalides NA (1971) Isolation of collagen from basement membrane containing three identical alpha chains. Biochem Biophys Res Commun 45:226–234

    Google Scholar 

  • Kefalides NA, Alper R, Clark CC (1979) Biochemistry and metabolism of basement membranes. Int Rev Cytol 61:167–228

    Google Scholar 

  • Kleinman HK, Cannon FB, Laurie GW, Hassell JR, Aumailley M, Terranova VP, Martin GR, Dubois Dalcq M (1985) Biological activities of laminin. J Cell Biochem 27:317–325

    Google Scholar 

  • Kleppel MM, Michael AF, Fish AJ (1986) Comparison of non-collagenous type IV collagen components in the human glomerulus and EHS tumor. Biochim Biophys Acta 883:178–189

    Google Scholar 

  • Konomi H, Hori H, Sano J, Sunada H, Hata R, Fujiwara S, Nagai Y (1981) Immunohistochemical localization of type I, II, III, and IV collagens in the lung. Acta Pathol Jpn 31:601–610

    Google Scholar 

  • Konomi H, Hayashi T, Nakayasu K, Arima M (1984) Localization of type V collagen and type IV collagen in human cornea, lung, and skin. Immunohistochemical evidence by anti-collagen antibodies characterized by immunoelectroblotting. Am J Pathol 116:417–426

    Google Scholar 

  • Kornblihtt AR, Vibe PK, Baralle FE (1984) Human fibronectin: cell specific alternative mRNA splicing generates polypeptide chains differing in the number of internal repeats. Nucleic Acids Res 12:5853–5868

    Google Scholar 

  • Kornblihtt AR, Umezawa K, Vibe Pedersen K, Baralle FE (1985) Primary structure of human fibronectin: differential splicing may generate at least 10 polypeptides from a single gene. EMBO J 4:1755–1759

    Google Scholar 

  • Kuehn K, Schoene HH, Timpl R (1982) In: New trends in basement membrane research. Raven Press, New York

    Google Scholar 

  • Kurkinen M, Vaheri A, Roberts PJ, Stenman S (1980) Sequential appearance of fibronectin and collagen in experimental granulation tissue. Lab Invest 43:47–51

    Google Scholar 

  • Laurie GW, Leblond CP, Inoue S, Martin GR, Chung AE (1984) Fine structure of the glomerular basement membrane and immunolocalization of five basement membrane components to the lamina densa (basal lamina) and its extensions in both glomeruli and tubules of the rat kidney. Am J Anat 169:463–481

    Google Scholar 

  • Lee PA, Blasey K, Goldstein IJ, Pierce GB (1969) Basement membrane: carbohydrates and x-ray diffraction. Exp Mol Pathol 10:323–330

    Google Scholar 

  • Linder E, Vaheri A, Ruoslahti E, Wartiovaara J (1975) Distribution of fibroblast surface antigen in the developing chick embryo. J Exp Med 142:41–49

    Google Scholar 

  • Linder E, Stenman S, Lehto VP, Vaheri A (1978) Distribution of fibronectin in human tissues and relationship to other connective tissue components. Ann N Y Acad Sci 20:151–159

    Google Scholar 

  • Linsenmayer TF (1981) Collagen. In: Hay ED (ed) Cell biology of extracellular matrix. Plenum Press, New York, pp 5–37

    Google Scholar 

  • Linsenmayer TF, Fitch JM, Schmid TM, Zak NB, Gibney E, Sanderson RD, Mayne R (1983) Monoclonal antibodies against chicken type V collagen: production, specificity, and use for immunocytochemical localization in embryonic cornea and other organs. J Cell Biol 96:124–132

    Google Scholar 

  • Mackie EJ, Thesleff I, Chiquet Ehrismann R (1987) Tenascin is associated with chondrogenic and osteogenic differentiation in vivo and promotes chondrogenesis in vitro. J Cell Biol 105:2569–2579

    Google Scholar 

  • Madri JA, Furthmayr H (1979) Isolation and tissue localization of type AB2 collagen from normal lung parenchyma. Am J Pathol 94:323–331

    Google Scholar 

  • Mark H von der, Aumailley M, Wick G, Fleischmajer R, Timpl R (1984) Immunochemistry, genuine size and tissue localization of collagen VI. Eur J Biochem 142:493–502

