Skip to main content
Log in

Omics analysis of acetic acid tolerance in Saccharomyces cerevisiae

  • Review
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Acetic acid is an inhibitor in industrial processes such as wine making and bioethanol production from cellulosic hydrolysate. It causes energy depletion, inhibition of metabolic enzyme activity, growth arrest and ethanol productivity losses in Saccharomyces cerevisiae. Therefore, understanding the mechanisms of the yeast responses to acetic acid stress is essential for improving acetic acid tolerance and ethanol production. Although 329 genes associated with acetic acid tolerance have been identified in the Saccharomyces genome and included in the database (http://www.yeastgenome.org/observable/resistance_to_acetic_acid/overview), the cellular mechanistic responses to acetic acid remain unclear in this organism. Post-genomic approaches such as transcriptomics, proteomics, metabolomics and chemogenomics are being applied to yeast and are providing insight into the mechanisms and interactions of genes, proteins and other components that together determine complex quantitative phenotypic traits such as acetic acid tolerance. This review focuses on these omics approaches in the response to acetic acid in S. cerevisiae. Additionally, several novel strains with improved acetic acid tolerance have been engineered by modifying key genes, and the application of these strains and recently acquired knowledge to industrial processes is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abbott DA, Knijnenburg TA, de Poorter LMI, Reinders MJT, Pronk JT, van Maris AJA (2007) Generic and specific transcriptional responses to different weak organic acids in anaerobic chemostat cultures of Saccharomyces cerevisiae. FEMS Yeast Res 7:819–833. doi:10.1111/j.1567-1364.2007.00242.x

    Article  CAS  Google Scholar 

  • An J, Kwon H, Kim E, Lee YM, Ko HJ, Park H, Choi IG, Kim S, Kim KH, Kim W, Choi W (2015) Tolerance to acetic acid is improved by mutations of the TATA-binding protein gene. Environ Microbiol 17:656–669. doi:10.1111/1462-2920.12489

    Article  CAS  Google Scholar 

  • Arneborg N, Jespersen L, Jakobsen M (2000) Individual cells of Saccharomyces cerevisiae and Zygosaccharomyces bailii exhibit different short-term intracellular pH responses to acetic acid. Arch Microbiol 174:125–128. doi:10.1007/s002030000185

    Article  CAS  Google Scholar 

  • Bajwa PK, Ho CY, Chan CK, Martin VJJ, Trevors JT, Lee H (2013) Transcriptional profiling of Saccharomyces cerevisiae T2 cells upon exposure to hardwood spent sulphite liquor: comparison to acetic acid, furfural and hydroxymethylfurfural. Antonie Van Leeuwenhoek 103:1281–1295. doi:10.1007/s10482-013-9909-1

    Article  CAS  Google Scholar 

  • Bansal AK (2005) Bioinformatics in microbial biotechnology—a mini review. Microb Cell Fact 4:11. doi:10.1186/1475-2859-4-19

    Article  Google Scholar 

  • Ben-Ari G, Zenvirth D, Sherman A, David L, Klutstein M, Lavi U, Hillel J, Simchen G (2006) Four linked genes participate in controlling sporulation efficiency in budding yeast. PLoS Genet 2:1815–1823. doi:10.1371/journal.pgen.0020195

    Article  CAS  Google Scholar 

  • Braconi D, Bernardini G, Santucci A (2016) Saccharomyces cerevisiae as a model in ecotoxicological studies: a post-genomics perspective. J Proteomics 137:19–34. doi:10.1016/j.jprot.2015.09.001

    Article  CAS  Google Scholar 

  • Carmelo V, Santos H, Sá-Correia I (1997) Effect of extracellular acidification on the activity of plasma membrane ATPase and on the cytosolic and vacuolar pH of Saccharomyces cerevisiae. Biochim Biophys Acta 1325(1):63–70. doi:10.1016/s0005-2736(96)00245-3

    Article  CAS  Google Scholar 

  • Cevallos-Cevallos JM, Reyes-De-Corcuera JI, Etxeberria E, Danyluk MD, Rodrick GE (2009) Metabolomic analysis in food science: a review. Trends Food Sci Technol 20:557–566 doi:10.1016/j.tifs.2009.07.002

