Skip to main content

Advertisement

Log in

Antifungal properties of cathelicidin LL-37: current knowledge and future research directions

  • Review
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The threat of fungal diseases is substantially underestimated worldwide, but they have serious consequences for humans, animals, and plants. Given the limited number of existing antifungal drugs together with the emergence of drug-resistant strains, many researchers have actively sought alternatives or adjuvants to antimycotics. The best way to tackle these issues is to unearth potential antifungal agents with new modes of action. Antimicrobial peptides are being hailed as a promising source of novel antimicrobials since they exhibit rapid and broad-spectrum microbicidal activities with a reduced likelihood of developing drug resistance. Recent years have witnessed an explosion in knowledge on microbicidal activity of LL-37, the sole human cathelicidin. Herein, we provide a summary of the current understanding about antifungal properties of LL-37, with particular emphasis on its molecular mechanisms. We further illustrate fruitful areas for future research. LL-37 is able to inhibit the growth of clinically and agronomically relevant fungi including Aspergillus, Candida, Colletotrichum, Fusarium, Malassezia, Pythium, and Trichophyton. Destruction of the cell wall integrity, membrane permeabilization, induction of oxidative stress, disruption of endoplasmic reticulum homeostasis, formation of autophagy-like structures, alterations in expression of numerous fungal genes, and inhibition of cell cycle progression are the key mechanisms underlying antifungal effects of LL-37. Burgeoning evidence also suggests that LL-37 may act as a potential anti-virulence peptide. It is hoped that this review will not only motivate researchers to conduct more detailed studies in this field, but also inspire further innovations in the design of LL-37-based drugs for the treatment of fungal infections.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Not applicable.

References

  • Abo Nouh FA, Gezaf SA, Abdel-Azeem AM (2020) Mycotoxins: potential as biocontrol agents. In: Yadav A, Mishra S, Kour D, Yadav N, Kumar A (eds) Agriculturally important fungi for sustainable sgriculture. Fungal biology. Springer, Cham. 

    Google Scholar 

  • Adedara IA, Owumi SE (2023) Neurobehavioral and biochemical responses to artemisinin-based drug and aflatoxin B co-exposure in rats. Mycotoxin Res 39(1):67–80

    Article  PubMed  CAS  Google Scholar 

  • Agerberth B, Buentke E, Bergman P, Eshaghi H, Gabrielsson S, Gudmundsson GH, Scheynius A (2006) Malassezia sympodialis differently affects the expression of LL-37 in dendritic cells from atopic eczema patients and healthy individuals. Allergy 61(4):422–430

    Article  PubMed  CAS  Google Scholar 

  • Aghazadeh H, Memariani H, Ranjbar R, Pooshang Bagheri K (2019) The activity and action mechanism of novel short selective LL-37‐derived anticancer peptides against clinical isolates of Escherichia coli. Chem Biol Drug Des 93(1):75–83

    Article  PubMed  CAS  Google Scholar 

  • Alford MA, Baquir B, Santana FL, Haney EF, Hancock RE (2020) Cathelicidin host defense peptides and inflammatory signaling: striking a balance. Front Microbiol 11:1902

    Article  PubMed  PubMed Central  Google Scholar 

  • Alves V, Araújo GRS, Frases S (2023) Off-label treatments as potential accelerators in the search for the ideal antifungal treatment of cryptococcosis. Future Microbiol 18:127–35

    Article  PubMed  CAS  Google Scholar 

  • Aref S, Nouri S, Moravvej H, Memariani M, Memariani H (2022) Epidemiology of dermatophytosis in Tehran, Iran: a ten-year retrospective study. Arch Iran Med 25(8):502–507

    Article  PubMed  Google Scholar 

  • Arendrup MC, Patterson TF (2017) Multidrug-resistant Candida: epidemiology, molecular mechanisms, and treatment. J Infect Dis 216(suppl3):S445–S451

    Article  PubMed  CAS  Google Scholar 

  • Atiencia-Carrera MB, Cabezas-Mera FS, Tejera E, Machado A (2022) Prevalence of biofilms in Candida spp. bloodstream infections: a meta-analysis. PLoS ONE 17(2):e0263522

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ballard E, Yucel R, Melchers WJ, Brown AJ, Verweij PE, Warris A (2020) Antifungal activity of antimicrobial peptides and proteins against. J Fungi 6:65

