Skip to main content

Advertisement

Log in

Antibiofilm properties of cathelicidin LL-37: an in-depth review

  • Review
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Notwithstanding ceaseless endeavors toward developing effective antibiofilm chemotherapeutics, biofilm-associated infections continue to be one of the most perplexing challenges confronting medicine today. Endogenous host defense peptides, such as the human cathelicidin LL-37, are being propounded as promising options for treating such infectious diseases. Over the past decennium, LL-37 has duly received tremendous research attention by virtue of its broad-spectrum antimicrobial activity and immunomodulatory properties. No attempt has hitherto been made, as far as we are aware, to comprehensively review the antibiofilm effects of LL-37. Accordingly, the intent in this paper is to provide a fairly all-embracing review of the literature available on the subject. Accumulating evidence suggests that LL-37 is able to prevent biofilm establishment by different bacterial pathogens such as Acinetobacter baumannii, Aggregatibacter actinomycetemcomitans, Bacteroides fragilis, Burkholderia thailandensis, Cutibacterium acnes, Escherichia coli, Francisella tularensis, Helicobacter pylori, Klebsiella pneumoniae, Pseudomonas aeruginosa, Staphylococcus aureus, and Streptococcus pyogenes. Inhibition of bacterial adhesion, downregulation of biofilm-associated genes, suppression of quorum-sensing pathways, degradation of biofilm matrix, and eradication of biofilm-residing cells are the major mechanisms responsible for antibiofilm properties of LL-37. In terms of its efficacy and safety in vivo, there are still many questions to be answered. Undoubtedly, LL-37 can open up new windows of opportunity to prevent and treat obstinate biofilm-mediated infections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

Not applicable.

References

  • Aghazadeh H, Memariani H, Ranjbar R, Pooshang Bagheri K (2019) The activity and action mechanism of novel short selective LL-37‐derived anticancer peptides against clinical isolates of Escherichia coli. Chem Biol Drug Des 93(1):75–83

    Article  CAS  PubMed  Google Scholar 

  • Ahn M, Gunasekaran P, Rajasekaran G, Kim EY, Lee SJ, Bang G, Cho K, Hyun JK, Lee HJ, Jeon YH, Kim NH, Ryu EK, Shin SY, Bang JK (2017) Pyrazole derived ultra-short antimicrobial peptidomimetics with potent anti-biofilm activity. Eur J Med Chem 125:551–564

    Article  CAS  PubMed  Google Scholar 

  • Aka STH (2015) Killing efficacy and anti-biofilm activity of synthetic human cationic antimicrobial peptide cathelicidin hCAP-18/LL37 against urinary tract pathogens. J Microbiol Infect Dis 5(1):15–20

    Article  Google Scholar 

  • Alford MA, Baquir B, Santana FL, Haney EF, Hancock RE (2020) Cathelicidin host defense peptides and inflammatory signaling: striking a balance. Front Microbiol 27(11):1902

  • Amer LS, Bishop BM, van Hoek ML (2010) Antimicrobial and antibiofilm activity of cathelicidins and short, synthetic peptides against Francisella. Biochem Biophys Res Commun 396(2):246–251

    Article  CAS  PubMed  Google Scholar 

  • Asma ST, Imre K, Morar A, Herman V, Acaroz U, Mukhtar H, Arslan-Acaroz D, Shah SR, Gerlach R (2022) An overview of biofilm formation–combating strategies and mechanisms of action of antibiofilm agents. Life (Basel) 12(8):1110

    CAS  PubMed  Google Scholar 

  • Babikir IH, Abugroun EA, Bilal NE, Alghasham AA, Abdalla EE, Adam I (2018) The impact of cathelicidin, the human antimicrobial peptide LL-37 in urinary tract infections. BMC Infect Dis 18:17

    Article  PubMed  PubMed Central  Google Scholar 

  • Balamurugan P, Praveen Krishna V, Bharath D, Lavanya R, Vairaprakash P, Adline Princy S (2017) Staphylococcus aureus quorum regulator SarA targeted compound, 2-[(Methylamino) methyl] phenol inhibits biofilm and down-regulates virulence genes. Front Microbiol 8:1290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bao K, Bostanci N, Thurnheer T, Grossmann J, Wolski WE, Thay B, Belibasakis GN, Oscarsson J (2018) Aggregatibacter actinomycetemcomitans H-NS promotes biofilm formation and alters protein dynamics of other species within a polymicrobial oral biofilm. NPJ Biofilms Microbiomes 4:12

    Article  PubMed  PubMed Central  Google Scholar 

  • Baumann A, Kiener MS, Haigh B, Perreten V, Summerfield A (2017) Differential ability of bovine antimicrobial cathelicidins to mediate nucleic acid sensing by epithelial cells. Front Immunol 8:59

    Article  PubMed  PubMed Central  Google Scholar 

  • Beloin C, Roux A, Ghigo JM (2008) Escherichia coli Biofilms. Curr Top Microbiol Immunol 322:249–289

    CAS  PubMed  PubMed Central  Google Scholar 

  • Benjamin AB, Moule MG, Didwania MK, Hardy J, Saenkham-Huntsinger P, Sule P, Nielsen JE, Lin JS, Contag CH, Barron AE, Cirillo JD (2022) Efficacy of cathelicidin-mimetic antimicrobial peptoids against Staphylococcus aureus. Microbiol Spectr 10(3):e0053422

    Article  PubMed  Google Scholar 

  • Berditsch M, Afonin S, Reuster J, Lux H, Schkolin K, Babii O, Radchenko DS, Abdullah I, William N, Middel V, Strähle U, Nelson A, Valko K, Ulrich AS (2019) Supreme activity of gramicidin S against resistant, persistent and biofilm cells of staphylococci and enterococci. Sci Rep 9(1):17938

    Article  PubMed  PubMed Central  Google Scholar 

  • Biot FV, Bachert BA, Mlynek KD, Toothman RG, Koroleva GI, Lovett SP, Klimko CP, Palacios GF, Cote CK, Ladner JT, Bozue JA (2020) Evolution of antibiotic resistance in surrogates of Francisella tularensis (LVS and Francisella novicida): effects on biofilm formation and fitness. Front Microbiol 11:593542

    Article  PubMed  PubMed Central  Google Scholar 

  • Blower RJ, Barksdale SM, van Hoek ML (2015) Snake cathelicidin NA-CATH and smaller helical antimicrobial peptides are effective against Burkholderia thailandensis. PLoS Negl Trop Dis 9(7):e0003862