    Article  CAS  Google Scholar 

  • Chen YY, Sheng JY, Jiang T, Stevens J, Feng XY, Wei N (2016a) Transcriptional profiling reveals molecular basis and novel genetic targets for improved resistance to multiple fermentation inhibitors in Saccharomyces cerevisiae. Biotechnol Biofuels 9:18. doi:10.1186/s13068-015-0418-5

    Article  Google Scholar 

  • Chen YY, Stabryla L, Wei N (2016b) Improved acetic acid resistance in Saccharomyces cerevisiae by overexpression of the WHI2 gene identified through inverse metabolic engineering. Appl Environ Microbiol 82:2156–2166. doi:10.1128/aem.03718-15

    Article  CAS  Google Scholar 

  • Cheng C, Zhao XQ, Zhang MM, Bai FW (2016) Absence of Rtt109p, a fungal-specific histone acetyltransferase, results in improved acetic acid tolerance of Saccharomyces cerevisiae. FEMS Yeast Res 16:9. doi:10.1093/femsyr/fow010

    Article  Google Scholar 

  • Chesson A, Gordon AH, Lomax JA (1983) Substituent groups linked by alkali-labile bonds to arabinose and xylose residues of legume, grass and cereal straw cell walls and their fate during digestion by rumen microorganisms. J Sci Food Agric 34:1330–1340. doi:10.1002/jsfa.2740341204

    Article  CAS  Google Scholar 

  • Ding MZ, Wang X, Yang Y, Yuan YJ (2012) Comparative metabolic profiling of parental and inhibitors-tolerant yeasts during lignocellulosic ethanol fermentation. Metabolomics 8:232–243. doi:10.1007/s11306-011-0303-6

    Article  CAS  Google Scholar 

  • Ding J, Holzwarth G, Bradford CS, Cooley B, Yoshinaga AS, Patton-Vogt J, Abeliovich H, Penner MH, Bakalinsky AT (2015a) PEP3 overexpression shortens lag phase but does not alter growth rate in Saccharomyces cerevisiae exposed to acetic acid stress. Appl Microbiol Biotechnol 99:8667–8680. doi:10.1007/s00253-015-6708-9

    Article  CAS  Google Scholar 

  • Ding J, Holzwarth G, Penner MH, Patton-Vogt J, Bakalinsky AT (2015b) Overexpression of acetyl-CoA synthetase in Saccharomyces cerevisiae increases acetic acid tolerance. FEMS Microbiol Lett 362:7. doi:10.1093/femsle/fnu042

    Article  Google Scholar 

  • Ehrenreich IM, Torabi N, Jia Y, Kent J, Martis S, Shapiro JA, Gresham D, Caudy AA, Kruglyak L (2010) Dissection of genetically complex traits with extremely large pools of yeast segregants. Nature 464:1039–1101. doi:10.1038/nature08923

    Article  CAS  Google Scholar 

  • Fang Q, Zhang M, Chen H, Xiong L, Zhao X, Bai F (2015) Improvement of acetic acid tolerance of Saccharomyces cerevisiae by overexpressing glutaredoxin encoding gene GRX5. CIESC J 66:1434–1439

    CAS  Google Scholar 

  • Fernandes AR, Mira NP, Vargas RC, Canelhas I, Sa-Correia I (2005) Saccharomyces cerevisiae adaptation to weak acids involves the transcription factor Haa1p and Haa1p-regulated genes. Biochem Biophys Res Commun 337:95–103. doi:10.1016/j.bbrc.2005.09.010

    Article  CAS  Google Scholar 

  • Fletcher E, Feizi A, Kim S, Siewers V, Nielsen J (2015) RNA-seq analysis of Pichia anomala reveals important mechanisms required for survival at low pH. Microb Cell Fact 14:11. doi:10.1186/s12934-015-0331-4

    Article  Google Scholar 

  • Geng P, Xiao Y, Hu Y, Sun HY, Xue W, Zhang L, Shi GY (2016) Genetic dissection of acetic acid tolerance in Saccharomyces cerevisiae. World J Microbiol Biotechnol 32:8. doi:10.1007/s11274-016-2101-9

    Article  Google Scholar 

  • Ghaemmaghami S, Huh WK, Bower K, Howson RW, Belle A, Dephoure N, O’Shea EK, Weissman JS (2003) Global analysis of protein expression in yeast. Nature 425:737–741. doi:10.1038/nature02046

