Skip to main content
Log in

The impact of acetate metabolism on yeast fermentative performance and wine quality: reduction of volatile acidity of grape musts and wines

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Acetic acid is the main component of the volatile acidity of grape musts and wines. It can be formed as a by-product of alcoholic fermentation or as a product of the metabolism of acetic and lactic acid bacteria, which can metabolize residual sugars to increase volatile acidity. Acetic acid has a negative impact on yeast fermentative performance and affects the quality of certain types of wine when present above a given concentration. In this mini-review, we present an overview of fermentation conditions and grape-must composition favoring acetic acid formation, as well the metabolic pathways leading to its formation and degradation by yeast. The negative effect of acetic acid on the fermentative performance of Saccharomyces cerevisiae will also be covered, including its role as a physiological inducer of apoptosis. Finally, currently available wine deacidification processes and new proposed solutions based on zymological deacidification by select S. cerevisiae strains will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Alexandre H, Charpentier C (1998) Biochemical aspects of stuck and sluggish fermentation in grape must. J Ind Microbiol Biotechnol 20:20–27

    Article  CAS  Google Scholar 

  • Alexandre H, Nguyen Van Long T, Feuillat M, Charpentier C (1994) Contribution à l’étude des bourbes: influence sur la fermentescibilité des moûts. Rev Fr Eno 146:11–20

    CAS  Google Scholar 

  • Amerine MA, Berg HW, Cruess WV (1972) The technology of wine making, 3rd edn. The Avi Publishing Company, Westport

    Google Scholar 

  • Arneborg N, Jespersen L, Jakobsen M (2000) Individual cells of Saccharomyces cerevisiae and Zygosaccharomyces bailii exhibit different short-term intracellular pH responses to acetic acid. Arch Microbiol 174:125–128

    Article  CAS  Google Scholar 

  • Barbosa C, Falco V, Mendes-Faia A, Mendes-Ferreira A (2009) Nitrogen addition influences formation of aroma compounds, volatile acidity and ethanol in nitrogen deficient media fermented by Saccharomyces cerevisiae wine strains. J Biosci Bioeng 108:99–104

    Article  CAS  Google Scholar 

  • Barnett JA, Payne RW, Yarrow D (1990) Yeast. Characteristics and identification, 2nd edn. Cambrige University Press, Cambrige

    Google Scholar 

  • Bartowsky EJ, Henschke PA (2008) Acetic acid bacteria spoilage of bottled red wine—a review. Int J Food Microbiol 125:60–70

    Article  CAS  Google Scholar 

  • Beltran G, Novo M, Guillamon JM, Mas A, Rozes N (2008) Effect of fermentation temperature and culture media on the yeast lipid composition and wine volatile compounds. Int J Food Microbiol 121:169–177

    Article  CAS  Google Scholar 

  • Bely M, Rinaldi A, Dubourdieu D (2003) Influence of assimilable nitrogen on volatile acidity production by Saccharomyces cerevisiae during high sugar fermentation. J Biosci Bioeng 96:507–512

    Article  CAS  Google Scholar 

  • Bony M, Bidart F, Camarasa C, Ansanay V, Dulau L, Barre P, Dequin S (1997) Metabolic analysis of S. cerevisiae strains engineered for malolactic fermentation. FEBS Lett 410:452–456

    Article  CAS  Google Scholar 

  • Boulton RB, Singleton VL, Bisson LF, Kunkee RE (1996) Principles and practices of winemaking, 1st edn. Chapman & Hall, New York

    Google Scholar 

  • Bras M, Queenan B, Susin SA (2005) Programmed cell death via mitochondria: different modes of dying. Biochemistry 70:231–239

    CAS  Google Scholar 

  • Buttner S, Eisenberg T, Carmona-Gutierrez D, Ruli D, Knauer H, Ruckenstuhl C, Sigrist C, Wissing S, Kollroser M, Frohlich KU, Sigrist S, Madeo F (2007) Endonuclease G regulates budding yeast life and death. Mol Cell 25:233–246

    Article  CAS  Google Scholar 

  • Casal M, Leão C (1995) Utilization of short-chain monocarboxylic acids by the yeast Torulaspora delbrueckii: Specificity of the transport systems and their regulation. Biochim Biophys Acta 1267:122–130