    Article  PubMed  PubMed Central  Google Scholar 

  • Boisvert AA, Cheng MP, Sheppard DC, Nguyen D (2016) Microbial biofilms in pulmonary and critical care diseases. Ann AM Thorac Soc 13(9):1615–1623

    Article  PubMed  PubMed Central  Google Scholar 

  • Bose JL, Lehman MK, Fey PD, Bayles KW (2012) Contribution of the Staphylococcus aureus atl AM and GL murein hydrolase activities in cell division, autolysis, and biofilm formation. PLoS ONE 7(7):e42244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boswell MT, Cockeran R (2021) Effect of antimicrobial peptides on planktonic growth, biofilm formation and biofilm-derived bacterial viability of Streptococcus pneumoniae. S Afr J Infect Dis 36(1):226

    PubMed  PubMed Central  Google Scholar 

  • Burrows LL (2012) Pseudomonas aeruginosa twitching motility: type IV pili in action. Annu Rev Microbiol 66:493–520

    Article  CAS  PubMed  Google Scholar 

  • Burton MF, Steel PG (2009) The chemistry and biology of LL-37. Nat Prod Rep 26(12):1572–1584

    Article  CAS  PubMed  Google Scholar 

  • Champion AE, Catanzaro KC, Bandara AB, Inzana TJ (2019) Formation of the Francisella tularensis biofilm is affected by cell surface glycosylation, growth medium, and a glucan exopolysaccharide. Sci Rep 9(1):12252

    Article  PubMed  PubMed Central  Google Scholar 

  • Chao Y, Marks LR, Pettigrew MM, Hakansson AP (2015) Streptococcus pneumoniae biofilm formation and dispersion during colonization and disease. Front Cell Infect Microbiol 4:194

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen C, Deslouches B, Montelaro RC, Di YP (2018) Enhanced efficacy of the engineered antimicrobial peptide WLBU2 via direct airway delivery in a murine model of Pseudomonas aeruginosa pneumonia. Clin Microbiol Infect 24(5):547e1–547e8

    Article  Google Scholar 

  • Chen X, Thomsen TR, Winkler H, Xu Y (2020) Influence of biofilm growth age, media, antibiotic concentration and exposure time on Staphylococcus aureus and Pseudomonas aeruginosa biofilm removal in vitro. BMC Microbiol 20(1):264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chennupati SK, Chiu AG, Tamashiro E, Banks CA, Cohen MB, Bleier BS, Kofonow JM, Tam E, Cohen NA (2009) Effects of an LL-37-derived antimicrobial peptide in an animal model of biofilm Pseudomonas sinusitis. Am J Rhinol Allergy 23(1):46–51

    Article  PubMed  Google Scholar 

  • Choby JE, Howard-Anderson J, Weiss DS (2020) Hypervirulent Klebsiella pneumoniae–clinical and molecular perspectives. J Intern Med 287(3):283–300

    Article  CAS  PubMed  Google Scholar 

  • Chung PY, Khanum R (2017) Antimicrobial peptides as potential anti-biofilm agents against multidrug-resistant bacteria. J Microbiol Immunol Infect 50(4):405–410

    Article  CAS  PubMed  Google Scholar 

  • Clinton A, Carter T (2015) Chronic wound biofilms: pathogenesis and potential therapies. Lab Med 46(4):277–284

    Article  PubMed  Google Scholar 

  • Coenye T, Spittaels KJ, Achermann Y (2022) The role of biofilm formation in the pathogenesis and antimicrobial susceptibility of Cutibacterium acnes. Biofilm 4:100063

    Article  CAS  PubMed  Google Scholar 

  • Colquhoun JM, Rather PN (2020) Insights into mechanisms of biofilm formation in Acinetobacter baumannii and implications for uropathogenesis. Front Cell Infect Microbiol 10:253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Colvin KM, Irie Y, Tart CS, Urbano R, Whitney JC, Ryder C, Howell PL, Wozniak DJ, Parsek MR (2012) The Pel and Psl polysaccharides provide Pseudomonas aeruginosa structural redundancy within the biofilm matrix. Environ Microbiol 14(8):1913–1928

    Article  CAS  PubMed  Google Scholar 

  • Das T, Kutty SK, Kumar N, Manefield M (2013) Pyocyanin facilitates extracellular DNA binding to Pseudomonas aeruginosa influencing cell surface properties and aggregation. PLoS ONE 8(3):e58299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dasgupta N, Arora SK, Ramphal R (2000) fleN, a gene that regulates flagellar number in Pseudomonas aeruginosa. J Bacteriol 182(2):357–364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davidopoulou S, Diza E, Menexes G, Kalfas S (2012) Salivary concentration of the antimicrobial peptide LL-37 in children. Arch Oral Biol 57(7):865–869

    Article  CAS  PubMed  Google Scholar 

  • Dean SN, Bishop BM, van Hoek ML (2011a) Susceptibility of Pseudomonas aeruginosa biofilm to alpha-helical peptides: D-enantiomer of LL-37. Front Microbiol 2:128

    Article  CAS  Google Scholar 

  • Dean SN, Bishop BM, van Hoek ML (2011b) Natural and synthetic cathelicidin peptides with anti-microbial and anti-biofilm activity against Staphylococcus aureus. BMC Microbiol 11:114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de La Fuente-Núñez C, Korolik V, Bains M, Nguyen U, Breidenstein EB, Horsman S, Lewenza S, Burrows L, Hancock RE (2012) Inhibition of bacterial biofilm formation and swarming motility by a small synthetic cationic peptide. Antimicrob Agents Chemother 56(5):2696–2704

    Article  PubMed  PubMed Central  Google Scholar 

  • Demirci M, Yigin A, Demir C (2022) Efficacy of antimicrobial peptide LL-37 against biofilm forming Staphylococcus aureus strains obtained from chronic wound infections. Microb Pathog 162:105368

    Article  CAS  PubMed  Google Scholar 

  • Dlozi PN, Gladchuk A, Crutchley RD, Keuler N, Coetzee R, Dube A (2022) Cathelicidins and defensins antimicrobial host defense peptides in the treatment of TB and HIV: pharmacogenomic and nanomedicine approaches towards improved therapeutic outcomes. Biomed Pharmacother 151:113189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dosler S, Karaaslan E (2014) Inhibition and destruction of Pseudomonas aeruginosa biofilms by antibiotics and antimicrobial peptides. Peptides 62:32–37

    Article  CAS  PubMed  Google Scholar 

  • Duong L, Gross SP, Siryaporn A (2021) Developing antimicrobial synergy with AMPs. Front Med Technol 3:640981