    Article  CAS  Google Scholar 

  • Giannattasio S, Guaragnella N, Zdralevic M, Marra E (2013) Molecular mechanisms of Saccharomyces cerevisiae stress adaptation and programmed cell death in response to acetic acid Frontiers. Microbiology 4:7. doi:10.3389/fmicb.2013.00033

    Google Scholar 

  • González-Ramos D, Gorter de Vries AR, Grijseels SS, van Berkum MC, Swinnen S, van den Broek M, Nevoigt E, Daran JM, Pronk JT, van Maris AJ (2016) A new laboratory evolution approach to select for constitutive acetic acid tolerance in Saccharomyces cerevisiae and identification of causal mutations. Biotechnol Biofuels 9:18 doi:10.1186/s13068-016-0583-1

    Article  Google Scholar 

  • Hasunuma T, Sanda T, Yamada R, Yoshimura K, Ishii J, Kondo A (2011) Metabolic pathway engineering based on metabolomics confers acetic and formic acid tolerance to a recombinant xylose-fermenting strain of Saccharomyces cerevisiae. Microb Cell Fact 10:13. doi:10.1186/1475-2859-10-2

    Article  Google Scholar 

  • Holyoak CD, Bracey D, Piper PW, Kuchler K, Coote PJ (1999) The Saccharomyces cerevisiae weak-acid-inducible ABC transporter pdr12 transports fluorescein and preservative anions from the cytosol by an energy-dependent mechanism. J Bacteriol 181:4644–4652

    CAS  Google Scholar 

  • Hubmann G, Foulquié-Moreno MR, Nevoigt E, Duitama J, Meurens N, Pais TM, Mathé L, Saerens S, Nguyen HT, Swinnen S, Verstrepen KJ, Concilio L, de Troostembergh JC, Thevelein JM (2013a) Quantitative trait analysis of yeast biodiversity yields novel gene tools for metabolic engineering. Metab Eng 17:68–81. doi:10.1016/j.ymben.2013.02.006

    Article  CAS  Google Scholar 

  • Hubmann G, Mathé L, Foulquié-Moreno MR, Duitama J, Nevoigt E, Thevelein JM (2013b) Identification of multiple interacting alleles conferring low glycerol and high ethanol yield in Saccharomyces cerevisiae ethanolic fermentation. Biotechnol Biofuels 6(1):87 doi:10.1186/1754-6834-6-87

    Article  CAS  Google Scholar 

  • Ismail KSK, Sakamoto T, Hasunuma T, Zhao XQ, Kondo A (2014) Zinc, magnesium, and calcium ion supplementation confers tolerance to acetic acid stress in industrial Saccharomyces cerevisiae utilizing xylose. Biotechnol J 9:1519–1525. doi:10.1002/biot.201300553

    Article  CAS  Google Scholar 

  • Kane PA (2006) The where, when, and how of organelle acidification by the yeast vacuolar H+-ATPase. Microbiol Mol Biol Rev 70:177–191. doi:10.1128/mmbr.70.1.177-191.2006

    Article  CAS  Google Scholar 

  • Kawahata M, Masaki K, Fujii T, Iefuji H (2006) Yeast genes involved in response to lactic acid and acetic acid: acidic conditions caused by the organic acids in Saccharomyces cerevisiae cultures induce expression of intracellular metal metabolism genes regulated by Aft1p. FEMS Yeast Res 6:924–936. doi:10.1111/j.1567-1364.2006.00089.x

    Article  CAS  Google Scholar 

  • Kim SK, Jin YS, Choi IG, Park YC, Seo JH (2015) Enhanced tolerance of Saccharomyces cerevisiae to multiple lignocellulose-derived inhibitors through modulation of spermidine contents. Metab Eng 29:46–55. doi:10.1016/j.ymben.2015.02.004

    Article  CAS  Google Scholar 

  • Kumar V, Hart AJ, Keerthiraju ER, Waldron PR, Tucker GA, Greetham D (2015) Expression of mitochondrial cytochrome c oxidase chaperone gene (COX20) improves tolerance to weak acid and oxidative stress during yeast fermentation. PLoS ONE 10:16. doi:10.1371/journal.pone.0139129