    Article  Google Scholar 

  • Casal M, Cardoso H, Leão C (1996) Mechanisms regulating the transport of acetic acid in Saccharomyces cerevisiae. Microbiology 142:1385–1390

    Article  CAS  Google Scholar 

  • Casal M, Cardoso H, Leão C (1998) Effects of ethanol and other alkanols on transport of acetic acid in Saccharomyces cerevisiae. Appl Environ Microbiol 64:665–668

    CAS  Google Scholar 

  • Casal M, Paiva S, Andrade RP, Gancedo C, Leão C (1999) The lactate-proton symport of Saccharomyces cerevisiae is encoded by JEN1. J Bacteriol 181:2620–2623

    CAS  Google Scholar 

  • Ciani M, Maccarelli F (1998) Oenological properties of non-Saccharomyces yeasts associated with wine-making. World J Microbiol Biotechnol 14:199–203

    Article  CAS  Google Scholar 

  • Cogan TM (1987) Co-metabolism of citrate and glucose by Leuconostoc spp.:Effects on growth, substrate and products. J Appl Bacteriol 63:551–558

    CAS  Google Scholar 

  • Coote N, Kirsop HH (1974) The content of some organic acids in beer and other fermented media. J Inst Brew 80:474–483

    CAS  Google Scholar 

  • Crompton M (1999) The mitochondrial permeability transition pore and its role in cell death. Biochem J 341:233–249

    Article  CAS  Google Scholar 

  • Delfini C, Costa A (1993) Effects of the grape must lees and insoluble materials on the alcoholic fermentation rate and on the production of acetic acid, pyruvic acid and acetaldehyde. Am J Enol Vitic 44:86–92

    CAS  Google Scholar 

  • dos Santos MM, Gombert AK, Christensen B, Olsson L, Nielsen J (2003) Identification of in vivo enzyme activities in the cometabolism of glucose and acetate by Saccharomyces cerevisiae by using 13 C-labeled substrates. Eukaryot Cell 2:599–608

    Article  CAS  Google Scholar 

  • Du Toit WJ, Lambrechts MG (2002) The enumeration and identification of acetic acid bacteria from South African red wine fermentations. Int J Food Microbiol 74:57–64

    Article  Google Scholar 

  • Erasmus DJ, Cliff M, van Vuuren HJJ (2004) Impact of yeast strain on the production of acetic acid, glycerol, and the sensory attributes of Icewine. Am J Enol Vitic 55:371–378

    CAS  Google Scholar 

  • Fannjiang Y, Cheng WC, Lee SJ, Qi B, Pevsner J, McCaffery JM, Hill RB, Basanez G, Hardwick JM (2004) Mitochondrial fission proteins regulate programmed cell death in yeast. Genes Dev 18:2785–2797

    Article  CAS  Google Scholar 

  • Fleet GH, Heard GM (1993) Yeasts-growth during fermentation. In: Fleet GH (ed) Wine microbiology and biotechnology. Harwood Academic Publishers, Chur, pp 27–54

    Google Scholar 

  • Fugelsang KC, Edwards CG (2007) Wine microbiology. Practical applications and procedures, 2nd edn. Springer Science Business Media, New York

    Google Scholar 

  • Gerós H, Azevedo MM, Cássio F (2000a) Biochemical studies on the production of acetic acid by the yeast Dekkera anomala. Food Technol Biotechnol 38:59–62

    Google Scholar 

  • Gerós H, Cassio F, Leão C (2000b) Utilization and transport of acetic acid in Dekkera anomala and their implications on the survival of the yeast in acidic environments. J Food Prot 63:96–101

    Google Scholar 

  • Giannattasio S, Guaragnella N, Côrte-Real M, Passarella S, Marra E (2005) Acid stress adaptation protects Saccharomyces cerevisiae from acetic acid-induced programmed cell death. Gene 354:93–98

    Article  CAS  Google Scholar 

  • Guaragnella N, Pereira C, Sousa MJ, Antonacci L, Passarella S, Côrte-Real M, Marra E, Giannattasio S (2006) Yca1 participates in the acetic acid induced yeast programmed cell death also in a manner unrelated to its caspase-like activity. FEBS Lett 580:6880–6884