    Article  CAS  Google Scholar 

  • Benjamin AB, Moule MG, Didwania MK, Hardy J, Saenkham-Huntsinger P, Sule P, Nielsen JE, Lin JS, Contag CH, Barron AE, Cirillo JD (2022) Efficacy of cathelicidin-mimetic antimicrobial peptoids against Staphylococcus aureus. Microbiol Spectr 10(3):e00534-22

    Article  PubMed  PubMed Central  Google Scholar 

  • Bongomin F, Gago S, Oladele RO, Denning DW (2017) Global and multi-national prevalence of fungal diseases—estimate precision. J Fungi 3(4):57

    Article  Google Scholar 

  • Brackin AP, Hemmings SJ, Fisher MC, Rhodes J (2021) Fungal genomics in respiratory medicine: what, how and when? Mycopathologia 186:589–608

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Braff MH, Hawkins MI, Nardo AD, Lopez-Garcia B, Howell MD, Wong C, Lin K, Streib JE, Dorschner R, Leung DY, Gallo RL (2005) Structure-function relationships among human cathelicidin peptides: dissociation of antimicrobial properties from host immunostimulatory activities. J Immunol 174(7):4271–4278

    Article  PubMed  CAS  Google Scholar 

  • Cassin ME, Ford AJ, Orbach SM, Saverot SE, Rajagopalan P (2016) The design of antimicrobial LL37-modified collagen-hyaluronic acid detachable multilayers. Acta Biomater 40:119–129

    Article  PubMed  CAS  Google Scholar 

  • Celestrino GA, Verrinder Veasey J, Benard G, Sousa MGT (2021) Host immune responses in dermatophytes infection. Mycoses 64(5):477–483

    Article  PubMed  Google Scholar 

  • Chaffin WL (2008) Cell wall proteins. Microbiol Mol Biol Rev 72(3):495–544

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chang HT, Tsai PW, Huang HH, Liu YS, Chien TS, Lan CY (2012) LL37 and hBD-3 elevate the β-1, 3-exoglucanase activity of Candida albicans Xog1p, resulting in reduced fungal adhesion to plastic. Biochem J 441(3):963–970

    Article  PubMed  CAS  Google Scholar 

  • Chen YC, Chen FJ, Lee CH (2021) Effect of antifungal agents, lysozyme and human antimicrobial peptide LL-37 on clinical Candida isolates with high biofilm production. J Med Microbiol 70(2):001283

    Article  CAS  Google Scholar 

  • Childers DS, Avelar GM, Bain JM, Pradhan A, Larcombe DE, Netea MG, Erwig LP, Gow NA, Brown AJ (2020) Epitope shaving promotes fungal immune evasion. MBio 11(4): e00984-20

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ciornei CD, Sigurdardóttir T, Schmidtchen A, Bodelsson M (2005) Antimicrobial and chemoattractant activity, lipopolysaccharide neutralization, cytotoxicity, and inhibition by serum of analogs of human cathelicidin LL-37. Antimicrob Agents Chemother 49(7):2845–2850

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • da Silva LL, Moreno HL, Correia HL, Santana MF, de Queiroz MV (2020) Colletotrichum: species complexes, lifestyle, and peculiarities of some sources of genetic variability. Appl Microbiol Biotechnol 104:1891–1904

    Article  PubMed  Google Scholar 

  • Daly P, Zhou D, Shen D, Chen Y, Xue T, Chen S, Zhang Q, Zhang J, McGowan J, Cai F, Pang G (2022) Genome of Pythium myriotylum uncovers an extensive arsenal of virulence-related genes among the broad-host-range necrotrophic Pythium plant pathogens. Microbiol Spectr 10(4):e02268-21

    Article  PubMed  PubMed Central  Google Scholar 

  • Datta S, Roy A (2021) Antimicrobial peptides as potential therapeutic agents: a review. Int J Pept Res Ther 27:555–577

    Article  CAS  Google Scholar 

  • de Souza GHDA, Rossato L, de Oliveira AR, Simionatto S (2023) Antimicrobial peptides against polymyxin-resistant Klebsiella pneumoniae: a patent review. World J Microbiol Biotechnol 39(3):86

    Article  PubMed  PubMed Central  Google Scholar 

  • Dell’Olmo E, Tiberini A, Sigillo L (2023) Leguminous seedborne pathogens: seed health and sustainable crop management. Plants 12(10):2040

