Skip to main content
Log in

Combined linkage and association mapping of putative QTLs controlling black tea quality and drought tolerance traits

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

The advancements in genotyping have opened new approaches for identification and precise mapping of quantitative trait loci (QTLs) in plants, particularly by combining linkage and association mapping (AM) analysis. In this study, a combination of linkage and the AM approach was used to identify and authenticate putative QTLs associated with black tea quality traits and percent relative water content (%RWC). The population structure analysis clustered two parents and their respective 261 F1 progenies from the two reciprocal crosses into two clusters with 141 tea accessions in cluster one and 122 tea accessions in cluster two. The two clusters were of mixed origin with tea accessions in population TRFK St. 504 clustering together with tea accessions in population TRFK St. 524. A total of 71 putative QTLs linked to black tea quality traits and %RWC were detected in interval mapping (IM) method and were used as cofactors in multiple QTL model (MQM) mapping where 46 putative QTLs were detected. The phenotypic variance for each QTL ranged from 2.8 to 23.3% in IM and 4.1 to 23% in MQM mapping. Using Q-model and Q + K-model in AM, a total of 49 DArTseq markers were associated with 16 phenotypic traits. Significant marker-trait association in AM were similar to those obtained in IM, and MQM mapping except for six more putative QTLs detected in AM which are involved in biosynthesis of secondary metabolites, carbon fixation and abiotic stress. The combined linkage and AM approach appears to have great potential to improve the selection of desirable traits in tea breeding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ashihara H, Sano H, Crozier A (2008) Caffeine and related purine alkaloids: biosynthesis, catabolism function and genetic engineering. Phytochemistry 69(4):841–856

    Article  CAS  PubMed  Google Scholar 

  • Bartholomé J, Bink MC, van Heerwaarden J, Chancerel E, Boury C, Lesur I, Isik F, Bouffier L, Plomion C (2016) Linkage and association mapping for two major traits used in the maritime pine breeding program: height growth and stem straightness. PLoS ONE 11(11):e0165323

    Article  PubMed  PubMed Central  Google Scholar 

  • Batoko H, Dagdas Y, Baluska F, Sirko A (2017) Understanding and exploiting autophagy signaling in plants. Essays Biochem 61(6):675–685

    Article  PubMed  PubMed Central  Google Scholar 

  • Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES (2007) TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23(19):2633–2635

    Article  CAS  PubMed  Google Scholar 

  • Cao Y, Li S, Wang Z, Chang F, Kong J, Gai J, Zhao T (2017) Identification of major quantitative trait loci for seed oil content in soybeans by combining linkage and genome-wide association mapping. Front plant sci 8:1222

    Article  PubMed  PubMed Central  Google Scholar 

  • Chaves MM, Flexas J, Pinheiro C (2009) Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann Bot 103(4):551–560

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Apostolides Z, Chen ZM (2013) Global tea breeding: achievements challenges and perspectives. Springer, Berlin

    Google Scholar 

  • Chu DC, Juneja LR (1997) General chemical composition of green tea and its infusion. In: Yamamoto T, Juneja LR, Chu DC, Kim M (eds) Chemistry and applications of green tea. CRC Press, Boca Raton, pp 13–22

    Google Scholar 

  • Collard B, Jahufer M, Brouwer J, Pang E (2005) An introduction to markers quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: the basic concepts. Euphytica 142(1–2):169–196

    Article  CAS  Google Scholar 

  • Du Q, Gong C, Wang Q, Zhou D, Yang H, Pan W, Li B, Zhang D (2016) Genetic architecture of growth traits in Populus revealed by integrated quantitative trait locus (QTL) analysis and association studies. New Phytol 209(3):1067–1082

    Article  CAS  PubMed  Google Scholar 

  • Earl DA (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4(2):359–361

    Article  Google Scholar 

  • Fan R, Xiong M (2003) Combined high resolution linkage and association mapping of quantitative trait loci. Eur J Hum Genet 11(2):125

    Article  CAS  PubMed  Google Scholar 

  • FAO (2015a) World tea production and trade current and future development In: Chang K (ed) FAO intergovernmental group on tea a subsidiary body of the FAO Committee on Commodity Problems (CCP), Rome Italy, pp 1–13