    Google Scholar 

  • Mark H von der, Kuhl U (1985) Laminin and its receptor. Biochim Biophys Acta 823:147–160

    Google Scholar 

  • Mark H von der, Ocalan M (1982) Immunofluorescent localization of type V collagen in the chick embryo with monoclonal antibodies. Coll Relat Res 2:541–555

    Google Scholar 

  • Martin GR, Timpl R (1987) Laminin and other basement membrane components. Annu Rev Cell Biol 3:57–85

    Google Scholar 

  • Martinez-Hernandez A (1978) The basement membrane pores. In: Kefalides NA (ed) Biology and chemistry of basement membranes. Academic Press, New York, pp 180–198

    Google Scholar 

  • Martinez-Hernandez A (1984) The hepatic extracellular matrix. I. Electron immunohistochemical studies in normal rat liver. Lab Invest 51:57–74

    Google Scholar 

  • Martinez-Hernandez A (1985a) The hepatic extracellular matrix. II. Electron immunohistochemical studies in rats with CCl4-induced cirrhosis. Lab Invest 53:166–186

    Google Scholar 

  • Martinez-Hernandez A (1985b) Formation of basement membranes in te cirrhotic liver. Electron immunohistochemical studies. In: Shibata S (ed) Basement membranes. Elsevier, Amsterdam, pp 205–216

    Google Scholar 

  • Martinez-Hernandez A (1987) Electron immunohistochemistry of the extracellular matrix. In: Cunningham LW (ed) Methods in enzymology. Structural and contractile proteins: extracellular matrix. Academic Press, New York, p 145

    Google Scholar 

  • Martinez-Hernandez A, Amenta PS (1983) The basement membrane in pathology. Lab Invest 48:656–677

    Google Scholar 

  • Martinez-Hernandez A, Chung AE (1984) The ultrastructural localization of two basement membrane components: entactin and laminin in rat tissues. J Histochem Cytochem 32:289–298

    Google Scholar 

  • Martinez-Hernandez A, Marsh CA, Clark CC, Macarak EJ, Brownell AG (1981 a) Fibronectin: its relationship to basement membranes. II. Ultrastructural studies in rat kidney. Coll Relat Res 1:405–418

    Google Scholar 

  • Martinez-Hernandez A, Marsh CA, Horn JF, Munoz E (1981b) Glomerular basement membrane: lamina rara, lamina densa. Renal Physiol 4:137–144

    Google Scholar 

  • Martinez-Hernandez A, Gay S, Miller EJ (1982 a) Ultrastructural localization of type V collagen in rat kidney. J Cell Biol 92:343–349

    Google Scholar 

  • Martinez-Hernandez A, Miller EJ, Damjanov I, Gay S (1982b) Laminin-secreting yolk sac carcinoma of the rat. Biochemical and electron immunohistochemical studies. Lab Invest 47:247–257

    Google Scholar 

  • Martinez-Hernandez A, Martinez Delgado F, Amenta PS (1991) The extracellular matrix in hepatic regeneration: localization of collagen types I, III, IV, laminin, and fibronectin. Lab Invest 64:157–166

    Google Scholar 

  • Mason IJ, Taylor A, Williams JG, Sage H, Hagan BLM (1986) Evidence from molecular cloning that SPARC, a major product of mouse embryo parietal endoderm is related to an endothelial cell ‘culture shock’ glycoprotein of Mr 43,000. EMBO J 5:1465–1472

    Google Scholar 

  • Miller EJ, Gay S, Haralson MA, Martinez-Hernandez A, Rhodes RK (1982) Chemistry and biology of the type V collagen system. In: Kuehn K, Schoene HH, Timpl R (eds) New trends in basement membrane research. Raven Press, New York, pp 99–105

    Google Scholar 

  • Miyakawa H, Iida S, Leo MA, Greenstein RJ, Zimmon DS, Lieber CS (1985) Pathogenesis of precirrhotic portal hypertension in alcohol-fed baboons. Gastroenterology 88:143–150

    Google Scholar 

  • Mynderse LA, Hassell JR, Kleinman HK, Martin GR, Martinez-Hernandez A (1983) Loss of heparan sulfate proteoglycan from glomerular basement membrane of nephrotic rats. Lab Invest 48:292–302