    Article  PubMed  PubMed Central  Google Scholar 

  • den Hertog AL, van Marle J, van Veen HA, Van’t Hof W, Bolscher JGM, Veerman ECI, Amerongen AVN (2005) Candidacidal effects of two antimicrobial peptides: histatin 5 causes small membrane defects, but LL-37 causes massive disruption of the cell membrane. Biochem J 388(Pt 2):689–695

    Google Scholar 

  • den Hertog AL, van Marle J, Veerman EC, Valentijn-Benz M, Nazmi K, Kalay H, Grün CH, Van’t Hof W, Bolscher JG, Nieuw Amerongen AV (2006) The human cathelicidin peptide LL-37 and truncated variants induce segregation of lipids and proteins in the plasma membrane of Candida albicans. Biol Chem 387(10–11):1495–1502

    Google Scholar 

  • Denardi LB, Weiblen C, Ianiski LB, Stibbe PC, Pinto SC, Santurio JM (2022) Anti-Pythium insidiosum activity of MSI-78, LL-37, and magainin-2 antimicrobial peptides. Braz J Microbiol 53(1):509–512

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Desai JV, Bruno VM, Ganguly S, Stamper RJ, Mitchell KF, Solis N, Hill EM, Xu W, Filler SG, Andes DR, Fanning S, Lanni F, Mitchell AP (2013) Regulatory role of glycerol in Candida albicans biofilm formation. MBio 4(2):e00637-12

    Article  PubMed  PubMed Central  Google Scholar 

  • Dijksteel GS, Ulrich MM, Middelkoop E, Boekema BK (2021) Lessons learned from clinical trials using antimicrobial peptides (AMPs). Front Microbiol 12:616979

    Article  PubMed  PubMed Central  Google Scholar 

  • Dorschner RA, Lopez-Garcia B, Massie J, Kim C, Gallo RL (2004) Innate immune defense of the nail unit by antimicrobial peptides. J Am Acad Dermatol 50(3):343–348

    Article  PubMed  Google Scholar 

  • Durnaś B, Wnorowska U, Pogoda K, Deptuła P, Wątek M, Piktel E, Głuszek S, Gu X, Savage PB, Niemirowicz K, Bucki R (2016) Candidacidal activity of selected ceragenins and human cathelicidin LL-37 in experimental settings mimicking infection sites. PLoS ONE 11(6):e0157242

    Article  PubMed  PubMed Central  Google Scholar 

  • Elmowafy EM, Tiboni M, Soliman ME (2019) Biocompatibility, biodegradation and biomedical applications of poly (lactic acid)/poly (lactic-co-glycolic acid) micro and nanoparticles. J Pharm Investig 49:347–380

    Article  CAS  Google Scholar 

  • Ernst JF, Pla J (2011) Signaling the glycoshield: maintenance of the Candida albicans cell wall. Int J Med Microbiol 301(5):378–383

    Article  PubMed  CAS  Google Scholar 

  • Fernandes AR, Mira NP, Vargas RC, Canelhas I, Sá-Correia I (2005) Saccharomy cescerevisiae adaptation to weak acids involves the transcription factor Haa1p and Haa1p-regulated genes. Biochem Biophys Res Commun 337(1):95–103

    Article  PubMed  CAS  Google Scholar 

  • Fernández de Ullivarri M, Arbulu S, Garcia-Gutierrez E, Cotter PD (2020) Antifungal peptides as therapeutic agents. Front Cell Infect Microbiol 10:105

    Article  PubMed  PubMed Central  Google Scholar 

  • Finkel JS, Xu W, Huang D, Hill EM, Desai JV, Woolford CA, Nett JE, Taff H, Norice CT, Andes DR, Lanni F (2012) Portrait of Candida albicans adherence regulators. PLoS Pathog 8(2):e1002525

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fritz P, Beck-Jendroschek V, Brasch J (2012) Inhibition of dermatophytes by the antimicrobial peptides human β-defensin-2, ribonuclease 7 and psoriasin. Med Mycol 50(6):579–584

    Article  PubMed  CAS  Google Scholar 

  • Gallagher L, Owens RA, Dolan SK, O’Keeffe G, Schrettl M, Kavanagh K, Jones GW, Doyle S (2012) The Aspergillus fumigatus protein GliK protects against oxidative stress and is essential for gliotoxin biosynthesis. Eukaryot Cell 11(10):1226–1238

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gan BH, Gaynord J, Rowe SM, Deingruber T, Spring DR (2021) The multifaceted nature of antimicrobial peptides: current synthetic chemistry approaches and future directions. Chem Soc Rev 50(13):7820–7880