  • Finno CJ, Aleman M, Higgins RJ, Madigan JE, Bannasch DL (2014) Risk of false positive genetic associations in complex traits with underlying population structure: a case study. Vet J 202(3):543–549

    Article  PubMed  PubMed Central  Google Scholar 

  • Flint-Garcia SA, Thornsberry JM, Buckler ES IV (2003) Structure of linkage disequilibrium in plants. Annu Rev Plant Biol 54(1):357–374

    Article  CAS  PubMed  Google Scholar 

  • Fournier-Level A, Lacombe T, Le Cunff L, Boursiquot J, This P (2010) Evolution of the VvMybA gene family the major determinant of berry colour in cultivated grapevine (Vitis vinifera L.). Heredity 104(4):351

    Article  CAS  PubMed  Google Scholar 

  • George A (2013) Controlling type 1 error rates in genome-wide association studies in plants. Heredity 111(1):86

    Article  CAS  PubMed  Google Scholar 

  • Ghasemzadeh A, Ghasemzadeh N (2011) Flavonoids and phenolic acids: role and biochemical activity in plants and human. J Med Plants Res 5(31):6697–6703

    CAS  Google Scholar 

  • Jakobsson M, Rosenberg NA (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23(14):1801–1806

    Article  CAS  PubMed  Google Scholar 

  • Janacek SH, Trenkamp S, Palmer B, Brown NJ, Parsley K, Stanley S, Astley HM, Rolfe SA, Paul Quick W, Fernie AR (2009) Photosynthesis in cells around veins of the C3 plant Arabidopsis thaliana is important for both the shikimate pathway and leaf senescence as well as contributing to plant fitness. Plant J 59(2):329–343

    Article  CAS  PubMed  Google Scholar 

  • Jin JQ, Yao MZ, Ma CL, Ma JQ, Chen L (2016) Association mapping of caffeine content with TCS1 in tea plant and its related species. Plant Physiol Biochem 105:251–259

    Article  CAS  PubMed  Google Scholar 

  • Jung J, Fan R, Jin L (2005) Combined linkage and association mapping of quantitative trait loci by multiple markers. Genetics 170(2):881–898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kamunya S, Wachira F, Muoki R (2004) Evaluation of newly developed clones of tea (Camellia sinensis (L.) O. Kuntze) for yields drought tolerance and quality: preliminary indicators. Tea 25(1):12–19

    Google Scholar 

  • Kamunya S, Wachira F, Pathak R, Korir R, Sharma V, Kumar R, Bhardwaj P, Chalo R, Ahuja P, Sharma R (2010) Genomic mapping and testing for quantitative trait loci in tea (Camellia sinensis (L.) O. Kuntze). Tree Genet Genomes 6(6):915–929

    Article  Google Scholar 

  • Kenya National Bureau of Statistics (2012) Kenya facts and Figureures 2012. Kenya

  • Koech RK, Malebe PM, Nyarukowa C, Mose R, Kamunya SM, Apostolides Z (2018) Identification of novel QTL for black tea quality traits and drought tolerance in tea plants (Camellia sinensis). Tree Genet Genomes 14(1):9

    Article  Google Scholar 

  • Koech RK, Malebe PM, Nyarukowa C, Mose R, Kamunya SM, Joubert F, Apostolides Z (2019) Functional annotation of putative QTL associated with black tea quality and drought tolerance traits. Sci Rep 9(1):1465

    Article  PubMed  PubMed Central  Google Scholar 

  • Korte A, Farlow A (2013) The advantages and limitations of trait analysis with GWAS: a review. Plant Methods 9(1):29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kraakman AT, Niks RE, Van den Berg PM, Stam P, Van Eeuwijk FA (2004) Linkage disequilibrium mapping of yield and yield stability in modern spring barley cultivars. Genetics 168(1):435–446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kulwal PL (2018) Trait mapping approaches through linkage mapping in plants. In: Plant genetics and molecular biology. Springer, Cham, pp 53–82