    Google Scholar 

  • Odermatt E, Tamkun JW, Hynes RO (1985) Repeating modular structure of the fibronectin gene: relationship to protein structure and subunit variation. Proc Natl Acad Sci USA 82:6571–6575

    Google Scholar 

  • Ogawa K, Oguchi M, Yamabe H, Nakashima Y, Hamashima Y (1986) Distribution of collagen type IV in soft tissue tumors. An immunohistochemical study. Cancer 58:269–277

    Google Scholar 

  • Oh E, Pierschbacher MD, Ruoslahti E (1981) Deposition of plasma fibronectin in tissues. Proc Natl Acad Sci USA 78:3218–3221

    Google Scholar 

  • Ohno M, Martinez-Hernandez A, Ohno N, Kefalides NA (1983) Isolation of laminin from human placental basement membranes: amnion, chorion and chorionic microvessels. Biochem Biophys Res Commun 112:1091–1098

    Google Scholar 

  • Ohno M, Martinez-Hernandez A, Ohno N, Kefalides NA (1985) Comparative study of laminin found in normal placental membrane with laminin of neoplastic origin. In: Shibata S (ed) Basement membranes. Elsevier, Amsterdam, pp 3–12

    Google Scholar 

  • Oldberg A, Ruoslahti E (1986) Evolution of the fibronectin gene. Exon structure of cell attachment domain. J Biol Chem 261:2113–2116

    Google Scholar 

  • Oldberg A, Frazen A, Heinegard D (1986) Cloning and sequence analysis of rat bone sialoprotein (osteopontin) CDNA reveals an Arg-Gly-Asp cell-binding sequence. Proc Natl Acad Sci USA 83:8819–8823

    Google Scholar 

  • Paul JI, Schwarzbauer JE, Tamkun JW, Hynes RO (1986) Cell-type-specific fibronectin subunits generated by alternative splicing. J Biol Chem 261:12258–12265

    Google Scholar 

  • Peltonen J, Jaakkola S, Hsiao LL, Timpl R, Chu ML, Uitto J (1990) Type VI collagen: in situ hybridizations and immunhistochemistry reveal abundant mRNA and protein levels in human neurofibroma, Schwannoma and normal peripheral nerve tissues. Lab Invest 62:487–492

    Google Scholar 

  • Pierce GB, Nakane PK (1967) Antigens of epithelial basement membranes of mouse, rat, and man. A study utilizing enzyme-labeled antibody. Lab Invest 17:499–514

    Google Scholar 

  • Pierce GB, Nakane PK (1969) Basement membranes. Synthesis and deposition in response to cellular injury. Lab Invest 21:27–41

    Google Scholar 

  • Popper H, Udenfriend S (1970) Hepatic fibrosis. Correlation of biochemical and morphologic investigations. Am J Med 49:707–721

    Google Scholar 

  • Ramadori G, Schwogler S, Veit Th, Rieder H, Chiquet-Ehrisman R, Mackie EJ, Meyer zum Buschenfelde K-H (1991) Tenascin gene expression in rat liver and rat liver cells. Virchows Arch[B] 60:145–153

    Google Scholar 

  • Reid LM, Jefferson DM (1984) Culturing hepatocytes and other differentiated cells. Hepatology 4:548–559

    Google Scholar 

  • Rojkind M, Kershenobich D (1986) Extracellular matrix, fibrosis and cirrhosis. In: Arias IM, Frenkel M, Wilson JHP (eds) The liver annual/5. Elsevier, New York, pp 210–224

    Google Scholar 

  • Rojkind M, Martinez-Palomo A (1976) An increase in type I and type III collagens in human alcoholic liver cirrhosis. Proc Natl Acad Sci USA 73:539–544

    Google Scholar 

  • Rojkind M, Ponce-Noyola P (1983) The extracellular matrix of the liver. Coll Relat Res 3:335–349

    Google Scholar 

  • Rojkind M, Gatmaitan Z, Mackensen S, Giambrone M-A, Ponce P, Reid LM (1980) Connective tissue biomatrix: its isolation and utilization for long-term cultures of normal hepatocytes. J Cell Biol 87:255–263

    Google Scholar 

  • Rojkind M, Rojkind MH, Cordero Hernandez J (1983) In vivo collagen synthesis and deposition in fibrotic and regenerating rat livers. Coll Relat Res 3:335–347