    Article  PubMed  PubMed Central  Google Scholar 

  • Duplantier AJ, van Hoek ML (2013) The human cathelicidin antimicrobial peptide LL-37 as a potential treatment for polymicrobial infected wounds. Front Immunol 4:143

    Article  PubMed  PubMed Central  Google Scholar 

  • Durnaś B, Piktel E, Wątek M, Wollny T, Góźdź S, Smok-Kalwat J, Niemirowicz K, Savage PB, Bucki R (2017) Anaerobic bacteria growth in the presence of cathelicidin LL-37 and selected ceragenins delivered as magnetic nanoparticles cargo. BMC Microbiol 17:167

    Article  PubMed  PubMed Central  Google Scholar 

  • Dürr UH, Sudheendra US, Ramamoorthy A (2006) LL-37, the only human member of the cathelicidin family of antimicrobial peptides. Biochim Biophys Acta 1758(9):1408–1425

    Article  PubMed  Google Scholar 

  • Epstein EA, Chapman MR (2008) Polymerizing the fibre between bacteria and host cells: the biogenesis of functional amyloid fibres. Cell Microbiol 10(7):1413–1420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feng X, Sambanthamoorthy K, Palys T, Paranavitana C (2013) The human antimicrobial peptide LL-37 and its fragments possess both antimicrobial and antibiofilm activities against multidrug-resistant Acinetobacter baumannii. Peptides 49:131–137

    Article  CAS  PubMed  Google Scholar 

  • Fey PD, Olson ME (2010) Current concepts in biofilm formation of Staphylococcus epidermidis. Future Microbiol 5(6):917–933

    Article  CAS  PubMed  Google Scholar 

  • Fiedler T, Köller T, Kreikemeyer B (2015) Streptococcus pyogenes biofilms—formation, biology, and clinical relevance. Front Cell Infect Microbiol 5:15

    Article  PubMed  PubMed Central  Google Scholar 

  • Flemming HC, Wuertz S (2019) Bacteria and archaea on Earth and their abundance in biofilms. Nat Rev Microbiol 17(4):247–260

    Article  CAS  PubMed  Google Scholar 

  • Flick-Smith HC, Fox MA, Hamblin KA, Richards MI, Jenner DC, Laws TR, Phelps AL, Taylor C, Harding SV, Ulaeto DO, Atkins HS (2013) Assessment of antimicrobial peptide LL-37 as a post-exposure therapy to protect against respiratory tularemia in mice. Peptides 43:96–101

    Article  CAS  PubMed  Google Scholar 

  • Forbes S, McBain AJ, Felton-Smith S, Jowitt TA, Birchenough HL, Dobson CB (2013) Comparative surface antimicrobial properties of synthetic biocides and novel human apolipoprotein E derived antimicrobial peptides. Biomaterials 34(22):5453–5464

    Article  CAS  PubMed  Google Scholar 

  • Gabriel M, Nazmi K, Veerman EC, Nieuw Amerongen AV, Zentner A (2006) Preparation of LL-37-grafted titanium surfaces with bactericidal activity. Bioconjug Chem 17(2):548–550

    Article  CAS  PubMed  Google Scholar 

  • Ghasemian A, Fattahi A, Shokouhi Mostafavi SK, Almarzoqi AH, Memariani M, Ben Braiek O, Yassine HM, Mostafavi NS, Ahmed MM, Mirforughi SA (2019) Herbal medicine as an auspicious therapeutic approach for the eradication of Helicobacter pylori infection: a concise review. J Cell Physiol 234(10):16847–16860

    Article  CAS  PubMed  Google Scholar 

  • Gierlikowska B, Stachura A, Gierlikowski W, Demkow U (2021) Phagocytosis, degranulation and extracellular traps release by neutrophils—the current knowledge, pharmacological modulation and future prospects. Front Pharmacol 12:666732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grassi L, Maisetta G, Esin S, Batoni G (2017) Combination strategies to enhance the efficacy of antimicrobial peptides against bacterial biofilms. Front Microbiol 8:2409

    Article  PubMed  PubMed Central  Google Scholar 

  • Guerra ME, Destro G, Vieira B, Lima AS, Ferraz LF, Hakansson AP, Darrieux M, Converso TR (2022) Klebsiella pneumoniae biofilms and their role in disease pathogenesis. Front Cell Infect Microbiol 12:877995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo Y, Wang L, Lei J, Xu J, Han L (2017) Antimicrobial and antibiofilm activity of human cationic antibacterial peptide (LL-37) and its analogs against pan-drug-resistant Acinetobacter baumannii. Jundishapur J Microbiol 10(3):e35857

    Article  Google Scholar 

  • Hacioglu M, Oyardi O, Bozkurt-Guzel C, Savage PB (2020) Antibiofilm activities of ceragenins and antimicrobial peptides against fungal-bacterial mono and multispecies biofilms. J Antibiot 73(7):455–462

    Article  CAS  Google Scholar 

  • Haisma EM, de Breij A, Chan H, van Dissel JT, Drijfhout JW, Hiemstra PS, El Ghalbzouri A, Nibbering PH (2014) LL-37-derived peptides eradicate multidrug-resistant Staphylococcus aureus from thermally wounded human skin equivalents. Antimicrob Agents Chemother 58(8):4411–4419

    Article  PubMed  PubMed Central  Google Scholar 

  • Hanawa T (2019) Titanium–tissue interface reaction and its control with surface treatment. Front Bioeng Biotechnol 7:170

    Article  PubMed  PubMed Central  Google Scholar 

  • Hancock REW, Alford MA, Haney EF (2021) Antibiofilm activity of host defence peptides: complexity provides opportunities. Nat Rev Microbiol 19:786–797

    Article  CAS  PubMed  Google Scholar 

  • Haraga A, West TE, Brittnacher MJ, Skerrett SJ, Miller SI (2008) Burkholderia thailandensis as a model system for the study of the virulence-associated type III secretion system of Burkholderia pseudomallei. Infect Immun 76(11):5402–5411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hathroubi S, Servetas SL, Windham I, Merrell DS, Ottemann KM (2018) Helicobacter pylori biofilm formation and its potential role in pathogenesis. Microbiol Mol Biol Rev 82(2):e00001–18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hell E, Giske CG, Nelson A, Römling U, Marchini G (2010) Human cathelicidin peptide LL37 inhibits both attachment capability and biofilm formation of Staphylococcus epidermidis. Lett Appl Microbiol 50(2):211–215