    Chapter  Google Scholar 

  • Li J, Zhao J, Rose AB, Schmidt R, Last RL (1995) Arabidopsis phosphoribosylanthranilate isomerase: molecular genetic analysis of triplicate tryptophan pathway genes. Plant Cell 7(4):447–461

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li X, Zhou Z, Ding J, Wu Y, Zhou B, Wang R, Ma J, Wang S, Zhang X, Xia Z (2016) Combined linkage and association mapping reveals QTL and candidate genes for plant and ear height in maize. Front Plant Sci 7:833

    PubMed  PubMed Central  Google Scholar 

  • Lou Q, Chen L, Mei H, Wei H, Feng F, Wang P, Xia H, Li T, Luo L (2015) Quantitative trait locus mapping of deep rooting by linkage and association analysis in rice. J Exp Bot 66(15):4749–4757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu Y, Zhang S, Shah T, Xie C, Hao Z, Li X, Farkhari M, Ribaut JM, Cao M, Rong T (2010) Joint linkage–linkage disequilibrium mapping is a powerful approach to detecting quantitative trait loci underlying drought tolerance in maize. Proc Natl Acad Sci 107(45):19585–19590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma JQ, Yao MZ, Ma CL, Wang XC, Jin JQ, Wang XM, Chen L (2014) Construction of a SSR-based genetic map and identification of QTLs for catechins content in tea plant (Camellia sinensis). PLoS ONE 9(3):e93131

    Article  PubMed  PubMed Central  Google Scholar 

  • Ma JQ, Jin JQ, Yao MZ, Ma CL, Xu YX, Hao WJ, Chen L (2018) Quantitative trait loci mapping for theobromine and caffeine contents in tea plant (Camellia sinensis). J Agric Food Chem 66:13321–13327

    Article  CAS  PubMed  Google Scholar 

  • Mammadov J, Sun X, Gao Y, Ochsenfeld C, Bakker E, Ren R, Flora J, Wang X, Kumpatla S, Meyer D (2015) Combining powers of linkage and association mapping for precise dissection of QTL controlling resistance to gray leaf spot disease in maize (Zea mays L.). BMC Genom 16(1):916

    Article  Google Scholar 

  • Mezmouk S, Dubreuil P, Bosio M, Décousset L, Charcosset A, Praud S, Mangin B (2011) Effect of population structure corrections on the results of association mapping tests in complex maize diversity panels. Theor Appl Genet 122(6):1149–1160

    Article  PubMed  PubMed Central  Google Scholar 

  • Miziorko HM (2000) Phosphoribulokinase: current perspectives on the structure/function basis for regulation and catalysis. Adv Enzymol Relat Areas Mol Biol 74:95–127

    CAS  PubMed  Google Scholar 

  • Müller B, Stich B, Piepho H (2011) A general method for controlling the genome-wide type I error rate in linkage and association mapping experiments in plants. Heredity 106(5):825

    Article  PubMed  Google Scholar 

  • Nakashima K, Yamaguchi-Shinozaki K (2013) ABA signaling in stress-response and seed development. Plant Cell Rep 32(7):959–970

    Article  CAS  PubMed  Google Scholar 

  • Ng LM, Melcher K, Teh BT, Xu HE (2014) Abscisic acid perception and signaling: structural mechanisms and applications. Acta Pharmacol Sin 35(5):567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pritchard J, Wen X, Falush D (2010) Documentation for STRUCTURE software. [Documentation file] Available with the program at https://www.pritchbsduchicagoedu/structurehtml

  • Ramasamy RK, Ramasamy S, Bindroo BB, Naik VG (2014) STRUCTURE PLOT: a program for drawing elegant STRUCTURE bar plots in user friendly interface. SpringerPlus 3(1):431

    Article  PubMed  PubMed Central  Google Scholar 

  • Sadok IB, Celton JM, Essalouh L, El Aabidine AZ, Garcia G, Martinez S, Grati-Kamoun N, Rebai A, Costes E, Khadari B (2013) QTL mapping of flowering and fruiting traits in olive. PLoS ONE 8(5):e62831

    Article  PubMed  PubMed Central  Google Scholar 

  • Sah SK, Reddy KR, Li J (2016) Abscisic acid and abiotic stress tolerance in crop plants. Front Plant Sci 7:571