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gauwerky K, Borelli C, Korting HC (2009) Targeting virulence: a new paradigm for antifungals. Drug Discov Today 14(3–4):214–222

    Article  PubMed  CAS  Google Scholar 

  • Gbian DL, Omri A (2022) Lipid-based drug delivery systems for diseases managements. Biomedicines 10(9):2137

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gwyer Findlay E, Currie SM, Davidson DJ (2013) Cationic host defence peptides: potential as antiviral therapeutics. BioDrugs 27:479–493

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hacioglu M, Oyardi O, Bozkurt-Guzel C, Savage PB (2020) Antibiofilm activities of ceragenins and antimicrobial peptides against fungal-bacterial mono and multispecies biofims. J Antibiot 73(7):455–462

    Article  CAS  Google Scholar 

  • Han Q, Wang N, Yao G, Mu C, Wang Y, Sang J (2019) Blocking β-1,6‐glucan synthesis by deleting KRE6 and SKN1 attenuates the virulence of Candida albicans. Mol Microbiol 111(3):604–620

    Article  PubMed  CAS  Google Scholar 

  • Holani R, Rathnayaka C, Blyth GA, Babbar A, Lahiri P, Young D, Dufour A, Hollenberg MD, McKay DM, Cobo ER (2023) Cathelicidins induce toll-interacting protein synthesis to prevent apoptosis in colonic epithelium. J Innate Immun 15:204–221

    Article  PubMed  CAS  Google Scholar 

  • Hsu CM, Liao YL, Chang CK, Lan CY (2021) Sfp1 is involved in the cell wall and endoplasmic reticulum stress responses induced by human antimicrobial peptide LL-37. Int J Mol Sci 22:10633

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jacobs SE, Walsh TJ (2023) Non-Aspergillus hyaline molds: a host-based perspective of emerging pathogenic fungi causing sinopulmonary diseases. J Fungi (Basel) 9(2):212

    Article  PubMed  CAS  Google Scholar 

  • Jung YJ, Lee SY, Moon YS, Kang KK (2012) Enhanced resistance to bacterial and fungal pathogens by overexpression of a human cathelicidin antimicrobial peptide (hCAP18/LL-37) in Chinese cabbage. Plant Biotechnol Rep 6:39–46

    Article  PubMed  Google Scholar 

  • Kamysz E, Sikorska E, Karafova A, Dawgul M (2012) Synthesis, biological activity and conformational analysis of head-to‐tail cyclic analogues of LL37 and histatin 5. J Pept Sci 18(9):560–566

    Article  PubMed  CAS  Google Scholar 

  • Kamysz E, Sikorska E, Jaśkiewicz M, Bauer M, Neubauer D, Bartoszewska S, Barańska-Rybak W, Kamysz W (2020) Lipidated analogs of the LL-37-derived peptide fragment KR12—structural analysis, surface-active properties and antimicrobial activity. Int J Mol Sci 21(3):88

    Article  Google Scholar 

  • Kong E, Jabra-Rizk MA (2015) The great escape: pathogen versus host. PLoS Pathog 11(3):e1004661

    Article  PubMed  PubMed Central  Google Scholar 

  • Kraidlova L, Schrevens S, Tournu H, Van Zeebroeck G, Sychrova H, Van Dijck P (2016) Characterization of the Candidaalbicans amino acid permease family: Gap2 is the only general amino acid permease and Gap4 is an S-adenosylmethionine (SAM) transporter required for SAM-induced morphogenesis. mSphere 1(6):e00284-16

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kurniadi I, Wijaya H, Timotius KH (2022) Virulence factors and their role in dermatological disorders. Acta Dermatovenerol Alp Pannonica Adriat 31(2):65–70

    PubMed  Google Scholar 

  • Ledoux MP, Herbrecht R (2023) Invasive pulmonary aspergillosis. J Fungi (Basel) 9(2):131

    Article  PubMed  CAS  Google Scholar 

  • Lima SMF, Freire MS, Gomes ALO, Cantuária APC, Dutra FRP, Magalhães BS, Sousa MGC, Migliolo L, Almeida JA, Franco OL, Rezende TMB (2017) Antimicrobial and immunomodulatory activity of host defense peptides, clavanins and LL-37, in vitro: an endodontic perspective. Peptides 95:16–24

    Article  PubMed  CAS  Google Scholar 

  • Lin X, Wang R, Mai S (2020) Advances in delivery systems for the therapeutic application of LL37. J Drug Deliv Sci Technol 60:102016