    Google Scholar 

  • Lee YJ, Jang JW, Kim KJ, Maeng PJ (2011) TCA cycle-independent acetate metabolism via the glyoxylate cycle in Saccharomyces cerevisiae. Yeast 28:153–166. doi:10.1002/yea.1828

    Article  CAS  Google Scholar 

  • Lee Y, Nasution O, Choi E, Choi IG, Kim W, Choi W (2015) Transcriptome analysis of acetic-acid-treated yeast cells identifies a large set of genes whose overexpression or deletion enhances acetic acid tolerance. Appl Microbiol Biotechnol 99:6391–6403. doi:10.1007/s00253-015-6706-y

    Article  CAS  Google Scholar 

  • Li B-Z, Yuan Y-J (2010) Transcriptome shifts in response to furfural and acetic acid in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 86:1915–1924. doi:10.1007/s00253-010-2518-2

    Article  CAS  Google Scholar 

  • Liu XY, Zhang XH, Zhang ZJ (2014) Point mutation of H3/H4 histones affects acetic acid tolerance in Saccharomyces cerevisiae. J Biotechnol 187:116–123. doi:10.1016/j.jbiotec.2014.07.445

    Article  Google Scholar 

  • Longo V, Ždralević M, Guaragnella N, Giannattasio S, Zolla L, Timperio AM (2015) Proteome and metabolome profiling of wild-type and YCA1-knock-out yeast cells during acetic acid-induced programmed cell death. J Proteomics 128:173–188. doi:10.1016/j.jprot.2015.08.003

    Article  CAS  Google Scholar 

  • Ludovico P, Sousa MJ, Silva MT, Leão C, Côrte-Real M (2001) Saccharomyces cerevisiae commits to a programmed cell death process in response to acetic acid. Microbiology 147:2409–2415. doi:10.1099/00221287-147-9-2409

    Article  CAS  Google Scholar 

  • Luo CD, Brink DL, Blanch HW (2002) Identification of potential fermentation inhibitors in conversion of hybrid poplar hydrolyzate to ethanol. Biomass Bioenergy 22:125–138 doi:10.1016/s0961-9534(01)00061-7

    Article  CAS  Google Scholar 

  • Lv YJ, Wang X, Ma Q, Bai X, Li BZ, Zhang WW, Yuan YJ (2014) Proteomic analysis reveals complex metabolic regulation in Saccharomyces cerevisiae cells against multiple inhibitors stress. Appl Microbiol Biotechnol 98:2207–2221. doi:10.1007/s00253-014-5519-8

    Article  CAS  Google Scholar 

  • Ma C, Wei XW, Sun CH, Zhang F, Xu JR, Zhao XQ, Bai FW (2015) Improvement of acetic acid tolerance of Saccharomyces cerevisiae using a zinc-finger-based artificial transcription factor and identification of novel genes involved in acetic acid tolerance. Appl Microbiol Biotechnol 99:2441–2449. doi:10.1007/s00253-014-6343-x

    Article  CAS  Google Scholar 

  • Martinez-Munoz GA, Kane P (2008) Vacuolar and plasma membrane proton pumps collaborate to achieve cytosolic pH homeostasis in yeast. J Biol Chem 283:20309–20319. doi:10.1074/jbc.M710470200

    Article  CAS  Google Scholar 

  • Meijnen JP, Randazzo P, Foulquié-Moreno MR, van den Brink J, Vandecruys P, Stojiljkovic M, Dumortier F, Zalar P, Boekhout T, Gunde-Cimerman N, Kokošar J, Štajdohar M, Curk T, Petrovič U, Thevelein JM (2016) Polygenic analysis and targeted improvement of the complex trait of high acetic acid tolerance in the yeast Saccharomyces cerevisiae. Biotechnol Biofuels. doi:10.1186/s13068-015-0421-x

    Google Scholar 

  • Metzker ML (2010) Sequencing technologies—the next generation. Nat Rev Genet 11:31–46. doi:10.1038/nrg2626

    Article  CAS  Google Scholar 

  • Mira NP, Becker JD, Sá-Correia I (2010a) Genomic expression program involving the Haa1p-regulon in Saccharomyces cerevisiae response to acetic acid Omics-a. J Integr Biol 14:587–601. doi:10.1089/omi.2010.0048