    Article  CAS  Google Scholar 

  • Henzler-Wildman KA, Martinez GV, Brown MF, Ramamoorthy A (2004) Perturbation of the hydrophobic core of lipid bilayers by the human antimicrobial peptide LL-37. Biochemistry 43(26):8459–8469

    Article  CAS  PubMed  Google Scholar 

  • Heydorn A, Ersbøll B, Kato J, Hentzer M, Parsek MR, Tolker-Nielsen T, Givskov M, Molin S (2002) Statistical analysis of Pseudomonas aeruginosa biofilm development: impact of mutations in genes involved in twitching motility, cell-to-cell signaling, and stationary-phase sigma factor expression. Appl Environ Microbiol 68(4):2008–2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hollmann A, Martinez M, Maturana P, Semorile LC, Maffia PC (2018) Antimicrobial peptides: interaction with model and biological membranes and synergism with chemical antibiotics. Front Chem 6:204

    Article  PubMed  PubMed Central  Google Scholar 

  • Hughes G, Webber MA (2017) Novel approaches to the treatment of bacterial biofilm infections. Br J Pharmacol 174(14):2237–2246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jang HJ, Monson M, Kaiser M, Lamont SJ (2020) Induction of chicken host defense peptides within disease-resistant and-susceptible lines. Genes (Basel) 11(10):1195

    Article  CAS  PubMed  Google Scholar 

  • Jaśkiewicz M, Neubauer D, Kazor K, Bartoszewska S, Kamysz W (2019) Antimicrobial activity of selected antimicrobial peptides against planktonic culture and biofilm of Acinetobacter baumannii. Probiotics Antimicrob Proteins 11(1):317–324

    Article  PubMed  Google Scholar 

  • Johansson J, Gudmundsson GH, Rottenberg ME, Berndt KD, Agerberth B (1998) Conformation-dependent antibacterial activity of the naturally occurring human peptide LL-37. J Biol Chem 273(6):3718–3724

    Article  CAS  PubMed  Google Scholar 

  • Joshi RV, Gunawan C, Mann R (2021) We are one: multispecies metabolism of a biofilm consortium and their treatment strategies. Front Microbiol 12:635432

    Article  PubMed  PubMed Central  Google Scholar 

  • Kai-Larsen Y, Lüthje P, Chromek M, Peters V, Wang X, Holm Ã, Kádas L, Hedlund KO, Johansson J, Chapman MR, Jacobson SH, Römling U, Agerberth B, Brauner A (2010) Uropathogenic Escherichia coli modulates immune responses and its curli fimbriae interact with the antimicrobial peptide LL-37. PLoS Pathog 6(7):e1001010

    Article  PubMed  PubMed Central  Google Scholar 

  • Kang J, Dietz MJ, Li B (2019) Antimicrobial peptide LL-37 is bactericidal against Staphylococcus aureus biofilms. PLoS ONE 14(6):e0216676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanthawong S, Bolscher JG, Veerman EC, van Marle J, de Soet HJ, Nazmi K, Wongratanacheewin S, Taweechaisupapong S (2012) Antimicrobial and antibiofilm activity of LL-37 and its truncated variants against Burkholderia pseudomallei. Int J Antimicrob Agents 39(1):39–44

    Article  CAS  PubMed  Google Scholar 

  • Khzam N, Miranda LA, Kujan O, Shearston K, Haubek D (2022) Prevalence of the JP2 genotype of Aggregatibacter actinomycetemcomitans in the world population: a systematic review. Clin Oral Investig 26(3):2317–2334

    Article  PubMed  Google Scholar 

  • Kim EY, Rajasekaran G, Shin SY (2017) LL-37-derived short antimicrobial peptide KR-12-a5 and its d-amino acid substituted analogs with cell selectivity, anti-biofilm activity, synergistic effect with conventional antibiotics, and anti-inflammatory activity. Eur J Med Chem 136:428–441

    Article  CAS  PubMed  Google Scholar 

  • Kingry LC, Petersen JM (2014) Comparative review of Francisella tularensis and Francisella novicida. Front Cell Infect Microbiol 4:35

    Article  PubMed  PubMed Central  Google Scholar 

  • Klein RD, Shu Q, Cusumano ZT, Nagamatsu K, Gualberto NC, Lynch AJ, Wu C, Wang W, Jain N, Pinkner JS, Amarasinghe GK, Hultgren SJ, Frieden C, Chapman MR (2018) Structure-function analysis of the curli accessory protein CsgE defines surfaces essential for coordinating amyloid fiber formation. MBio 9(4):e01349–e01318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Konstantinidis T, Kambas K, Mitsios A, Panopoulou M, Tsironidou V, Dellaporta E, Kouklakis G, Arampatzioglou A, Angelidou I, Mitroulis I, Skendros P, Ritis K (2016) Immunomodulatory role of clarithromycin in Acinetobacter baumannii infection via formation of neutrophil extracellular traps. Antimicrob Agents Chemother 60:1040–1048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koo HB, Seo J (2019) Antimicrobial peptides under clinical investigation. Pept Sci 111(5):e24122

    Article  Google Scholar 

  • Koppen BC, Mulder PP, de Boer L, Riool M, Drijfhout JW, Zaat SA (2019) Synergistic microbicidal effect of cationic antimicrobial peptides and teicoplanin against planktonic and biofilm-encased Staphylococcus aureus. Int J Antimicrob Agents 53(2):143–151

    Article  CAS  PubMed  Google Scholar 

  • Kościuczuk EM, Lisowski P, Jarczak J, Strzałkowska N, Jóźwik A, Horbańczuk J, Krzyżewski J, Zwierzchowski L, Bagnicka E (2012) Cathelicidins: family of antimicrobial peptides. A review. Mol Biol Rep 39(12):10957–10970

    Article  PubMed  PubMed Central  Google Scholar 

  • Kreve S, Dos Reis AC (2021) Bacterial adhesion to biomaterials: what regulates this attachment? A review. Jpn Dent Sci Rev 57:85–96

    Article  PubMed  PubMed Central  Google Scholar 

  • Kunyanee C, Kamjumphol W, Taweechaisupapong S, Kanthawong S, Wongwajana S, Wongratanacheewin S, Hahnvajanawong C, Chareonsudjai S (2016) Burkholderia pseudomallei biofilm promotes adhesion, internalization and stimulates proinflammatory cytokines in human epithelial A549 cells. PLoS ONE 11(8):e0160741

    Article  PubMed  PubMed Central  Google Scholar 

  • Kuroda K, Okumura K, Isogai H, Isogai E (2015) The human cathelicidin antimicrobial peptide LL-37 and mimics are potential anticancer drugs. Front Oncol 5:144