    Article  CAS  Google Scholar 

  • Hauptmann P, Riel C, Kunz-Schughart LA, Frohlich KU, Madeo F, Lehle L (2006) Defects in N-glycosylation induce apoptosis in yeast. Mol Microbiol 59:765–778

    Article  CAS  Google Scholar 

  • Husnik JI, Volschenk H, Bauer J, Colavizza D, Luo Z, van Vuuren HJ (2006) Metabolic engineering of malolactic wine yeast. Metab Eng 8:315–323

    Article  CAS  Google Scholar 

  • Husnik JI, Delaquis PJ, Cliff MA, van Vuuren HJJ (2007) Functional analyses of the malolactic wine yeast ml01. Am J Enol Vitic 58:42–52

    CAS  Google Scholar 

  • Jost and Piendl (1975) Technological influences on the formation of acetate during fermentation. Am Soc Brew Chem 34:31–37

    Google Scholar 

  • Joyeux A, Lafon-Lafourcade S, Ribéreau-Gayon P (1984a) Evolution of acetic acid bacteria during fermentation and storage of wine. Appl Environ Microbiol 48:153–156

    CAS  Google Scholar 

  • Joyeux A, Lafon-Lafourcade S, Ribéreau-Gayon P (1984b) Metabolism of acetic acid bacteria in grape must: consequences on alcoholic and malolactic fermentation. Sci Aliments 4:247–255

    CAS  Google Scholar 

  • Kim I, Rodriguez-Enriquez S, Lemasters JJ (2007) Selective degradation of mitochondria by mitophagy. Arch Biochem Biophys 462:245–253

    Article  CAS  Google Scholar 

  • Kissova I, Salin B, Schaeffer J, Bhatia S, Manon S, Camougrand N (2007) Selective and non-selective autophagic degradation of mitochondria in yeast. Autophagy 3:329–336

    CAS  Google Scholar 

  • Kitagaki H, Araki Y, Funato K, Shimoi H (2007) Ethanol-induced death in yeast exhibits features of apoptosis mediated by mitochondrial fission pathway. FEBS Lett 581:2935–2942

    Article  CAS  Google Scholar 

  • Kruckeber AL, Dickinson JR (2004) Carbon metabolism. In: Dickinson JR, Schweizer M (eds) The metabolism and molecular physiology of Saccharomyces cerevisiae. CRC, New York, pp 42–76

    Google Scholar 

  • Leão C, Van Uden N (1986) Transport of lactate and other short-chain monocarboxylates in the yeast Candida utilis. Appl Microbiol Biotechnol 23:389–393

    Article  Google Scholar 

  • Lemasters JJ (2005) Selective mitochondrial autophagy, or mitophagy, as a targeted defense against oxidative stress, mitochondrial dysfunction, and aging. Rejuvenation Res 8:3–5

    Article  CAS  Google Scholar 

  • Llauradó JM, Rozès N, Constantí M, Mas A (2005) Study of some Saccharomyces cerevisiae strains for winemaking after preadaptation at low temperatures. J Agric Food Chem 53:1003–1011

    Article  CAS  Google Scholar 

  • Lonvaud-Funel A (1999) Lactic acid bacteria in the quality improvement and depreciation of wine. Antonie Leeuwenhoek 76:317–331

    Article  CAS  Google Scholar 

  • Ludovico P (1999) Efeitos do ácido acético no potencial de membrana mitocondrial e sua relação com a perda de integridade e viabilidade celular em Zygosaccharomyces bailii e Saccharomyces cerevisiae. Estudos por citometria de fluxo e espectrofluorimetria. Tese de Mestrado, Universidade do Minho

  • Ludovico P, Sousa MJ, Silva MT, Leão C, Côrte-Real M (2001) Saccharomyces cerevisiae commits to a programmed cell death process in response to acetic acid. Microbiology 147:2409–2415

    CAS  Google Scholar 

  • Ludovico P, Rodrigues F, Almeida A, Silva MT, Barrientos A, Côrte-Real M (2002) Cytochrome c release and mitochondria involvement in programmed cell death induced by acetic acid in Saccharomyces cerevisiae. Mol Biol Cell 13:2598–2606

    Article  CAS  Google Scholar 

  • Main GL, Threlfall RT, Morris JR (2007) Reduction of malic acid in wine using natural and genetically enhanced microorganisms. Am J Enol Vitic 58:341–345