    Google Scholar 

  • Rosenkrans WA Jr, Albright JT, Hausman RE, Penney DP (1983 a) Ultrastructural immunocytochemical localization of fibronectin in the developing rat lung. Cell Tissue Res 234:165–177

    Google Scholar 

  • Rosenkrans WA Jr, Albright JT, Hausman RE, Penney DP (1983 b) Light-microscopic immunocytochemical localization of fibronectin in the developing rat lung. Cell Tissue Res 233:113–123

    Google Scholar 

  • Ruoslahti E (1988) Structure and biology of proteoglycans. Ann Rev Cell Biol 4:229–255

    Google Scholar 

  • Ruoslahti E, Hayman EG, Kuusela P, Shively JE, Engvall E (1979) Isolation of a tryptic fragment containing the collagen-binding site of plasma fibronectin. J Biol Chem 254:6054–6059

    Google Scholar 

  • Ruoslahti E, Engvall E, Hayman E (1981) Fibronectin: current concepts of its structure and functions. Coll Relat Res 1:85–128

    Google Scholar 

  • Ruoslahti E, Pierschbacher MD, Engvall E, Oldberg A, Hayman EG (1982) Molecular and biological interactions of fibronectin. J Invest Dermatol 79:65s-68s

    Google Scholar 

  • Sakai LY, Keene DR, Engvall E (1986) Fibrillin, a new 350-kD glycoprotein, is a component of extracellular microfibrils. J Cell Biol 103:2499–2509

    Google Scholar 

  • Sandberg LB, Soskel NT, Leslie JG (1981) Elastin structure, biosynthesis, and relation to disease states. N Engl J Med 304:566–579

    Google Scholar 

  • Schuetz EG, Li D, Omiecinski CJ, Muller Eberhard U, Kleinman HK, Elswick B, Guzelian PS (1988) Regulation of gene expression in adult rat hepatocytes cultured on a basement membrane matrix. J Cell Physiol 134:309–323

    Google Scholar 

  • Schulz A, Jundt G, Berghauser KH, Gehron Robey P, Termine JD (1988) Immunohistochemical study of osteonectin in various types of osteosarcoma. Am J Pathol 132:345–355

    Google Scholar 

  • Schuppan D (1990) Structure of the extracellular matrix in normal and fibrotic liver: collagens and glycoproteins. Semin Liver Dis 10:1–10

    Google Scholar 

  • Schuppan D, Becker J, Boehm H, Hahn EG (1986) Immunofluorescent localization of type-V collagen as a fibrillar component of the interstitial connective tissue of human oral mucosa, artery and liver. Cell Tissue Res 243:535–543

    Google Scholar 

  • Sell S, Ruoslahti E (1982) Expression of fibronectin and laminin in the rat liver after partial hepatectomy, during carcinogenesis, and in transplantable hepatocellular carcinomas. J Natl Cancer Inst 69:1005–1014

    Google Scholar 

  • Seyer JM (1980) Interstitial collagen polymorphism in rat liver with CCl4-induced cirrhosis. Biochim Biophys Acta 629:490–498

    Google Scholar 

  • Seyer JM, Hutcheson ET, Kang AH (1977) Collagen polymorphism in normal and cirrhotic human liver. J Clin Invest 59:241–248

    Google Scholar 

  • Simionescu N, Simionescu M (1988) The cardiovascular system. In: Weiss L (ed) Cell and tissue biology. Urban and Schwarzenberg, Baltimore, pp 355–400

    Google Scholar 

  • Stenman S, Vaheri A (1978) Distribution of a major connective tissue protein, fibronectin, in normal human tissues. J Exp Med 147:1054–1064

    Google Scholar 

  • Stow JL, Kjellen L, Unger E, Hook M, Farquhar MG (1985a) Heparan sulfate proteoglycans are concentrated on the sinusoidal plasmalemmal domain and in intracellular organelles of hepatocytes. J Cell Biol 100:975–980

    Google Scholar 

  • Stow JL, Sawada H, Farquhar MG (1985b) Basement membrane heparan sulfate proteoglycans are concentrated in the laminae rarae and in podocytes of the rat renal glomerulus. Proc Natl Acad Sci USA 82:3296–3300