    Article  PubMed  PubMed Central  Google Scholar 

  • Lahiri D, Nag M, Mukherjee D, Garai S, Banerjee R, Dey A, Ray RR (2021) Biofilm on medical appliances. In: Ray RR, Nag M, Lahiri D (eds) Biofilm-mediated diseases: causes and controls. Springer, Singapore. https://doi.org/10.1007/978-981-16-0745-5_7

    Google Scholar 

  • Lee CC, Sun Y, Qian S, Huang HW (2011) Transmembrane pores formed by human antimicrobial peptide LL-37. Biophys J 100(7):1688–1696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lehrer RI, Lu W (2012) α-Defensins in human innate immunity. Immunol Rev 245(1):84–112

    Article  CAS  PubMed  Google Scholar 

  • Liao C, Huang X, Wang Q, Yao D, Lu W (2022) Virulence factors of Pseudomonas aeruginosa and Antivirulence strategies to combat its drug resistance. Front Cell and Infect Microbiol 12:926758

    Article  CAS  Google Scholar 

  • Lidor O, Al-Quntar A, Pesci EC, Steinberg D (2015) Mechanistic analysis of a synthetic inhibitor of the Pseudomonas aeruginosa LasI quorum-sensing signal synthase. Sci Rep 5:16569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin Q, Deslouches B, Montelaro RC, Di YP (2018) Prevention of ESKAPE pathogen biofilm formation by antimicrobial peptides WLBU2 and LL37. Int J Antimicrob Agents 52(5):667–672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin MF, Lin YY, Lan CY (2020) Characterization of biofilm production in different strains of Acinetobacter baumannii and the effects of chemical compounds on biofilm formation. PeerJ 8:e9020

    Article  PubMed  PubMed Central  Google Scholar 

  • Lin MF, Tsai PW, Chen JY, Lin YY, Lan CY (2015) OmpA binding mediates the effect of antimicrobial peptide LL-37 on Acinetobacter baumannii. PLoS One 10(10):e0141107

    Article  PubMed  PubMed Central  Google Scholar 

  • Linde A, Lushington GH, Abello J, Melgarejo T (2013) Clinical relevance of cathelicidin in infectious disease. J Clin Cell Immunol S 13:003

    Google Scholar 

  • Lister JL, Horswill AR (2014) Staphylococcus aureus biofilms: recent developments in biofilm dispersal. Front Cell Infect Microbiol 4:178

    Article  PubMed  PubMed Central  Google Scholar 

  • Longo F, Vuotto C, Donelli G (2014) Biofilm formation in Acinetobacter baumannii. New Microbiol 37(2):119–127

    CAS  PubMed  Google Scholar 

  • Luo Y, McLean DT, Linden GJ, McAuley DF, McMullan R, Lundy FT (2017) The naturally occurring host defense peptide, LL-37, and its truncated mimetics KE-18 and KR-12 have selected biocidal and antibiofilm activities against Candida albicans, Staphylococcus aureus, and Escherichia coli in vitro. Front Microbiol 8:544

    Article  PubMed  PubMed Central  Google Scholar 

  • Malanovic N, Lohner K (2016) Antimicrobial peptides targeting gram-positive bacteria. Pharmaceuticals (Basel) 9(3):59

    Article  PubMed  Google Scholar 

  • McCourt J, O’Halloran DP, McCarthy H, O’Gara JP, Geoghegan JA (2014) Fibronectin-binding proteins are required for biofilm formation by community-associated methicillin-resistant Staphylococcus aureus strain LAC. FEMS Microbiol Lett 353(2):157–164

    Article  CAS  PubMed  Google Scholar 

  • Memariani H, Memariani M, Ghasemian A (2019a) An overview on antibiofilm properties of quercetin against bacterial pathogens. World J Microbiol Biotechnol 35(9):143

    Article  PubMed  Google Scholar 

  • Memariani M, Memariani H, Poursafavi Z, Baseri Z (2022) Anti-fungal effects and mechanisms of action of wasp venom-derived peptide mastoparan-VT1 against Candida albicans. Int J Pept Res Ther 28:96

    Article  CAS  Google Scholar 

  • Memariani H, Memariani M, Robati RM, Nasiri S, Abdollahimajd F, Baseri Z, Moravvej H (2020) Anti-staphylococcal and cytotoxic activities of the short anti-microbial peptide PVP. World J Microbiol Biotechnol 36(11):174

    Article  CAS  PubMed  Google Scholar 

  • Memariani H, Memariani M, Shahidi-Dadras M, Nasiri S, Akhavan MM, Moravvej H (2019b) Melittin: from honeybees to superbugs. Appl Microbiol Biotechnol 103(8):3265–3276

    Article  CAS  PubMed  Google Scholar 

  • Memariani M, Peerayeh SN, Mostafavi SK, Salehi TZ (2014) Detection of class 1 and 2 integrons among enteropathogenic Escherichia coli isolates. Arch Pediatr Infect Dis 2(4):e16372

    Google Scholar 

  • Mishra B, Golla RM, Lau K, Lushnikova T, Wang G (2016) Anti-staphylococcal biofilm effects of human cathelicidin peptides. ACS Med Chem Lett 7(1):117–121

    Article  CAS  PubMed  Google Scholar 

  • Mishra B, Wang G (2017) Titanium surfaces immobilized with the major antimicrobial fragment FK-16 of human cathelicidin LL-37 are potent against multiple antibiotic-resistant bacteria. Biofouling 33(7):544–555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mladenova I (2022) Gastric cancer and Helicobacter pylori. Interdisciplinary cancer research. Springer, Cham. https://doi.org/10.1007/16833_2022_31

    Google Scholar 

  • Mohanty S, Mishra S, Jena P, Jacob B, Sarkar B, Sonawane A (2012) An investigation on the antibacterial, cytotoxic, and antibiofilm efficacy of starch-stabilized silver nanoparticles. Nanomedicine 8(6):916–924

    Article  CAS  PubMed  Google Scholar 

  • Moormeier DE, Bayles KW (2017) Staphylococcus aureus biofilm: a complex developmental organism. Mol Microbiol 104(3):365–376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moravvej H, Shahidi-Dadras M, Memariani H, Memariani M, Robati RM, Gheisari M (2022) Can Helicobacter pylori serve as a trigger for oral lichen planus? Rev Med Microbiol 33(1):e57–e62

