Skip to main content
Log in

Identification of novel QTL for black tea quality traits and drought tolerance in tea plants (Camellia sinensis)

  • Original Article
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

Tea (Camellia sinensis) contains polyphenols and caffeine which have been found to be of popular interest in tea quality. Tea production relies on well-distributed rainfall which influence tea quality. Phenotypic data for two segregating tea populations TRFK St 504 and TRFK St 524 were collected and used to identify the quantitative trait loci (QTL) influencing tea biochemical and drought stress traits based on a consensus genetic map constructed using the DArTseq platform. The populations comprised 261 F1 clonal progeny. The map consisted of 15 linkage groups which corresponds to chromosome haploid number of tea plant (2n = 2× = 30) and spanned 1260.1 cM with a mean interval of 1.1 cM between markers. A total of 16 phenotypic traits were assessed in the two populations. Both interval and multiple QTL mapping revealed a total of 47 putative QTL in the 15 LGs associated with tea quality and percent relative water content at a significant genome-wide threshold of 5%. In total, six caffeine QTL, 25 catechins QTL, three theaflavins QTL, nine QTL for tea taster score, and three QTL for percent relative water contents were detected. Out of these 47 QTL, 19 QTL were identified for ten traits in three main regions on LG01, LG02, LG04, LG12, LG13, and LG14. The QTL associated with caffeine, individual catechins, and theaflavins were clustered mostly in LG02 and LG04 but in different regions on the map. The explained variance by each QTL in the population ranged from 5.5 to 56.6%, with an average of 9.9%. Identification of QTL that are tightly linked to markers associated with black tea quality coupled with UPLC assay may greatly accelerate development of novel tea cultivars owing to its amenability at seedling stage. In addition, validated molecular markers will contribute greatly to adoption of marker-assisted selection (MAS) for drought tolerance and tea quality improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

DArT:

Diversity Arrays Technology

MAS:

Marker-assisted selection

QTL:

Quantitative trait loci

LOD:

Logarithm of odds

LGs:

Linkage groups

UPLC:

Ultra-performance liquid chromatography

CAFF:

Caffeine

CAT:

(+)-Catechin

EC:

(−)-Epicatechin

ECG:

(−)-Epicatechin gallate

EGC:

(−)-Epigallocatechin

EGCG:

(−)-Epigallocatechin gallate

TF1:

Simple theaflavin

TF2:

Theaflavin -3-monogallate

TF3:

Theaflavin-3′-monogallate

TF4:

Theaflavin-3, 3′-digallate

CL:

Liquor color

BRT:

Liquor brightness

AST:

Astringency

BRK:

Liquor briskness

AR:

Liquor aroma

RWC:

Relative water content

St:

Stock

TRFK:

Tea Research Foundation of Kenya

References

  • Adkins NL, Hall JA, Georgel PT (2007) The use of quantitative agarose gel electrophoresis for rapid analysis of the integrity of protein-DNA complexes. J Biochem Biophys Methods 70(5):721–726. https://doi.org/10.1016/j.jbbm.2007.03.006

    Article  CAS  PubMed  Google Scholar 

  • AFFA (2013) Tea market development in Kenya. Nairobi: Agriculture, Fisheries and FoodAuthority.

  • Ananingsih VK, Sharma A, Zhou W (2013) Green tea catechins during food processing and storage: a review on stability and detection. Food Res Int 50(2):469–479. https://doi.org/10.1016/j.foodres.2011.03.004

    Article  CAS  Google Scholar 

  • Anon (2002) Tea growers handbook, 5th edn. Tea Research Foundation of Kenya, Kericho

  • Bali S, Mamgain A, Raina SN, Yadava SK, Bhat V, Das S, Pradhan AK, Goel S (2015) Construction of a genetic linkage map and mapping of drought tolerance trait in Indian beveragial tea. Mol Breed 35:1–20

    Article  CAS  Google Scholar 

  • Banerjee B (1992) Botanical classification of tea. In: Willson KC, Clifford MN (eds) Tea: cultivation to consumption. Chapman and Hall, London, pp 25–51. https://doi.org/10.1007/978-94-011-2326-6_2

    Chapter  Google Scholar 

  • Chen L, Zhou ZX, Yang YJ (2007) Genetic improvement and breeding of tea plant (Camellia sinensis) in China: from individual selection to hybridization and molecular breeding. Euphytica 154(1-2):239–248. https://doi.org/10.1007/s10681-006-9292-3