    CAS  Google Scholar 

  • Mira NP, Palma M, Guerreiro JF, Sá-Correia I (2010b) Genome-wide identification of Saccharomyces cerevisiae genes required for tolerance to acetic acid. Microb Cell Fact 9:13. doi:10.1186/1475-2859-9-79

    Article  Google Scholar 

  • Mira NP, Teixeira MC, Sá-Correia I (2010c) Adaptive response and tolerance to weak acids in Saccharomyces cerevisiae: a genome-wide view Omics-a. J Integr Biol 14:525–540. doi:10.1089/omi.2010.0072

    CAS  Google Scholar 

  • Mollapour M, Piper PW (2007) Hog1 mitogen-activated protein kinase phosphorylation targets the yeast Fps1 aquaglyceroporin for endocytosis, thereby rendering cells resistant to acetic acid. Mol Cell Biol 27:6446–6456. doi:10.1128/mcb.02205-06

    Article  CAS  Google Scholar 

  • Nagalakshmi U, Wang Z, Waern K, Shou C, Raha D, Gerstein M, Snyder M (2008) The transcriptional landscape of the yeast genome defined by RNA sequencing. Science 320:1344–1349. doi:10.1126/science.1158441

    Article  CAS  Google Scholar 

  • Nugroho RH, Yoshikawa K, Shimizu H (2015) Metabolomic analysis of acid stress response in Saccharomyces cerevisiae. J Biosci Bioeng 120:396–404. doi:10.1016/j.jbiosc.2015.02.011

    Article  CAS  Google Scholar 

  • Otero JM, Vongsangnak W, Asadollahi MA, Olivares-Hernandes R, Maury J, Farinelli L, Barlocher L, Osterås M, Schalk M, Clark A, Nielsen J (2010) Whole genome sequencing of Saccharomyces cerevisiae: from genotype to phenotype for improved metabolic engineering applications. BMC Genomics 11:723. doi:10.1186/1471-2164-11-723

    Article  Google Scholar 

  • Pais TM, Foulquié-Moreno MR, Hubmann G, Duitama J, Swinnen S, Goovaerts A, Yang Y, Dumortier F, Thevelein JM (2013) Comparative polygenic analysis of maximal ethanol accumulation capacity and tolerance to high ethanol levels of cell proliferation in yeast. PLoS Genet 9:18. doi:10.1371/journal.pgen.1003548

    Article  Google Scholar 

  • Pampulha ME, Loureiro-Dias MC (2000) Energetics of the effect of acetic acid on growth of Saccharomyces cerevisiae. FEMS Microbiol Lett 184:69–72. doi:10.1016/s0378-1097(00)00022-7

    Article  CAS  Google Scholar 

  • Rolland F, Winderickx J, Thevelein JM (2002) Glucose-sensing and -signalling mechanisms in yeast. FEMS Yeast Res 2:183–201. doi:10.1111/j.1567-1364.2002.tb00084.x

    Article  CAS  Google Scholar 

  • Sakihama Y, Hasunuma T, Kondo A (2015) Improved ethanol production from xylose in the presence of acetic acid by the overexpression of the HAA1 gene in Saccharomyces cerevisiae. J Biosci Bioeng 119:297–302. doi:10.1016/j.jbiosc.2014.09.004

    Article  CAS  Google Scholar 

  • Sardu A, Treu L, Campanaro S (2014) Transcriptome structure variability in Saccharomyces cerevisiae strains determined with a newly developed assembly software. BMC Genomics. doi:10.1186/1471-2164-15-1045

    Google Scholar 

  • Si T, Luo YZ, Bao ZH, Zhao HM (2015) RNAi-assisted genome evolution in Saccharomyces cerevisiae for complex phenotype engineering. ACS Synth Biol 4:283–291. doi:10.1021/sb500074a

    Article  CAS  Google Scholar 

  • Solieri L, Giudici P (2008) Yeasts associated to traditional balsamic vinegar: ecological and technological features. Int J Food Microbiol 125:36–45. doi:10.1016/j.ijfoodmicro.2007.06.022