    Article  Google Scholar 

  • Moretta A, Scieuzo C, Petrone AM, Salvia R, Manniello MD, Franco A, Lucchetti D, Vassallo A, Vogel H, Sgambato A, Falabella P (2021) Antimicrobial peptides: a new hope in biomedical and pharmaceutical fields. Front Cell Infect Microbiol 11:668632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morroni G, Sante LD, Simonetti O, Brescini L, Kamysz W, Kamysz E, Mingoia M, Brenciani A, Giovanetti E, Bagnarelli P, Giacometti A, Cirioni O (2021) Synergistic effect of antimicrobial peptide LL-37 and colistin combination against multidrug-resistant Escherichia coli isolates. Future Microbiol 16(4):221–227

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee S, Moustafa D, Smith CD, Goldberg JB, Bassler BL (2017) The RhlR quorum-sensing receptor controls Pseudomonas aeruginosa pathogenesis and biofilm development independently of its canonical homoserine lactone autoinducer. PLoS pathogens 13(7):e1006504

    Article  PubMed  PubMed Central  Google Scholar 

  • Nagant C, Pitts B, Nazmi K, Vandenbranden M, Bolscher JG, Stewart PS, Dehaye JP (2012) Identification of peptides derived from the human antimicrobial peptide LL-37 active against biofilms formed by Pseudomonas aeruginosa using a library of truncated fragments. Antimicrob Agents Chemother 56(11):5698–56708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neville F, Ivankin A, Konovalov O, Gidalevitz D (2010) A comparative study on the interactions of SMAP-29 with lipid monolayers. Biochim Biophys Acta 1798(5):851–860

    Article  CAS  PubMed  Google Scholar 

  • Nie D, Hu Y, Chen Z, Li M, Hou Z, Luo X, Mao X, Xue X (2020) Outer membrane protein A (OmpA) as a potential therapeutic target for Acinetobacter baumannii infection. J Biomed Sci 27:26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niemirowicz K, Prokop I, Wilczewska AZ, Wnorowska U, Piktel E, Wątek M, Savage PB, Bucki R (2015) Magnetic nanoparticles enhance the anticancer activity of cathelicidin LL-37 peptide against colon cancer cells. Int J Nanomedicine 10:3843–3853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ogawa T, Terao Y, Okuni H, Ninomiya K, Sakata H, Ikebe K, Maeda Y, Kawabata S (2011) Biofilm formation or internalization into epithelial cells enable Streptococcus pyogenes to evade antibiotic eradication in patients with pharyngitis. Microb Pathog 51(1–2):58–68

    Article  CAS  PubMed  Google Scholar 

  • Oloketuyi SF, Khan F (2017) Strategies for biofilm inhibition and virulence attenuation of foodborne pathogen-Escherichia coli O157: H7. Curr Microbiol 74(12):1477–1489

    Article  CAS  PubMed  Google Scholar 

  • Oren Z, Lerman JC, Gudmundsson GH, Agerberth B, Shai Y (1999) Structure and organization of the human antimicrobial peptide LL-37 in phospholipid membranes: relevance to the molecular basis for its non-cell-selective activity. Biochem J 341(3):501–513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Toole GA, Pratt LA, Watnick PI, Newman DK, Weaver VB, Kolter R (1999) Genetic approaches to study of biofilms. Methods Enzymol 310:91–109

    Article  PubMed  Google Scholar 

  • Overhage J, Campisano A, Bains M, Torfs EC, Rehm BH, Hancock RE (2008) Human host defense peptide LL-37 prevents bacterial biofilm formation. Infect Immun 76(9):4176–4182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pahar B, Madonna S, Das A, Albanesi C, Girolomoni G (2020) Immunomodulatory role of the antimicrobial LL-37 peptide in autoimmune diseases and viral infections. Vaccines (Basel) 8(3):517

    Article  CAS  PubMed  Google Scholar 

  • Papayannopoulos V (2018) Neutrophil extracellular traps in immunity and disease. Nat Rev Immunol 18:134–147

    Article  CAS  PubMed  Google Scholar 

  • Pereira AC, Aguiar AP, Araujo LM, Dantas LO, Mayer MP, Karygianni L, Thurnheer T, Pinheiro ET (2022) Antibiofilm activity of LL-37 peptide and D-amino acids associated with antibiotics used in regenerative endodontics on an ex vivo multispecies biofilm model. Life (Basel) 12(11):1686

    CAS  PubMed  Google Scholar 

  • Piotrowski M, Wultańska D, Pituch H (2022) Effect of prebiotics on Bacteroides sp. adhesion and biofilm formation and synbiotic effect on Clostridioides difficile. Future Microbiol 17(5):363–375

    Article  CAS  PubMed  Google Scholar 

  • Porcelli F, Verardi R, Shi L, Henzler-Wildman KA, Ramamoorthy A, Veglia G (2008) NMR structure of the cathelicidin-derived human antimicrobial peptide LL-37 in dodecylphosphocholine micelles. Biochemistry 20(20):5565–5572

    Article  Google Scholar 

  • Ranjbar R, Memariani H, Sorouri R (2017) Molecular epidemiology of extended-spectrum beta-lactamase-producing Klebsiella pneumoniae strains isolated from children with urinary tract infections. Arch Pediatr Infect Dis 5(2):e39000

    Google Scholar 

  • Ranjbar R, Mostafavi SS, Memariani H (2018) Evaluation of multiple-locus variable-number tandem repeat analysis (MLVA) for genotyping of Escherichia coli isolated from Karaj River. Water Sci Technol: Water Supply 18(1):160–166

    CAS  Google Scholar 

  • Rather MA, Gupta K, Mandal M (2021) Microbial biofilm: formation, architecture, antibiotic resistance, and control strategies. Braz J Microbiol 52(4):1701–1718

    Article  PubMed  PubMed Central  Google Scholar 

  • Rodrigues G, Maximiano MR, Franco OL (2021) Antimicrobial peptides used as growth promoters in livestock production. Appl Microbiol Biotechnol 105:7115–7121

    Article  CAS  PubMed  Google Scholar 

  • Roy R, Tiwari M, Donelli G, Tiwari V (2018) Strategies for combating bacterial bioflms: a focus on anti-bioflm agents and their mechanisms of action. Virulence 9(1):522–554

    Article  CAS  PubMed  Google Scholar 

  • Rozenbaum RT, Su L, Umerska A, Eveillard M, Håkansson J, Mahlapuu M, Huang F, Liu J, Zhang Z, Shi L, van der Mei HC, Busscher HJ, Sharma PK (2019) Antimicrobial synergy of monolaurin lipid nanocapsules with adsorbed antimicrobial peptides against Staphylococcus aureus biofilms in vitro is absent in vivo. J Control Release 293:73–83