    CAS  Google Scholar 

  • Martinou JC, Desagher S, Antonsson B (2000) Cytochrome c release from mitochondria: all or nothing. Nat Cell Biol 2:41–43

    Article  CAS  Google Scholar 

  • Marullo P, Aigle M, Bely M, Masneuf-Pomarede I, Durrens P, Dubourdieu D, Yvert G (2007) Single qtl mapping and nucleotide-level resolution of a physiologic trait in wine Saccharomyces cerevisiae strains. FEMS Yeast Res 7:941–952

    Article  CAS  Google Scholar 

  • Massot A, Mietton-Peuchot M, Peuchot C, Milisic V (2008) Nanofiltration and reverse osmosis in winemaking. Desalination 231:283–289

    Article  CAS  Google Scholar 

  • Matsui M, Yamamoto A, Kuma A, Ohsumi Y, Mizushima N (2006) Organelle degradation during the lens and erythroid differentiation is independent of autophagy. Biochem Biophys Res Commun 339:485–489

    Article  CAS  Google Scholar 

  • Mollapour M, Piper PW (2007) Hog1 mitogen-activated protein kinase phosphorylation targets the yeast Fps1 aquaglyceroporin for endocytosis, thereby rendering cells resistant to acetic acid. Mol Cell Biol 27:6446–6456

    Article  CAS  Google Scholar 

  • Monk PR, Cowley PJ (1984) Effect of nicotinic acid and sugar concentration of grape juice and temperature on accumulation of acetic acid yeast fermentation. J Ferment Technol 62:515–521

    CAS  Google Scholar 

  • Moruno EG, Delfini C, Pessione E, Giunta C (1993) Factors affecting acetic acid production by yeasts in strongly clarified grape musts. Microbios 74:249–256

    CAS  Google Scholar 

  • Nowikovsky K, Reipert S, Devenish RJ, Schweyen RJ (2007) Mdm38 protein depletion causes loss of mitochondrial K+/H + exchange activity, osmotic swelling and mitophagy. Cell Death Differ 14:1647–1656

    Article  CAS  Google Scholar 

  • Office Internationale de la Vigne et du Vin (2009) Compendium of international methods of wine and must analysis. Vol1 OIV, Paris, p 419

  • Office Internationale de la Vigne et du Vin (2010) International code of oenological practices. OIV, Paris, p 274

  • Orlić S, Arroyo-López FN, Huić-Babić K, Lucilla I, Querol A, Barrio E (2010) A comparative study of the wine fermentation performance of Saccharomyces paradoxus under different nitrogen concentrations and glucose/fructose ratios. J Appl Microbiol 108:73–80

    Article  CAS  Google Scholar 

  • Paiva S, Althoff S, Casal M, Leão C (1999) Transport of acetate in mutants of Saccharomyces cerevisiae defective in monocarboxylate permeases. FEMS Microbiol Lett 170:301–306

    Article  CAS  Google Scholar 

  • Paiva S, Devaux F, Barbosa S, Jacq C, Casal M (2004) Ady2p is essential for the acetate permease activity in the yeast Saccharomyces cerevisiae. Yeast 21:201–210

    Article  CAS  Google Scholar 

  • Pampulha MA, Loureiro-Dias MC (1989) Combined effect of acetic acid, pH and ethanol on intracellular pH of fermenting yeast. Appl Microbiol Biotechnol 31:547–550

    Article  CAS  Google Scholar 

  • Pampulha MA, Loureiro-Dias MC (1990) Activity of glycolytic enzymes of Saccharomyces cerevisiae in the presence of acetic acid. Appl Microbiol Biotechnol 34:375–380

    Article  CAS  Google Scholar 

  • Patel S, Shibamoto S (2002) Effect of different strains of Saccharomyces cerevisiae on production of volatiles in Napa Gamay wine and Petite Syrah wine. J Agric Food Chem 50:5649–5653

    Article  CAS  Google Scholar 

  • Pereira C, Camougrand N, Manon S, Sousa MJ, Côrte-Real M (2007) ADP/ATP carrier is required for mitochondrial outer membrane permeabilization and cytochrome c release in yeast apoptosis. Mol Microbiol 66:571–582