    Article  CAS  Google Scholar 

  • Swinnen S, Schaerlaekens K, Pais T, Claesen J, Hubmann G, Yang Y, Demeke M, Foulquié-Moreno MR, Goovaerts A, Souvereyns K, Clement L, Dumortier F, Thevelein JM (2012a) Identification of novel causative genes determining the complex trait of high ethanol tolerance in yeast using pooled-segregant whole-genome sequence analysis. Genome Res 22:975–984. doi:10.1101/gr.131698.111

    Article  CAS  Google Scholar 

  • Swinnen S, Thevelein JM, Nevoigt E (2012b) Genetic mapping of quantitative phenotypic traits in Saccharomyces cerevisiae. FEMS Yeast Res 12:215–227. doi:10.1111/j.1567-1364.2011.00777.x

    Article  CAS  Google Scholar 

  • Swinnen S, Henriques SF, Shrestha R, Ho PW, Sá-Correia I, Nevoigt E (2017) Improvement of yeast tolerance to acetic acid through Haa1 transcription factor engineering: towards the underlying mechanisms. Microb Cell Fact 16:15. doi:10.1186/s12934-016-0621-5

    Article  Google Scholar 

  • Takabatake A, Kawazoe N, Izawa S (2015) Plasma membrane proteins Yro2 and Mrh1 are required for acetic acid tolerance in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 99:2805–2814. doi:10.1007/s00253-014-6278-2

    Article  CAS  Google Scholar 

  • Vilela-Moura A, Schuller D, Mendes-Faia A, Corte-Real M (2008) Reduction of volatile acidity of wines by selected yeast strains. Appl Microbiol Biotechnol 80:881–890. doi:10.1007/s00253-008-1616-x

    Article  CAS  Google Scholar 

  • Vilela-Moura A, Schuller D, Mendes-Faia A, Silva RD, Chaves SR, Sousa MJ, Côrte-Real M (2011) The impact of acetate metabolism on yeast fermentative performance and wine quality: reduction of volatile acidity of grape musts and wines. Appl Microbiol Biotechnol 89:271–280. doi:10.1007/s00253-010-2898-3

    Article  CAS  Google Scholar 

  • Weckwerth W (2003) Metabolomics in systems biology. Annu Rev Plant Biol 54:669–689. doi:10.1146/annurev.arplant.54.031902.135014

    Article  CAS  Google Scholar 

  • Wilkening S, Lin G, Fritsch ES, Tekkedil MM, Anders S, Kuehn R, Nguyen M, Aiyar RS, Proctor M, Sakhanenko NA, Galas DJ, Gagneur J, Deutschbauer A, Steinmetz LM (2014) An evaluation of high-throughput approaches to QTL mapping in Saccharomyces cerevisiae. Genetics 196:853–865. doi:10.1534/genetics.113.160291

    Article  CAS  Google Scholar 

  • Wu XC, Zhang LJ, Jin XN, Fang YH, Zhang K, Qi L, Zheng DQ (2016) Deletion of JJJ1 improves acetic acid tolerance and bioethanol fermentation performance of Saccharomyces cerevisiae strains. Biotechnol Lett 38:1097–1106. doi:10.1007/s10529-016-2085-4

    Article  CAS  Google Scholar 

  • Yang Y, Foulquié-Moreno MR, Clement L, Erdei E, Tanghe A, Schaerlaekens K, Dumortier F, Thevelein JM (2013) QTL analysis of high thermotolerance with superior and downgraded parental yeast strains reveals new minor QTLs and converges on novel causative alleles involved in RNA processing. PLoS Genet 9:15. doi:10.1371/journal.pgen.1003693

    Google Scholar 

  • Zhang A, Kong Q, Cao L, Chen X (2007) Effect of FPS1 deletion on the fermentation properties of Saccharomyces cerevisiae. Lett Appl Microbiol 44:212–217. doi:10.1111/j.1472-765X.2006.02041.x

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by China Spark Program (Grant No. 2015GA690004) and the Outstanding Youth Foundation of Jiangsu Province (Grant No. BK20140002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geng, P., Zhang, L. & Shi, G.Y. Omics analysis of acetic acid tolerance in Saccharomyces cerevisiae . World J Microbiol Biotechnol 33, 94 (2017). https://doi.org/10.1007/s11274-017-2259-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11274-017-2259-9

Keywords

Navigation