    Article  CAS  PubMed  Google Scholar 

  • Sahl JW, Johnson JK, Harris AD, Phillippy AM, Hsiao WW, Thom KA, Rasko DA (2011) Genomic comparison of multi-drug resistant invasive and colonizing Acinetobacter baumannii isolated from diverse human body sites reveals genomic plasticity. BMC Genomics 12:291

    Article  PubMed  PubMed Central  Google Scholar 

  • Salli KM, Ouwehand AC (2015) The use of in vitro model systems to study dental biofilms associated with caries: a short review. J Oral Microbiol 7:26149

    Article  PubMed  Google Scholar 

  • Saporito P, Vang Mouritzen M, Løbner-Olesen A, Jenssen H (2018) LL‐37 fragments have antimicrobial activity against Staphylococcus epidermidis biofilms and wound healing potential in HaCaT cell line. J Pept Sci 24(7):e3080

    Article  PubMed  Google Scholar 

  • Sawasdidoln C, Taweechaisupapong S, Sermswan RW, Tattawasart U, Tungpradabkul S, Wongratanacheewin S (2010) Growing Burkholderia pseudomallei in biofilm stimulating conditions significantly induces antimicrobial resistance. PLoS One 5(2):e9196

  • Schaal JB, Maretzky T, Tran DQ, Tran PA, Tongaonkar P, Blobel CP, Ouellette AJ, Selsted ME (2018) Macrocyclic θ-defensins suppress tumor necrosis factor-α (TNF-α) shedding by inhibition of TNF-α–converting enzyme. J Biol Chem 293(8):2725–2234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scheenstra MR, Van Harten RM, Veldhuizen EJ, Haagsman HP, Coorens M (2020) Cathelicidins modulate TLR-activation and inflammation. Front Immunol 11:1137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schneider JJ, Unholzer A, Schaller M, Schäfer-Korting M, Korting HC (2005) Human defensins. J Mol Med (Berl) 83(8):587–595

    Article  CAS  PubMed  Google Scholar 

  • Shang D, Liu Y, Jiang F, Ji F, Wang H, Han X (2019) Synergistic antibacterial activity of designed trp-containing antibacterial peptides in combination with antibiotics against multidrug-resistant Staphylococcus epidermidis. Front Microbiol 10:2719

    Article  PubMed  PubMed Central  Google Scholar 

  • Sharma G, Sharma S, Sharma P, Chandola D, Dang S, Gupta S, Gabrani R (2016) Escherichia coli biofilm: development and therapeutic strategies. J Appl Microbiol 121(2):309–319

    Article  CAS  PubMed  Google Scholar 

  • Shi P, Gao Y, Lu Z, Yang L (2014) Effect of antibacterial peptide LL-37 on the integrity of Acinetobacter baumannii biofilm. J South Med Univ 34(3):426–429 [Article in Chinese]

    CAS  Google Scholar 

  • Shi S, Shen T, Liu Y, Chen L, Wang C, Liao C (2021) Porcine myeloid antimicrobial peptides: a review of the activity and latest advances. Front Vet Sci 8:664139

    Article  PubMed  PubMed Central  Google Scholar 

  • Shurko JF, Galega RS, Li C, Lee GC (2018) Evaluation of LL-37 antimicrobial peptide derivatives alone and in combination with vancomycin against S. aureus. J Antibiot (Tokyo) 71:971–974

    Article  CAS  PubMed  Google Scholar 

  • Siebert C, Villers C, Pavlou G, Touquet B, Yakandawala N, Tardieux I, Renesto P (2020) Francisella novicida and F. philomiragia biofilm features conditionning fitness in spring water and in presence of antibiotics. PLoS ONE 15(2):e0228591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sieprawska-Lupa M, Mydel P, Krawczyk K, Wójcik K, Puklo M, Lupa B, Suder P, Silberring J, Reed M, Pohl J, Shafer W, McAleese F, Foster T, Travis J, Potempa J (2004) Degradation of human antimicrobial peptide LL-37 by Staphylococcus aureus-derived proteinases. Antimicrob Agents Chemother 48(12):4673–4679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silva JP, Gonçalves C, Costa C, Sousa J, Silva-Gomes R, Castro AG, Pedrosa J, Appelberg R, Gama FM (2016) Delivery of LLKKK18 loaded into self-assembling hyaluronic acid nanogel for tuberculosis treatment. J Control Release 235:112–124

    Article  CAS  PubMed  Google Scholar 

  • Soberón-Chávez G, Lépine F, Déziel E (2005) Production of rhamnolipids by Pseudomonas aeruginosa. Appl Microbiol Biotechnol 68:718–725

    Article  PubMed  Google Scholar 

  • Sol A, Ginesin O, Chaushu S, Karra L, Coppenhagen-Glazer S, Ginsburg I, Bachrach G (2013) LL-37 opsonizes and inhibits biofilm formation of Aggregatibacter actinomycetemcomitans at subbactericidal concentrations. Infect Immun 81(1):3577–3585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sonesson A, Przybyszewska K, Eriksson S, Mörgelin M, Kjellström S, Davies J, Potempa J, Schmidtchen A (2017) Identification of bacterial biofilm and the Staphylococcus aureus derived protease, staphopain, on the skin surface of patients with atopic dermatitis. Sci Rep 7(1):8689

    Article  PubMed  PubMed Central  Google Scholar 

  • Song DW, Kim SH, Kim HH, Lee KH, Ki CS, Park YH (2016) Multi-biofunction of antimicrobial peptide-immobilized silk fibroin nanofiber membrane: implications for wound healing. Acta Biomater 39:146–155

    Article  CAS  PubMed  Google Scholar 

  • Spencer JJ, Pitts RE, Pearson RA, King LB (2018) The effects of antimicrobial peptides WAM-1 and LL-37 on multidrug-resistant Acinetobacter baumannii. Pathog Dis 76(2):fty007

    Article  Google Scholar 

  • Stokes JM, Lopatkin AJ, Lobritz MA, Collins JJ (2019) Bacterial metabolism and antibiotic efficacy. Cell Metab 30(2):251–259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szulcek R, Bollensdorff C, Hordijk P, Gabriel M (2018) The covalently immobilized antimicrobial peptide LL37 acts as a VEGF mimic and stimulates endothelial cell proliferation. Biochem Biophys Res Commun 496(3):887–890