    Article  CAS  Google Scholar 

  • Pereira C, Chaves S, Alves S, Salin B, Camougrand N, Manon S, Sousa MJ, Côrte-Real M (2010) Mitochondrial degradation in acetic acid-induced yeast apoptosis: the role of Pep4 and the ADP/ATP carrier. Mol Microbiol 76:1398–1410

    Article  CAS  Google Scholar 

  • Perez L, Valcarcel MJ, Gonzalez P, Domecq B (1991) Influence of Botrytis infection of the grapes on the biological aging process of Fino Sherry. Am J Enol Vitic 42:58–62

    CAS  Google Scholar 

  • Pinto I, Cardoso H, Leão C (1989) High enthalpy and low enthalpy death in Saccharomyces cerevisiae induced by acetic acid. Biotechnol Bioeng 33:1350–1352

    Article  CAS  Google Scholar 

  • Pozo-Bayon MA, GA E, Polo MC, Tenorio C, Martin-Alvarez PJ, Calvo de la Banda MT, Ruiz-Larrea F, Moreno-Arribas MV (2005) Wine volatile and amino acid composition after malolactic fermentation: Effect of Oenococcus oeni and Lactobacillus plantarum starter cultures. J Agric Food Chem 53:8729–8735

    Article  CAS  Google Scholar 

  • Pretorius IS (2000) Tailoring wine yeast for the new millennium: novel approaches to the ancient art of winemaking. Yeast 16:675–729

    Article  CAS  Google Scholar 

  • Priault M, Salin B, Schaeffer J, Vallette FM, di Rago JP, Martinou JC (2005) Impairing the bioenergetic status and the biogenesis of mitochondria triggers mitophagy in yeast. Cell Death Differ 12:1613–1621

    Article  CAS  Google Scholar 

  • Prudêncio C, Sansonetty F, Côrte-Real M (1998) Flow cytometric assessment of cell structural and functional changes induced by acetic acid in the yeasts Zygosaccharomyces bailii and Saccharomyces cerevisiae. Cytometry 31:307–313

    Article  Google Scholar 

  • Radler F (1993) Yeasts-metabolism of organic acids. In: Fleet GH (ed) Wine microbiology and biotechnology. Harwood Academic Publishers, Chur, pp 165–223

    Google Scholar 

  • Remize F, Andrieu E, Dequin S (2000) Engineering of the pyruvate dehydrogenase bypass in Saccharomyces cerevisiae: role of the cytosolic Mg2+ and mitochondrial K+ acetaldehyde dehydrogenases Ald6p and Ald4p in acetate formation during alcoholic fermentation. Appl Environ Microbiol 66:3151–3159

    Article  CAS  Google Scholar 

  • Ribeiro GF, Côrte-Real M, Johansson B (2006) Characterization of DNA damage in yeast apoptosis induced by hydrogen peroxide, acetic acid, and hyperosmotic shock. Mol Biol Cell 17:4584–4591

    Article  CAS  Google Scholar 

  • Ribéreau-Gayon J, Peynaud E, Ribéreau-Gayon P, Sudraud P (1975) Les mécanismes des fermentations. In: Chez Dunod (eds) Traité d`œnologie, sciences et techniques du vin, Tome 2, Dunod, Paris. pp 511–556

  • Ribéreau-Gayon P, Lafon-Lafourcade S, Dubourdieu D, Lucmaret V, Larue F (1979) Métabolisme de Saccharomyces cerevisiae dans le moût de raisins parasités par Botrytis cinerea. C R Acad Sci Fr 289:441–444

    Google Scholar 

  • Ribéreau-Gayon P, Glories Y, Maujean A, Dubourdieu D (2006a) Alcohols and other volatile compounds. The chemistry of wine stabilization and treatments. Handbook of enology, vol. 2, 2nd edn. Wiley, Chichester, pp 51–64

    Google Scholar 

  • Ribéreau-Gayon P, Dubourdieu D, Donèche B, Lonvaud A (2006b) The microbiology of wine and vinifications. Handbook of enology, vol. 1, 2nd edn. Wiley, Chichester

    Google Scholar 

  • Rodrigues F (1998) Estudos sobre a regulação do metabolismo intracelular de ácido acético na levedura Zygosaccharomyces bailli ISA 1307. Tese de Mestrado, Universidade do Minho, Braga