    Article  CAS  Google Scholar 

  • López-García B, Lee PH, Yamasaki K, Gallo RL (2005) Anti-fungal activity of cathelicidins and their potential role in Candidaalbicans skin infection. J Invest Dermatol 125(1):108–115. https://doi.org/10.1111/j.0022-202X.2005.23713.x

    Article  PubMed  Google Scholar 

  • López-García B, Lee PH, Gallo RL (2006) Expression and potential function of cathelicidin antimicrobial peptides in dermatophytosis and tinea versicolor. J Antimicrob Chemother 57(5):877–882. https://doi.org/10.1093/jac/dkl078

    Article  PubMed  Google Scholar 

  • Lu F, Zhu Y, Zhang G, Liu Z (2022) Renovation as innovation: repurposing human antibacterial peptide LL-37 for cancer therapy. Front Pharmacol 13:944147

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Luo L, Tong X, Farley PC (2007) The Candida albicans gene HGT12 (orf19. 7094) encodes a hexose transporter. FEMS Immunol Med Microbiol 51(1):14–17. https://doi.org/10.1111/j.1574-695X.2007.00274.x

    Article  PubMed  CAS  Google Scholar 

  • Luo Y, McLean DT, Linden GJ, McAuley DF, McMullan R, Lundy FT (2017) The naturally occurring host defense peptide, LL-37, and its truncated mimetics KE-18 and KR-12 have selected biocidal and antibiofilm activities against Candidaalbicans, Staphylococcusaureus, and Escherichiacoli in vitro. Front Microbiol 8:544

    Article  PubMed  PubMed Central  Google Scholar 

  • Luo XL, Li JX, Huang HR, Duan JL, Dai RX, Tao RJ, Yang L, Hou JY, Jia XM, Xu JF (2019) LL37 inhibits Aspergillus fumigatus infection via directly binding to the fungus and preventing excessive inflammation. Front Immunol 10:283. https://doi.org/10.3389/fimmu.2019.00283

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Martin H, Kavanagh K, Velasco-Torrijos T (2021) Targeting adhesion in fungal pathogen. Future Med Chem 13(03):313–334

    Article  PubMed  CAS  Google Scholar 

  • Maximiano MR, Rios TB, Campos ML, Prado GS, Dias SC, Franco OL (2022) Nanoparticles in association with antimicrobial peptides (NanoAMPs) as a promising combination for agriculture development. Front Mol Biosci 9:890654. https://doi.org/10.3389/fmolb.2022.890654

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Memariani H, Memariani M (2020) Anti-fungal properties and mechanisms of melittin. Appl Microbiol Biotechnol 104(15):6513–6526

    Article  PubMed  CAS  Google Scholar 

  • Memariani H, Memariani M (2023) Antibiofilm properties of cathelicidin LL-37: an in-depth review. World J Microbiol Biotechnol 39:99. https://doi.org/10.1007/s11274-023-03545-z

    Article  PubMed  CAS  Google Scholar 

  • Memariani H, Shahbazzadeh D, Ranjbar R, Behdani M, Memariani M, Pooshang Bagheri K (2017) Design and characterization of short hybrid antimicrobial peptides from pEM-2, mastoparan‐VT 1, and mastoparan‐B. Chem Biol Drug Des 89(3):327–338

    Article  PubMed  CAS  Google Scholar 

  • Memariani H, Shahbazzadeh D, Sabatier JM, Pooshang Bagheri K (2018) Membrane-active peptide PV3 efficiently eradicates multidrug‐resistant Pseudomonas aeruginosa in a mouse model of burn infection. APMIS 126(2):114–122

    Article  PubMed  CAS  Google Scholar 

  • Memariani H, Memariani M, Robati RM, Nasiri S, Abdollahimajd F, Baseri Z, Moravvej H (2020) Anti-staphylococcal and cytotoxic activities of the short anti-microbial peptide PVP. World J Microbiol Biotechnol 36(11):174

    Article  PubMed  CAS  Google Scholar 

  • Memariani M, Memariani H, Poursafavi Z, Baseri Z (2022) Antifungal effects and mechanisms of action of wasp venom-derived peptide mastoparan-VT1 against Candida albicans. Int J Pept Res Ther 28:96. https://doi.org/10.1007/s10989-022-10401-5