    Article  CAS  Google Scholar 

  • Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 138(3):963–971

    CAS  PubMed  PubMed Central  Google Scholar 

  • da Silva Pinto M (2013) Tea: a new perspective on health benefits. Food Res Int 53:558–567

    Article  Google Scholar 

  • Doerge RW (2002) Mapping and analysis of quantitative trait loci in experimental populations. Nat Rev Genet 3(1):43–52. https://doi.org/10.1038/nrg703

    Article  CAS  PubMed  Google Scholar 

  • Ellis R, Nyirenda H (1995) A successful plant improvement programme on tea (Camellia sinensis). J Exp Agric 31(03):307–323. https://doi.org/10.1017/S0014479700025485

    Article  Google Scholar 

  • FAO (2015) Kenya’s tea sector under climate change: An impact assessment and formulation of a climate smart strategy, by Elbehri A., B. Cheserek, A. Azapagic, D. Raes, M. Mwale, J. Nyengena, P. Kiprono, and C. Ambasa. Rome, Italy

  • Gawal N, Jarret R (1991) A modified CTAB DNA extraction procedure for Musa and Ipomea. Plant Mol Biol Rep 9(3):262–266. https://doi.org/10.1007/BF02672076

    Article  Google Scholar 

  • Gupta PK, Rustgi S, Mir RR (2013) Array-based high-throughput DNA markers and genotyping platforms for cereal genetics and genomics. In: Gupta PK and Varsheny RK (eds) Cereal genomics II. Springer, Netherlands, p 11–55

  • Hackett CA, Wachira FN, Paul S, Powell W, Waugh R (2000) Construction of a genetic linkage map for Camellia sinensis (tea). Heredity 85(4):346–355. https://doi.org/10.1046/j.1365-2540.2000.00769.x

    Article  CAS  PubMed  Google Scholar 

  • Hu CY, Lee TC, Tsai HT, Tsai YZ, Lin SF (2013) Construction of an integrated genetic map based on maternal and paternal lineages of tea (Camellia sinensis). Euphytica 191(1):141–152. https://doi.org/10.1007/s10681-013-0908-0

    Article  Google Scholar 

  • Huang F, Liang Y, Lu J, Chen R (2006) Genetic mapping of first generation of backcross in tea by RAPD and ISSR markers. J Tea Sci 26:171–176

    Google Scholar 

  • ISO14502-2 (2005) Determination of substances characteristic of green and black tea-part 2: content of catechins in green tea- method using high-performance liquid chromatography. International Organization for Standardization, Geneva

    Google Scholar 

  • Jaccoud D, Peng K, Feinstein D, Kilian A (2001) Diversity arrays: a solid state technology for sequence information independent genotyping. Nucleic Acids Res 29(4):e25. https://doi.org/10.1093/nar/29.4.e25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kamunya S, Wachira F, Pathak R, Muoki R, Wanyoko J, Ronno W, Sharma R (2009) Quantitative genetic parameters in tea (Camellia sinensis (L.) O. Kuntze), I: combining abilities for yield, drought tolerance and quality traits. Afr J Plant Sci 3:093–101

    Google Scholar 

  • Kamunya S, Wachira F, Pathak R, Korir R, Sharma V, Kumar R, Bhardwaj P, Chalo R, Ahuja P, Sharma R (2010) Genomic mapping and testing for quantitative trait loci in tea (Camellia sinensis (L.) O. Kuntze). Tree Genet Genomes 6:915–929

    Article  Google Scholar 

  • Karori S, Wachira F, Ngure R, Mireji P (2014) Polyphenolic composition and antioxidant activity of Kenyan tea cultivars. J Pharmacogn Phytochem 3:105–116

    Google Scholar 

  • Kenya National Bureau of Statistics (2012) Kenya facts and Fig.s 2012. Kenya

  • Khan N, Mukhtar H (2007) Tea polyphenols for health promotion. Life Sci 81(7):519–533. https://doi.org/10.1016/j.lfs.2007.06.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kobayashi-Hattori K, Mogi A, Matsumoto Y, Takita T (2005) Effect of caffeine on the body fat and lipid metabolism of rats fed on a high-fat diet. Biosci Biotechnol Biochem 69(11):2219–2223. https://doi.org/10.1271/bbb.69.2219

    Article  CAS  PubMed  Google Scholar 

  • Lin SD, Mau JL, Hsu CA (2012) Bioactive components and antioxidant properties of γ-aminobutyric acid (GABA) tea leaves. LWT-Food Sci Technol 46(1):64–70. https://doi.org/10.1016/j.lwt.2011.10.025