  • Rodriguez-Enriquez S, Kim I, Currin RT, Lemasters JJ (2006) Tracker dyes to probe mitochondrial autophagy (mitophagy) in rat hepatocytes. Autophagy 2:39–46

    CAS  Google Scholar 

  • Richter H, Vlad D, Unden G (2001) Significance of pantothenate for glucose fermentation by Oenococcus oeni and for suppression of the erythritol and acetate production. Arch Microbiol 75:26–31

    Article  Google Scholar 

  • Romano P, Suzzi G, Comi G, Zironi R (1992) Higher alcohol and acetic acid production by apiculate wine yeasts. J Appl Bacteriol 73:126–130

    CAS  Google Scholar 

  • Romano P, Marchese R, Laurita C, Salzano G, Turbanti L (1999) Biotechnological suitability of Saccharomycodes ludwigii for fermented beverages. World J Microbiol Biotechnol 15:451–545

    Article  CAS  Google Scholar 

  • Sá-Correia I (1986) Synergistic effects of ethanol, octanoic, and decanoic acids on the kinetics and the activation parameters of thermal death in Saccharomyces bayanus. Biotechnol Bioeng 28:761–763

    Article  Google Scholar 

  • Saint-Prix F, Bonquist L, Dequin S (2004) Functional analysis of the ADL gene family of Saccharomyces cerevisiae during anaerobic growth on glucose: The NADP+-dependent Ald6p and Ald5p isoforms play a major role in acetate formation. Microbiology 150:2209–2220

    Article  CAS  Google Scholar 

  • Schauer A, Knauer H, Ruckenstuhl C, Fussi H, Durchschlag M, Potocnik U, Frohlich KU (2009) Vacuolar functions determine the mode of cell death. Biochim Biophys Acta 1793:540–545

    Article  CAS  Google Scholar 

  • Schuller D, Casal M (2005) The use of genetically modified Saccharomyces cerevisiae strains in the wine industry. Appl Microbiol Biotechnol 68:292–304

    Article  CAS  Google Scholar 

  • Schuller D (2010) Better yeast for better wine—genetic improvement of Saccharomyces cerevisiae winemaking strains. In: Rai M, Kövics G (eds) Progress in mycology. Scientific Publishers, Jodhpur, pp 1–51

    Google Scholar 

  • Schuller HJ (2003) Transcriptional control of nonfermentative metabolism in the yeast Saccharomyces cerevisiae. Curr Genet 43:139–160

    Google Scholar 

  • Silva S, Ramon-Portugal F, Andrade P, Abreu S, Texeira MD, Strehaiano P (2003) Malic acid consumption by dry immobilized cells of Schizosaccharomyces pombe. Am J Enol Vitic 54:50–55

    CAS  Google Scholar 

  • Shimazu Y, Watanabe M (1981) Effects of yeast strains and environmental conditions on formation of organic acid in must during fermentation. J Ferment Technol 59:27–32

    CAS  Google Scholar 

  • Sokolov S, Knorre D, Smirnova E, Markova O, Pozniakovsky A, Skulachev V, Severin F (2006) Ysp2 mediates death of yeast induced by amiodarone or intracellular acidification. Biochim Biophys Acta 1757:1366–1370

    Article  CAS  Google Scholar 

  • Sousa MJ, Teixeira JA, Mota M (1993) Must deacidification with an induced flocculant yeast strain of Schizosaccharomyces pombe. Appl Microbiol Biotechnol 39:189–193

    Article  CAS  Google Scholar 

  • Sousa MJ, Rodrigues F, Côrte-Real M, Leao C (1998) Mechanisms underlying the transport and intracellular metabolism of acetic acid in the presence of glucose in the yeast Zygosaccharomyces bailii. Microbiology 144:665–670

    Article  CAS  Google Scholar 

  • Sponholz WR (1993) Wine spoilage by microorganisms. In: Fleet GH (ed) Wine microbiology and biotechnology. Harwood Academic Publishers, Chur, pp 395–420

    Google Scholar 

  • Tal R, Winter G, Ecker N, Klionsky DJ, Abeliovich H (2007) Aup1p, a yeast mitochondrial protein phosphatase homolog, is required for efficient stationary phase mitophagy and cell survival. J Biol Chem 282:5617–5624