    Article  CAS  Google Scholar 

  • Memariani M, Memariani H, Moravvej H, Goudarzi H, Robati RM (2023) Anticandidal activity and mechanism of action of several cationic chimeric antimicrobial peptides. Int J Pept Res Ther 29(3):50

    Article  CAS  Google Scholar 

  • Méndez-Samperio P (2004) Peptidomimetics as a new generation of antimicrobial agents: current progress. Infect Drug Resist 7:229–237

    Google Scholar 

  • Menzel LP, Chowdhury HM, Masso-Silva JA, Ruddick W, Falkovsky K, Vorona R, Malsbary A, Cherabuddi K, Ryan LK, DiFranco KM, Brice DC, Costanzo MJ, Weaver D, Freeman KB, Scott RW, Diamond G (2017) Potent in vitro and in vivo antifungal activity of a small molecule host defense peptide mimic through a membrane-active mechanism. Sci Rep 7(1):4353

    Article  PubMed  PubMed Central  Google Scholar 

  • Mercer DK, O’Neil DA (2020) Innate inspiration: antifungal peptides and other immunotherapeutics from the host immune response. Front Immunol 11:2177

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mirzaee M, Holásková E, Mičúchová A, Kopečný DJ, Osmani Z, Frébort I (2021) Long-lasting stable expression of human LL-37 antimicrobial peptide in transgenic barley plants. Antibiotics 10(8):898

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mosallam S, Albash R, Abdelbari MA (2022) Advanced vesicular systems for antifungal drug delivery. AAPS PharmSciTech 23:206

    Article  PubMed  Google Scholar 

  • Murad AM, Leng P, Straffon M, Wishart J, Macaskill S, MacCallum D, Schnell N, Talibi D, Marechal D, Tekaia F, d’Enfert C, Gaillardin C, Odds FC, Brown AJP (2001) NRG1 represses yeast–hypha morphogenesis and hypha-specific gene expression in Candida albicans. EMBO J 20(17):4742–4752

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Murakami M, Lopez-Garcia B, Braff M, Dorschner RA, Gallo RL (2004) Postsecretory processing generates multiple cathelicidins for enhanced topical antimicrobial defense. J Immunol 172(5):3070–3077

    Article  PubMed  CAS  Google Scholar 

  • Niemirowicz K, Durnaś B, Tokajuk G, Piktel E, Michalak G, Gu X, Kułakowska A, Savage PB, Bucki R (2017) Formulation and candidacidal activity of magnetic nanoparticles coated with cathelicidin LL-37 and ceragenin CSA-13. Sci Rep 7:4610

    Article  PubMed  PubMed Central  Google Scholar 

  • Nordström R, Nyström L, Andrén OC, Malkoch M, Umerska A, Davoudi M, Schmidtchen A, Malmsten M (2018) Membrane interactions of microgels as carriers of antimicrobial peptides. J Colloid Interface Sci 513:141–150. https://doi.org/10.1016/j.jcis.2017.11.014

    Article  PubMed  CAS  Google Scholar 

  • Ooi EH, Wormald PJ, Carney AS, James CL, Tan LW (2007) Fungal allergens induce cathelicidin LL-37 expression in chronic rhinosinusitis patients in a nasal explant model. Am J Rhinol 21(3):367–372

    Article  PubMed  Google Scholar 

  • Ordonez SR, Amarullah IH, Wubbolts RW, Veldhuizen EJ, Haagsman HP (2014) Fungicidal mechanisms of cathelicidins LL-37 and CATH-2 revealed by live-cell imaging. Antimicrob Agents Chemother 58(4):2240–2248

    Article  PubMed  PubMed Central  Google Scholar 

  • Oshiro KG, Rodrigues G, Monges BE, Cardoso MH, Franco OL (2019) Bioactive peptides against fungal biofilms. Front Microbiol 10:2169. https://doi.org/10.3389/fmicb.2019.02169

    Article  PubMed  PubMed Central  Google Scholar 

  • Radojević ID, Jakovljević VD, Ostojić AM (2023) A mini-review on indigenous microbial biofilm from various wastewater for heavy-metal removal - new trends. World J Microbiol Biotechnol 39:309

    Article  PubMed  Google Scholar 

  • Rather IA, Sabir JS, Asseri AH, Ali S (2022) Antifungal activity of human cathelicidin LL-37, a membrane disrupting peptide, by triggering oxidative stress and cell cycle arrest in Candidaauris. J Fungi 8(2):204