    Article  CAS  Google Scholar 

  • Liu X, Tang L, Wu H, Xi W, Yu J, Zhou Z (2016) Development of DArT markers and evaluation of phylogenetic relationship of key citrus species. Genet Resour Crop Evol 63(8):1307–1318. https://doi.org/10.1007/s10722-015-0319-2

    Article  Google Scholar 

  • Ma JQ, Yao MZ, Ma CL, Wang XC, Jin JQ, Wang XM, Chen L (2014) Construction of a SSR-based genetic map and identification of QTL for catechins content in tea plant (Camellia sinensis). PLoS One 9(3):e93131. https://doi.org/10.1371/journal.pone.0093131

    Article  PubMed  PubMed Central  Google Scholar 

  • Ma JQ, Huang L, Ma CL, Jin JQ, Li CF, Wang RK, Zheng HK, Yao MZ, Chen L (2015) Large-scale SNP discovery and genotyping for constructing a high-density genetic map of tea plant using specific-locus amplified fragment sequencing (SLAF-seq). PLoS One 10(6):e0128798. https://doi.org/10.1371/journal.pone.0128798

    Article  PubMed  PubMed Central  Google Scholar 

  • Malebe MP (2011) Method for screening plants for drought tolerance, Vol. Msc, University of Pretoria, Pretoria, South Africa

  • Meegahakumbura MK, Wambulwa MC, Thapa KK, Li MM, Möller M, Xu JC, Yang JB, Liu BY, Ranjitkar S, Liu J, Li DZ (2016) Indications for three independent domestication events for the tea plant (Camellia sinensis (L.) O. Kuntze) and new insights into the origin of tea germplasm in China and India revealed by nuclear microsatellites. PLoS One 11(5):e0155369. https://doi.org/10.1371/journal.pone.0155369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mondal TK, Bhattacharya A, Laxmikumaran M, Ahuja PS (2004) Recent advances of tea (Camellia sinensis) biotechnology. Plant Cell Tissue Organ Cult 76(3):195–254. https://doi.org/10.1023/B:TICU.0000009254.87882.71

    Article  CAS  Google Scholar 

  • Nitin SL, Islam M, O'Hare WT, Ali Z (2006) Discrimination of teas based on total luminescence spectroscopy and pattern recognition. J Sci Food Agr 86(13):2092–2098. https://doi.org/10.1002/jsfa.2578

    Article  Google Scholar 

  • Nyarukowa C, Koech R, Loots T, Apostolides Z (2016) SWAPDT: a method for short-time withering assessment of probability for drought tolerance in Camellia sinensis validated by targeted metabolomics. J Plant Physiol 198:39–48. https://doi.org/10.1016/j.jplph.2016.04.004

    Article  CAS  PubMed  Google Scholar 

  • Obanda M, Owuor PO, Taylor SJ (1997) Flavanol composition and caffeine content of green leaf as quality potential indicators of Kenyan black teas. J Sci Food Agr 74(2):209–215. https://doi.org/10.1002/(SICI)1097-0010(199706)74:2<209::AID-JSFA789>3.0.CO;2-4

  • Obanda M, Owuor PO, Mang'oka R (2001) Changes in the chemical and sensory quality parameters of black tea due to variations of fermentation time and temperature. Food Chem 75(4):395–404. https://doi.org/10.1016/S0308-8146(01)00223-0

    Article  CAS  Google Scholar 

  • Orel G, Wilson PG (2012) Camellia cherryana (Theaceae), a new species from China. Ann Bot Fenn 49(4):248–254. https://doi.org/10.5735/085.049.0405

    Article  Google Scholar 

  • Ota S, Tanaka J (1999) RAPD-based linkage mapping using F1 segregating populations derived from crossings between tea cultivar ‘Sayamakaori’and Strain ‘ana-Ck17’. Breed Res 1:16

    Google Scholar 

  • Owuor PO, Othieno CO (1991) Response of black tea quality to locality in stakeholder tea farms. Tea 12:41–45

    Google Scholar 

  • Owuor P, Obanda M, Apostolides Z, Wright L, Nyirenda H, Mphangwe N (2006a) The relationship between the chemical plain black tea quality parameters and black tea colour, brightness and sensory evaluation. Food Chem 97(4):644–653. https://doi.org/10.1016/j.foodchem.2005.04.027

    Article  Google Scholar 

  • Owuor PO, Obanda M, Nyirenda HE, Mphangwe NI, Wright LP, Apostolides Z (2006b) The relationship between some chemical parameters and sensory evaluations for plain black tea (Camellia sinensis) produced in Kenya and comparison with similar teas from Malawi and South Africa. Food Chem 97(4):644–653. https://doi.org/10.1016/j.foodchem.2005.04.027