    Article  CAS  Google Scholar 

  • Tolkovsky AM, Xue L, Fletcher GC, Borutaite V (2002) Mitochondrial disappearance from cells: a clue to the role of autophagy in programmed cell death and disease? Biochimie 84:233–240

    Article  CAS  Google Scholar 

  • Torrens J, Urpi P, Riu-Aumatell M, Vichi S, Lopez-Tamames E, Buxaderas S (2008) Different commercial yeast strains affecting the volatile and sensory profile of cava base wine. Int J Food Microbiol 124:48–57

    Article  CAS  Google Scholar 

  • Valenti D, Vacca RA, Guaragnella N, Passarella S, Marra E, Giannattasio S (2008) A transient proteasome activation is needed for acetic acid-induced programmed cell death to occur in Saccharomyces cerevisiae. FEMS Yeast Res 8:400–404

    Article  CAS  Google Scholar 

  • Verduyn C, Postma E, Scheffers WA, Van Dijken JP (1990) Physiology of Saccharomyces cerevisiae in anaerobic glucose-limited chemostat cultures. J Gen Microbiol 136:359–403

    Google Scholar 

  • Vilanova M, Ugliano M, Varela C, Siebert T, Pretorius IS, Henschke PA (2007) Assimilable nitrogen utilisation and production of volatile and non-volatile compounds in chemically defined medium by Saccharomyces cerevisiae wine yeasts. Appl Microbiol Biotechnol 77:145–157

    Article  CAS  Google Scholar 

  • Vilela-Moura A, Schuller D, Mendes-Faia A, Côrte-Real M (2008) Reduction of volatile acidity of wines by selected yeast strains. Appl Microbiol Biotechnol 80:881–890

    Article  CAS  Google Scholar 

  • Vilela-Moura A, Schuller D, Mendes-Faia A, Corte-Real M (2010a) Effect of refermentation conditions and micro-oxygenation on the reduction of volatile acidity by commercial S. cerevisiae strains and their impact on the aromatic profile of wines. Int J Food Microbiol 141:165–172

    Article  CAS  Google Scholar 

  • Vilela-Moura A, Schuller D, Mendes-Faia A, Côrte-Real M (2010b) Effects of acetic acid, ethanol, and SO2 on the removal of volatile acidity from acidic wines by two Saccharomyces cerevisiae commercial strains. Appl Microbiol Biotechnol 87:1317–1326

    Article  CAS  Google Scholar 

  • Volschenk H, Viljoen M, Grobler J, Bauer F, Lonvaud-Funel A, Denayrolles M, Subden RE, VanVuuren HJJ (1997) Malolactic fermentation in grape musts by a genetically engineered strain of Saccharomyces cerevisiae. Am J Enol Vitic 48:193–197

    CAS  Google Scholar 

  • Wissing S, Ludovico P, Herker E, Buttner S, Engelhardt SM, Decker T, Link A, Proksch A, Rodrigues F, Côrte-Real M, Frohlich KU, Manns J, Cande C, Sigrist SJ, Kroemer G, Madeo F (2004) An AIF orthologue regulates apoptosis in yeast. J Cell Biol 166:969–974

    Article  CAS  Google Scholar 

  • Zoecklein BW, Fugelsang KC, Gump BH, Nury FS (1995) Wine analysis and production, 1st edn. Chapmann & Hall, New York

    Google Scholar 

Download references

Acknowledgments

This work was funded by the portuguese research agency (Fundação para a Ciência e Técnologia - FCT) through the Centre of Molecular and Environmental Biology - University of Minho (CBMA-UM), and the Institute for Biotechnology and Bioengineering, Centre of Genetics and Biotechnology (IBB/CGB-UTAD), by the projects PTDC/AGRALI/71460/2006, POCI/AGR/56102/2004, and PTDC/AGR-ALI/103392/2008 from FCT. Research leading to this work has also received funding from the European Community's Seventh Framework Programme (FP7/2007–2013) under grant agreement no. 232454.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuela Côrte-Real.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vilela-Moura, A., Schuller, D., Mendes-Faia, A. et al. The impact of acetate metabolism on yeast fermentative performance and wine quality: reduction of volatile acidity of grape musts and wines. Appl Microbiol Biotechnol 89, 271–280 (2011). https://doi.org/10.1007/s00253-010-2898-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-010-2898-3

Keywords

Navigation