    Article  PubMed  PubMed Central  Google Scholar 

  • Shi W, Hao C, Zhang Y, Cheng J, Zhang Z, Liu J, Yi X, Cheng X, Sun D, Xu Y (2017) A combined association mapping and linkage analysis of kernel number per spike in common wheat (Triticum aestivum L.). Front Plant Sci 8:1412

    Article  PubMed  PubMed Central  Google Scholar 

  • Sterken R, Kiekens R, Boruc J, Zhang F, Vercauteren A, Vercauteren I, De Smet L, Dhondt S, Inzé D, De Veylder L (2012) Combined linkage and association mapping reveals CYCD5; 1 as a quantitative trait gene for endoreduplication in Arabidopsis. Proc Natl Acad Sci 109(12):4678–4683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Ooijen J (2006) JoinMap® 4: software for the calculation of genetic linkage maps in experimental populations. Kyazma BV Wageningen 33(10):1371

    Google Scholar 

  • Van Ooijen JW, Boer M, Jansen R, Maliepaard C (2000) MapQTL 4.0: software for the calculation of QTL positions on genetic maps (user manual). Plant Research International, Wageningen

    Google Scholar 

  • Vuong QV, Stathopoulos CE, Nguyen MH, Golding JB, Roach PD (2011) Isolation of green tea catechins and their utilization in the food industry. Food Rev Int 27(3):227–247

    Article  CAS  Google Scholar 

  • Wachira F, Tanaka J, Takeda Y (2001) Genetic variation and differentiation in tea (Camellia sinensis) germplasm revealed by RAPD and AFLP variation. J Hortic Sci Biotechnol 76(5):557–563

    CAS  Google Scholar 

  • Wachira FN, Kamunya SM, Chalo R, Maritim T, Kinyangi T (2012) TRFK clonal catalogue, 1st edn. Tea Research Foundation of Kenya, p 151

  • Xu Y, Li P, Yang Z, Xu C (2017) Genetic mapping of quantitative trait loci in crops. Crop J l 5(2):175–184

    Article  Google Scholar 

  • Yao M, Chen L, Liang Y (2008) Genetic diversity among tea cultivars from China Japan and Kenya revealed by ISSR markers and its implication for parental selection in tea breeding programmes. Plant Breeding 127(2):166–172

    Article  CAS  Google Scholar 

  • Yu J, Pressoir G, Briggs WH, Bi IV, Yamasaki M, Doebley JF, McMullen MD, Gaut BS, Nielsen DM, Holland JB (2006) A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet 38(2):203

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support to conduct this research, and study grants for RK and PM from James Finlay (Kenya) Ltd., George Williamson (Kenya) Ltd., Sotik Tea Company (Kenya) Ltd., Mcleod Russell (Uganda) Ltd., the TRI of Kenya and Southern African Biochemistry and Informatics for Natural Products (SABINA). The C. sinensis cultivars used in this study were provided by the TRI of Kenya. Supplementary funding was provided by, the Technology and Human Resources for Industry Programme (THRIP), an initiative of the Department of Trade and Industries of South Africa (dti), the National Research Foundation (NRF) of South Africa, and the University of Pretoria (South Africa).

Author information

Authors and Affiliations

Authors

Contributions

ZA, SK and RM were involved with the design of the experiment and plant material used. RK was involved in collection of plant material. RK performed the experiments, analyzed samples and interpreted the data. RK wrote the manuscript and revised by RM, SK and ZA. The final manuscript was reviewed and approved by all the authors. The TRI of Kenya and the University of Pretoria had role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Corresponding author

Correspondence to Zeno Apostolides.

Ethics declarations

Conflict of interest

All the authors declare that there is no commercial or financial relationships that can precedence to conflict of interest in research conducted.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1367 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koech, R.K., Mose, R., Kamunya, S.M. et al. Combined linkage and association mapping of putative QTLs controlling black tea quality and drought tolerance traits. Euphytica 215, 162 (2019). https://doi.org/10.1007/s10681-019-2483-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10681-019-2483-5

Keywords

Navigation