    Article  CAS  PubMed  Google Scholar 

  • Tokajuk J, Deptuła P, Piktel E, Daniluk T, Chmielewska S, Wollny T, Wolak P, Fiedoruk K, Bucki R (2022) Cathelicidin LL-37 in Health and Diseases of the oral cavity. Biomedicines 10(5):1086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tuon FF, Dantas LR, Suss PH, Tasca Ribeiro VS (2022) Pathogenesis of the Pseudomonas aeruginosa biofilm: a review. Pathogens 11(3):300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turnbull L, Whitchurch CB (2014) Motility assay: twitching motility. In: Filloux A, Ramos JL (eds) Pseudomonas Methods and Protocols. Methods in Molecular Biology, vol 1149. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-0473-0_9

    Google Scholar 

  • Van Harten RM, Van Woudenbergh E, Van Dijk A, Haagsman HP (2018) Cathelicidins: immunomodulatory antimicrobials. Vaccines (Basel) 6(3):63

    Article  PubMed  Google Scholar 

  • van Wolferen M, Orell A, Albers SV (2018) Archaeal biofilm formation. Nat Rev Microbiol 16:699–713

    Article  PubMed  Google Scholar 

  • Wang G (2008) Structures of human host defense cathelicidin LL-37 and its smallest antimicrobial peptide KR-12 in lipid micelles. J Biol Chem 283(47):32637–32643

    Article  CAS  PubMed  Google Scholar 

  • Wang G (2022) Unifying the classification of antimicrobial peptides in the antimicrobial peptide database. Methods Enzymol 663:1–18

    Article  PubMed  Google Scholar 

  • Wang G, Hanke ML, Mishra B, Lushnikova T, Heim CE, Chittezham Thomas V, Bayles KW, Kielian T (2014) Transformation of human cathelicidin LL-37 into selective, stable, and potent antimicrobial compounds. ACS Chem Biol 9(9):1997–2002

    Article  CAS  Google Scholar 

  • Wei J, Cao X, Qian J, Liu Z, Wang X, Su Q, Wang Y, Xie R, Li X (2021) Evaluation of antimicrobial peptide LL-37 for treatment of Staphylococcus aureus biofilm on titanium plate. Medicine 100(44):e27426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wittgens A, Kovacic F, Müller MM, Gerlitzki M, Santiago-Schübel B, Hofmann D, Tiso T, Blank LM, Henkel M, Hausmann R, Syldatk C, Wilhelm S, Rosenau F (2017) Novel insights into biosynthesis and uptake of rhamnolipids and their precursors. Appl Microbiol Biotechnol 101(7):2865–2878

    Article  CAS  PubMed  Google Scholar 

  • Wongkaewkhiaw S, Taweechaisupapong S, Thanaviratananich S, Bolscher JG, Nazmi K, Anutrakunchai C, Chareonsudjai S, Kanthawong S (2020) D-LL-31 enhances biofilm-eradicating effect of currently used antibiotics for chronic rhinosinusitis and its immunomodulatory activity on human lung epithelial cells. PLoS ONE 15(12):e0243315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Worthington RJ, Richards JJ, Melander C (2012) Small molecule control of bacterial biofilms. Org Biomol Chem 10(37):7457–7474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wuersching SN, Huth KC, Hickel R, Kollmuss M (2021a) Inhibitory effect of LL-37 and human lactoferricin on growth and biofilm formation of anaerobes associated with oral diseases. Anaerobe 67:102301

    Article  CAS  PubMed  Google Scholar 

  • Wuersching SN, Huth KC, Hickel R, Kollmuss M (2021b) Targeting antibiotic tolerance in anaerobic biofilms associated with oral diseases: human antimicrobial peptides LL-37 and lactoferricin enhance the antibiotic efficacy of amoxicillin, clindamycin and metronidazole. Anaerobe 71:102439

    Article  CAS  PubMed  Google Scholar 

  • Xhindoli D, Pacor S, Benincasa M, Scocchi M, Gennaro R, Tossi A (2016) The human cathelicidin LL-37—A pore-forming antibacterial peptide and host-cell modulator. Biochim Biophys Acta 1858(3):546–566

    Article  CAS  PubMed  Google Scholar 

  • Xiao Q, Luo Y, Shi W, Lu Y, Xiong R, Wu X, Huang H, Zhao C, Zeng J, Chen C (2022) The effects of LL-37 on virulence factors related to the quorum sensing system of Pseudomonas aeruginosa. Ann Transl Med 10(6):284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan CY, Liu YZ, Xu ZH, Yang HY, Li J (2020) Comparison of antibacterial effect of cationic peptide LL-37 and cefalexin on clinical Staphylococcus aureus‐induced infection after femur fracture fixation. Orthop Surg 12(4):1313–1318

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang L, Liu Y, Wang N, Wang H, Wang K, Luo XL, Dai RX, Tao RJ, Wang HJ, Yang JW, Tao GQ, Qu JM, Ge BX, Li YY, Xu JF (2021) Albumin-based LL37 peptide nanoparticles as a sustained release system against Pseudomonas aeruginosa lung infection. ACS Biomater Sci Eng 7(5):1817–1826

    Article  CAS  PubMed  Google Scholar 

  • Yu H, He X, Xie W, Xiong J, Sheng H, Guo S, Huang C, Zhang D, Zhang K (2014) Elastase LasB of Pseudomonas aeruginosa promotes biofilm formation partly through rhamnolipid-mediated regulation. Can J Microbiol 60(4):227–235

    Article  CAS  PubMed  Google Scholar 

  • Zeth K, Sancho-Vaello E (2021) Structural plasticity of LL-37 indicates elaborate functional adaptation mechanisms to bacterial target structures. Int J Mol Sci 22(10):5200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Wu WK, Gallo RL, Fang EF, Hu W, Ling TK, Shen J, Chan RL, Lu L, Luo XM, Li MX, Chan KM, Yu J, Wong VWS, Ng SC, Wong SH, Chan FKL, Sung JJY, Chan MTV, Cho CH (2016) Critical role of antimicrobial peptide cathelicidin for controlling Helicobacter pylori survival and infection. J Immunol 196(4):1799–1809

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

MM contributed to the conception of the study. HM collected the data. HM and MM jointly wrote the manuscript. MM reviewed and edited the manuscript. Both authors read and approved the final manuscript.

Corresponding author

Correspondence to Mojtaba Memariani.

Ethics declarations

Conflict of Interest

The authors declare no conflicts of interest.

Competing Interests

The authors declare no competing interests.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

All authors gave final approval for publication.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Memariani, H., Memariani, M. Antibiofilm properties of cathelicidin LL-37: an in-depth review. World J Microbiol Biotechnol 39, 99 (2023). https://doi.org/10.1007/s11274-023-03545-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11274-023-03545-z

Keywords

Navigation