    Article  CAS  Google Scholar 

  • Read A, Schröder M (2021) The unfolded protein response: an overview. Biology 10(5):384

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Reen FJ, Phelan JP, Gallagher L, Woods DF, Shanahan RM, Cano R, ÓMuimhneacháin E, McGlacken GP, O’Gara F (2016) Exploiting interkingdom interactions for development of small-molecule inhibitors of bioflm formation. Antimicrob Agents Chemother 60(10):5894–5905. https://doi.org/10.1128/AAC.00190-16

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rhimi W, Theelen B, Boekhout T, Otranto D, Cafarchia C (2020) Malassezia spp. yeasts of emerging concern in fungemia. Front Cell Infect Microbiol 10:370. https://doi.org/10.3389/fcimb.2020.00370

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rodríguez-Castaño GP, Rosenau F, Ständker L, Firacative C (2023) Antimicrobial peptides: avant-garde antifungal agents to fight against medically important. Species Pharm 15(3):789

    Google Scholar 

  • Russo A, Tiseo G, Falcone M, Menichetti F (2020) Pulmonary aspergillosis: an evolving challenge for diagnosis and treatment. Infect Dis Ther 9:511–524

    Article  PubMed  PubMed Central  Google Scholar 

  • Scarsini M, Tomasinsig L, Arzese A, D’Este F, Oro D, Skerlavaj B (2015) Antifungal activity of cathelicidin peptides against planktonic and biofilm cultures of Candida species isolated from vaginal infections. Peptides 71:211–221. https://doi.org/10.1016/j.peptides.2015.07.023

    Article  PubMed  CAS  Google Scholar 

  • Shanmugaraj B, Bulaon CJI, Malla A, Phoolcharoen W (2021) Biotechnological insights on the expression and production of antimicrobial peptides in plants. Molecules 26(13):4032

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sheehan G, Bergsson G, McElvaney NG, Reeves EP, Kavanagh K (2018) The human cathelicidin antimicrobial peptide LL-37 promotes the growth of the pulmonary pathogen Aspergillus fumigatus. Infect Immun 86(7):e00097-18

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sieprawska-Lupa M, Mydel P, Krawczyk K, Wójcik K, Puklo M, Lupa B, Suder P, Silberring J, Reed M, Pohl J, Shafer W, McAleese F, Foster T, Travis J, Potempa J (2004) Degradation of human antimicrobial peptide LL-37 by Staphylococcus aureus-derived proteinases. Antimicrob Agents Chemother 48(12):4673–4679

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sigurdardottir T, Andersson P, Davoudi M, Malmsten M, Schmidtchen A, Bodelsson M (2006) In silico identification and biological evaluation of antimicrobial peptides based on human cathelicidin LL-37. Antimicrob Agents Chemother 50(9):2983–2989

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sonesson A, Ringstad L, Nordahl EA, Malmsten M, Mörgelin M, Schmidtchen A (2007) Antifungal activity of C3a and C3a-derived peptides against. Biochim Biophys Acta 1768(2):346–353

    Article  PubMed  CAS  Google Scholar 

  • Sugui JA, Kwon-Chung KJ, Juvvadi PR, Latgé JP, Steinbach WJ (2015) Aspergillus fumigatus and related species. Cold Spring Harb Perspect Med 5(2):a019786

    Article  PubMed Central  Google Scholar 

  • Thompson GR III, Young JA (2021) AspergillusInfections. N Engl J Med 385(16):1496–1509

    Article  PubMed  CAS  Google Scholar 

  • Tornesello AL, Borrelli A, Buonaguro L, Buonaguro FM, Tornesello ML (2020) Antimicrobial peptides as anticancer agents: functional properties and biological activities. Molecules 25(12):2850

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tsai PW, Yang CY, Chang HT, Lan CY (2011a) Human antimicrobial peptide LL-37 inhibits adhesion of Candida albicans by interacting with yeast cell-wall carbohydrates. PloS One 6(3):e17755

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tsai PW, Yang CY, Chang HT, Lan CY (2011b) Characterizing the role of cell-wall β-1, 3-exoglucanase Xog1p in Candida albicans adhesion by the human antimicrobial peptide LL-37. PLoS One 6(6):e21394. https://doi.org/10.1371/journal.pone.0021394

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tsai PW, Cheng YL, Hsieh WP, Lan CY (2014) Responses of candida albicans to the human antimicrobial peptide LL-37. J Microbiol 52:581–589. https://doi.org/10.1007/s12275-014-3630-2