    Google Scholar 

  • Tamkun JW, Schwarzbauer JE, Hynes RO (1984) A single rat fibronectin gene generates three different mRNAs by alternative splicing of a complex exon. Proc Natl Acad Sci USA 81:5140–5144

    Google Scholar 

  • Termine JD, Kleinman HK, Whitson SW, Conn KM, McGarvey ML, Martin GR (1981) Osteonectin, a bone specific protein linking mineral to collagen. Cell 26:99–105

    Google Scholar 

  • Timpl R, Dziadek M (1986) Structure, development, and molecular pathology of basement membranes. Int Rev Exp Pathol 29:1–112

    Google Scholar 

  • Timpl R, Bruckner P, Martin GR (1977) Basement membrane collagen. Curr Probl Clin Biochem 8:20–28

    Google Scholar 

  • Timpl R, Martin GR, Bruckner P, Wick G, Wiedemann H (1978) Nature of the collagenous protein in a tumor basement membrane. Eur J Biochem 84:43–52

    Google Scholar 

  • Timpl R, Rohde H, Robey PG, Rennard SI, Foidart JM, Martin GR (1979) Laminin —a glycoprotein from basement membranes. J Biol Chem 254:9933–9937

    Google Scholar 

  • Timpl R, Oberbaumer I, Mark H von der, Bode W, Wick G, Weber S, Engel J (1985) Structure and biology of the globular domain of basement membrane type IV collagen. Ann N Y Acad Sci 460:58–72

    Google Scholar 

  • Torikata C, Villiger B, Kuhn C, McDonald JA (1985) Ultrastructural distribution of fibronectin in normal and fibrotic human lung. Lab Invest 52:399–408

    Google Scholar 

  • Trueb B, Bornstein P (1984) Characterization of the precursor form of type VI collagen. J Biol Chem 259:8597–8604

    Google Scholar 

  • Wan YJ, Wu TC, Chung AE, Damjanov I (1984) Monoclonal antibodies to laminin reveal the heterogeneity of basement membranes in the developing and adult mouse tissues. J Cell Biol 98:971–979

    Google Scholar 

  • Wartiovaara J, Leivo I, Vaheri A (1979) Expression of the cell surface-associated glycoprotein, fibronectin, in the early mouse embryo. Dev Biol 69:247–257

    Google Scholar 

  • Wewer UM, Engvall E, Paulsson M, Yamada Y, Albrechtsen R (1992) Laminin A, B1, B2, S and M subunits in the postnatal rat liver development and after partial hepatectoma. Lab Invest 66:378–389

    Google Scholar 

  • Williams IF, McCullagh KG, Silver IA (1984) The distribution of types I and III collagen and fibronectin in the healing equine tendon. Connect Tissue Res 12:211–227

    Google Scholar 

  • Yamada KM (1981) Fibronectin and other structural glycoproteins. In: Hay ED (ed) Cell biology of extracellular matrix. Plenum Press, New York, pp 95–123

    Google Scholar 

  • Yurchenco PD, Ruben GC (1987) Basement membrane structure in situ: evidence for lateral associations in the type IV coll. J Cell Biol 105:2559–2568

    Google Scholar 

  • Yurchenco PD, Ruben GC (1988) Type IV collagen lateral associations in the EHS tumor matrix: comparison with amniotic and in vitro networks. Am J Pathol 132:278–291

    Google Scholar 

  • Yurchenco PD, Schittny JC (1990) Molecular architecture of basement membranes. FASEB J 4:1577–1590

    Google Scholar 

  • Zimmermann DR, Trueb B, Winterhalter KH, Witmer R, Fischer RW (1986) Type VI collagen is a major component of the human cornea. FEBS Lett 197:55–58

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Parts of this editorial have been adapted from: A Martinez-Hernandez, PS Amenta. Morphology, localization and origin of the hepatic extracellular matrix. In: Zern MA, Reid L (eds) Extracellular matrix: chemistry, biology, and pathology with emphasis on the liver. Marcel Dekker, New York (in press)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martinez-Hernandez, A., Amenta, P.S. The hepatic extracellular matrix. Vichows Archiv A Pathol Anat 423, 1–11 (1993). https://doi.org/10.1007/BF01606425

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01606425

Key words

Navigation