    Article  Google Scholar 

  • Pang Y, Abeysinghe IBS, He J, He X, Huhman D, Mewan KM, Sumner LW, Yun J, Dixon RA (2013) Functional characterization of proanthocyanidin pathway enzymes from tea and their application for metabolic engineering. Plant Physiol 161(3):1103–1116. https://doi.org/10.1104/pp.112.212050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poland J, Endelman J, Dawson J, Rutkoski J, Wu S, Manes Y, Dreisigacker S, Crossa J, Sánchez-Villeda H, Sorrells M (2012) Genomic selection in wheat breeding using genotyping-by-sequencing. Plant Genome 5(3):103–113. https://doi.org/10.3835/plantgenome2012.06.0006

    Article  CAS  Google Scholar 

  • Preedy VR (2012) Tea in health and disease prevention. Academic Press, Cambridge

    Google Scholar 

  • Racedo J, Gutiérrez L, Perera MF, Ostengo S, Pardo EM, Cuenya MI, Welin B, Castagnaro AP (2016) Genome-wide association mapping of quantitative traits in a breeding population of sugarcane. BMC Plant Biol 16(1):142. https://doi.org/10.1186/s12870-016-0829-x

    Article  PubMed  PubMed Central  Google Scholar 

  • Sall J, Lehman A, Stephens ML, Creighton L (2012) JMP start statistics: a guide to statistics and data analysis using JMP, 6th edn. SAS Institute, Inc., Cary

  • Sánchez-Sevilla JF, Horvath A, Botella MA, Gaston A, Folta K, Kilian A, Denoyes B, Amaya I (2015) Diversity arrays technology (DArT) marker platforms for diversity analysis and linkage mapping in a complex crop, the octoploid cultivated strawberry (Fragaria× ananassa). PLoS One 10(12):e0144960. https://doi.org/10.1371/journal.pone.0144960

    Article  PubMed  PubMed Central  Google Scholar 

  • Sang S, Lambert JD, Ho CT, Yang CS (2011) The chemistry and biotransformation of tea constituents. Pharmacol Res 64(2):87–99. https://doi.org/10.1016/j.phrs.2011.02.007

    Article  CAS  PubMed  Google Scholar 

  • Sansaloni CP, Petroli CD, Carling J, Hudson CJ, Steane DA, Myburg AA, Grattapaglia D, Vaillancourt RE, Kilian A (2010) A high-density diversity arrays technology (DArT) microarray for genome-wide genotyping in eucalyptus. Plant Methods 6:1

    Article  Google Scholar 

  • Schouten HJ, van de Weg WE, Carling J, Khan SA, McKay SJ, van Kaauwen MP, Wittenberg AH, Koehorst-van Putten HJ, Noordijk Y, Gao Z (2012) Diversity arrays technology (DArT) markers in apple for genetic linkage maps. Mol Breed 29(3):645–660. https://doi.org/10.1007/s11032-011-9579-5

    Article  CAS  PubMed  Google Scholar 

  • Sedaghathoor S, Haghighat SR, Shokrgozar SA (2013) Storage period effects on the qualitative characteristics of scented tea. Int J Biosci 3(7):66–73

    Article  Google Scholar 

  • Sharangi, A (2009) Medicinal and therapeutic potentialities of tea (Camellia sinensis L.) - A review. Food Res Int 42 (5-6): 529–535

  • Shi CY, Yang H, Wei CL, Yu O, Zhang ZZ, Jiang CJ, Sun J, Li YY, Chen Q, Xia T (2011) Deep sequencing of the Camellia sinensis transcriptome revealed candidate genes for major metabolic pathways of tea-specific compounds. BMC Genomics 12(1):131. https://doi.org/10.1186/1471-2164-12-131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steane DA, Nicolle D, Sansaloni CP, Petroli CD, Carling J, Kilian A, Myburg AA, Grattapaglia D, Vaillancourt RE (2011) Population genetic analysis and phylogeny reconstruction in eucalyptus (Myrtaceae) using high-throughput, genome-wide genotyping. Mol Phylogenet Evol 59(1):206–224. https://doi.org/10.1016/j.ympev.2011.02.003

    Article  PubMed  Google Scholar 

  • Tan LQ, Wang LY, Xu LY, Wu LY, Peng M, Zhang CC, Wei K, Bai PX, Li HL, Cheng H, Qi GN (2016) SSR-based genetic mapping and QTL analysis for timing of spring bud flush, young shoot color, and mature leaf size in tea plant (Camellia sinensis). Tree Genet Genomes 12(3):1–13