    Article  PubMed  CAS  Google Scholar 

  • van Der Weerden NL, Hancock RE, Anderson MA (2010) Permeabilization of fungal hyphae by the plant defensin NaD1 occurs through a cell wall-dependent process. J Biol Chem 285(48):37513–37520

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Eijk M, Boerefijn S, Cen L, Rosa M, Morren MJ, Van Der Ent CK, Kraak B, Dijksterhuis J, Valdes ID, Haagsman HP, De Cock H (2020) Cathelicidin-inspired antimicrobial peptides as novel antifungal compounds. Med Mycol 58(8):1073–1084. https://doi.org/10.1093/mmy/myaa014

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vanreppelen G, Wuyts J, Van Dijck P, Vandecruys P (2023) Sources of antifungal Drugs. J Fungi 9(2):171. https://doi.org/10.3390/jof9020171

    Article  CAS  Google Scholar 

  • Wang G (2008) Structures of human host defense cathelicidin LL-37 and its smallest antimicrobial peptide KR-12 in lipid micelles. J Biol Chem 283(47):32637–32643. https://doi.org/10.1074/jbc.M805533200

    Article  PubMed  CAS  Google Scholar 

  • Wang G, Narayana JL, Mishra B, Zhang Y, Wang F, Wang C, Zarena D, Lushnikova T, Wang X (2019) Design of antimicrobial peptides: progress made with human cathelicidin LL-37. In: Matsuzaki K (ed) Antimicrobial peptides. Advances in experimental medicine and biology, vol 1117. Springer, Singapore. https://doi.org/10.1007/978-981-13-3588-4_12

    Chapter  Google Scholar 

  • Wong JH, Ng TB, Legowska A, Rolka K, Hui M, Cho CH (2011) Antifungal action of human cathelicidin fragment (LL13–37) on Candida albicans. Peptides 32(10):1996–2002

    Article  PubMed  CAS  Google Scholar 

  • Wooten DJ, Zañudo JGT, Murrugarra D, Perry AM, Dongari-Bagtzoglou A, Laubenbacher R, Nobile CJ, Albert R (2021) Mathematical modeling of the Candida albicans yeast to hyphal transition reveals novel control strategies. PLoS Comput Biol 17(3):e1008690

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wu H, Liu S, Wiradharma N, Ong ZY, Li Y, Yang YY, Ying JY (2017) Short synthetic α-helical‐forming peptide amphiphiles for fungal keratitis treatment in vivo. Adv Healthc Mater 6(6):1600777

    Article  Google Scholar 

  • Yarbrough VL, Winkle S, Herbst-Kralovetz MM (2015) Antimicrobial peptides in the female reproductive tract: a critical component of the mucosal immune barrier with physiological and clinical implications. Hum Reprod Update 21(3):353–377

    Article  PubMed  CAS  Google Scholar 

  • Yu H, Liu X, Wang C, Qiao X, Wu S, Wang H, Feng L, Wang Y (2016a) Assessing the potential of four cathelicidins for the management of mouse candidiasis and Candida albicans biofilms. Biochimie 121:268–277

    Article  PubMed  CAS  Google Scholar 

  • Yu Q, Zhang B, Li J, Zhang B, Wang H, Li M (2016b) Endoplasmic reticulum-derived reactive oxygen species (ROS) is involved in toxicity of cell wall stress to Candida albicans. Free Radic Biol Med 99:572–583

    Article  PubMed  CAS  Google Scholar 

  • Yun H, Min HJ, Lee CW (2020) NMR structure and bactericidal activity of KR-12 analog derived from human LL-37 as a potential cosmetic preservative. J Anal Sci Technol 11:14

    Article  CAS  Google Scholar 

  • Zhang Y, Wu J, Xin Z, Wu X (2014) Triggers innate immune response via NOD1 signaling in human corneal epithelial cells. Exp Eye Res 127:170–178

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

H.M. contributed to the conception of the study. M.M. collected the data. M.M. and H.M. jointly wrote the manuscript. H.M. reviewed and edited the manuscript. Both authors read and approved the final manuscript.

Corresponding author

Correspondence to Hamed Memariani.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Both authors gave final approval for publication.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Memariani, M., Memariani, H. Antifungal properties of cathelicidin LL-37: current knowledge and future research directions. World J Microbiol Biotechnol 40, 34 (2024). https://doi.org/10.1007/s11274-023-03852-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11274-023-03852-5

Keywords

Navigation