    Article  Google Scholar 

  • Tanaka J (2000) Construction of linkage and QTL analysis of tea plant. Proceedings of the International Symposium on Molecular Biology and Tea Breeding, pp 23–26

  • Taniguchi F, Furukawa K, Ota-Metoku S, Yamaguchi N, Ujihara T, Kono I, Fukuoka H, Tanaka J (2012) Construction of a high-density reference linkage map of tea (Camellia sinensis). Breed Sci 62(3):263–273. https://doi.org/10.1270/jsbbs.62.263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Ooijen J (2006) JoinMap® 4, Software for the calculation of genetic linkage maps in experimental populations. Kyazma B.V., Wageningen

  • Voorrips R (2002) MapChart: software for the graphical presentation of linkage maps and QTL. J Hered 93(1):77–78. https://doi.org/10.1093/jhered/93.1.77

    Article  CAS  PubMed  Google Scholar 

  • Wachira FN, Waugh R, Powell W, Hackett C (1995) Detection of genetic diversity in tea (Camellia sinensis) using RAPD markers. Genome 38(2):201–210. https://doi.org/10.1139/g95-025

    Article  CAS  PubMed  Google Scholar 

  • Wambulwa MC, Meegahakumbura MK, Kamunya S, Muchugi A, Möller M, Liu J, Xu JC, Ranjitkar S, Li DZ, Gao LM (2016) Insights into the genetic relationships and breeding patterns of the African tea germplasm based on nSSR markers and cpDNA sequences. Front Plant Sci 7. https://doi.org/10.3389/fpls.2016.01244

  • Wittenberg AH, van der Lee T, Cayla C, Kilian A, Visser RG, Schouten HJ (2005) Validation of the high-throughput marker technology DArT using the model plant Arabidopsis thaliana. Mol Gen Genomics 274(1):30–39. https://doi.org/10.1007/s00438-005-1145-6

    Article  CAS  Google Scholar 

  • Wright LP, Mphangwe NIK, Nyirenda HE, Apostolides Z (2002) Analysis of the theaflavin composition in black tea (Camellia sinensis) for predicting the quality of tea produced in Central and Southern Africa. J Sci Food Agr 82(5):517–525. https://doi.org/10.1002/jsfa.1074

    Article  CAS  Google Scholar 

  • Zou J, Semagn K, Iqbal M, N’Diaye A, Chen H, Asif M, Navabi A, Perez-Lara E, Pozniak C, Yang RC (2016) Mapping QTL controlling agronomic traits in the ‘Attila’בCDC Go’Spring wheat population under organic management using 90K SNP Array. Crop Sci 57(1):365–377

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support to conduct this research, and study grants for RK and PM from James Finlay (Kenya) Ltd., George Williamson (Kenya) Ltd., Sotik Tea Company (Kenya) Ltd., Mcleod Russell (Uganda) Ltd., the TRI of Kenya, and Southern African Biochemistry and Informatics for Natural Products (SABINA). The C. sinensis cultivars used in this study were provided by the TRI of Kenya. Supplementary funding was provided by the Technology and Human Resources for Industry Programme (THRIP), an initiative of the Department of Trade and Industries of South Africa (dti), the National Research Foundation (NRF) of South Africa, and the University of Pretoria (South Africa).

Author information

Authors and Affiliations

Authors

Contributions

ZA, SK, and RM were involved with the design of the experiment and plant material used. RK, PM, and CN were involved in the collection of plant material. RK performed the experiments. RK, PM, CN, SK, and ZA analyzed samples and interpreted the data. RK wrote the manuscript and revised by PM, CM, RM, SK, and ZA. The final manuscript was reviewed and approved by all the authors.

Corresponding author

Correspondence to Zeno Apostolides.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest

Data archiving statement

The DArT sequences have been submitted to NCBI (http://www.ncbi.nlm.nih.gov/). BioProject PRJNA398959, Supplementary Table 2.

Additional information

Communicated by W.-W. Guo

Electronic supplementary material

ESM 1

(DOCX 31 kb)

ESM 2

(DOCX 434 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koech, R.K., Malebe, P.M., Nyarukowa, C. et al. Identification of novel QTL for black tea quality traits and drought tolerance in tea plants (Camellia sinensis). Tree Genetics & Genomes 14, 9 (2018). https://doi.org/10.1007/s11295-017-1219-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11295-017-1219-8

Keywords

Navigation