Skip to main content

Advertisement

Log in

Production and biomass of mangrove roots in relation to hydroperiod and physico-chemical properties of sediment and water in the Mecoacan Lagoon, Gulf of Mexico

  • Original Paper
  • Published:
Wetlands Ecology and Management Aims and scope Submit manuscript

Abstract

Production and biomass information of roots is valuable for understanding the ecological process within mangroves. In this study, the production, biomass, turnover rate, and longevity of underground roots of mangrove (Rhizophora mangle L., Laguncularia racemosa L. Gaertn, and Avicennia germinans L. Stearn), as well as the density and biomass of pneumatophores was evaluated in relation to hydroperiod and physico-chemical properties of substrate and water in the Mecoacan Lagoon, Gulf of Mexico. Root extraction was performed in order to measure the biomass and production of roots by in-growth core technique; whilst the hydroperiod and physico-chemical parameters in water were determined using piezometers. The study was conducted from September 2016 to August 2017. A total root biomass of 23.7 tonDw ha−1 (subterranean roots + pneumatophores) was weighing; the large roots showed the highest biomass weighing 1532 ± 254 gDw m−2; followed by the medium roots (189 ± 30 gDw m−2) and fine roots (194 ± 27 g Dw m−2). The average total production was 0.41 ± 0.05 g m−2 day−1, an average turnover rate of 0.41 ± 0.07 year−1 and longevity of 4.04 ± 0.07 years. Pneumatophores showed average heights of 17.8 ± 0.8 cm with a density of 292 ± 30 pneumatophores m−2 and average biomass of 453 ± 51 gDw m−2. In conclusion, the production and biomass of subterranean roots and pneumatophores show spatial variations controlled by environmental factors as hydroperiod, interstitial redox potential, mangrove tree density and soil moisture content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adame MF, Teutli C, Santini NS, Caamal JP, Zaldívar-Jiménez A, Hernández R, Herrera-Silveira JA (2014) Root biomass and production of mangroves surrounding a karstic oligotrophic Coastal lagoon. Wetlands 34:479–488

    Article  Google Scholar 

  • Alongi DM, Clough BF, Dixon P, Tirendi F (2003) Nutrient partitioning and storage in arid-zone forests of the mangroves Rhizophora stylosa and Avicennia marina. Trees 17:51–60

    Article  CAS  Google Scholar 

  • Ball MC (1988) Salinity tolerance in the mangroves Aegiceras corniculatum and Avicennia marina. I. Water use in relation to growth, carbon partitioning and salt balance. Aust J Plant Physiol 15:447–464

    Google Scholar 

  • Ball MC (2002) Interactive effects of salinity and irradiance on growth: implications for mangrove forest structure along salinity gradients. Trees 16:126–139

    Article  Google Scholar 

  • Briggs N (1977) Estimates of biomass in a temperate mangrove community. Aust J Ecol 2:369–373

    Article  Google Scholar 

  • Burton AJ, Pregitzer KS, Hendrick RL (2000) Relationships between fine root dynamics and nitrogen availability in Michigan northern hardwood forests. Oecologia 125:389–399

    Article  CAS  PubMed  Google Scholar 

  • Cardona-Olarte P, Twilley RR, Krauss KW, Rivera-Monroy VH (2006) Responses of neotropical mangrove seedlings grown in monoculture and mixed culture under treatments of hydroperiod and salinity. Hydrobiologia 569:325–341

    Article  Google Scholar 

  • Castañeda-Moya E, Twilley RR, Rivera-Monroy VH, Marx BD, Coronado-Molina C, Ewe SM (2011) Patterns of root dynamics in mangrove forests along environmental gradients in the florida coastal everglades, USA. Ecosystems 14:1178–1195

    Article  CAS  Google Scholar 

  • Chapin SF (1991) Integrated responses of plants to stress. Bioscience 41:29–36

    Article  Google Scholar 

  • Chen R, Twilley RR (1999) Pattern of mangrove forest structure and soil nutrient dynamics along the Shark River Estuary, Florida. Estuaries 22:955–970

    Article  Google Scholar 

  • Chmura GL, Anisfeld SC, Cahoon DR, Lynch JC (2003) Global carbon sequestration in tidal, saline wetland soils. Glob Biogeochem Cycles 17:1111

    Article  CAS  Google Scholar 

  • Clough BF (1992) Primary productivity and growth of mangrove forests. In: Alongi DM (ed) Tropical mangrove ecosystems. American Geophysical Union, Washington DC, pp 225–249

    Chapter  Google Scholar 

  • Connor R, Chmura GL (2000) Dynamics of above- and belowground organic matter in a high latitude macrotidal saltmarsh. Mar Ecol Prog Ser 204:101–110

    Article  Google Scholar 

  • Cormier N (2003) Belowground productivity in mangrove forests of Pohnpei and Kosrae, Federal States of Micronesia. Dissertation, University of Lousiana at Lafayette. Biology Department

  • Cromier N, Twilley RR, Ewel KC, Kraauss KW (2015) Fine root productivity varies along nitrogen and phosphorus gradient in high-rainfall mangrove forests of Micronesia. Hidrobiologia 750:69–87

    Article  CAS  Google Scholar 

  • Dahdouh-Guebas F, Kairo JG, Bondt RD, Koedam N (2007) Pneumatophore height and density in relation to microtopography in the grey mangrove Avicennia Marina. Belg J Bot 140(2):213–221

    Google Scholar 

  • Day-Jr JW, Coronado-Molina C, Vera-Herrera FR, Twilley R, Rivera-Monroy VH, Álvarez-Guillen H, Conner W (1996) A 7 year record of above-ground net primary production in a southeastern Mexican mangrove forest. Aquat Bot 55:39–60

    Article  Google Scholar 

  • Domínguez JC, Sánchez AJ, Florido R, Barba ME (2003) Distribución de los macrocrustáceos en la Laguna Mecoacán, al sur del Golfo de Mexico. Hidrobiológica 13(002):127–136

    Google Scholar 

  • Domínguez-Domínguez M, Zavala-Cruz M, Martínez-Zurimendi P (2011) Manejo forestal sustentable de los manglares de Tabasco. Secretaría de Recursos Naturales y Protección Ambiental. Colegio de Postgraduados, Villahermosa, p 137

    Google Scholar 

  • Eamus D, Chen X, Kelley G, Hutley LB (2002) Root biomass and fractal analyses of an open Eucalyptus forest in a savanna of north Australia. Aust J Bot 50(1):31–41

    Article  Google Scholar 

  • Eissenstat DM, Yanai RD (1997) The ecology of root lifespan. Adv Ecol Res 27:1–60

    Article  Google Scholar 

  • George-Zamora A, Sevilla-Hernández ML, Aldana-Aranda D (2003) Ciclo ganódico del ostión americano Crassostrea virginica (Lamellibranchia: Ostreidae) en Mecoacán, Tabasco, México. Revista de Biología Tropical 51(4):109–117

    PubMed  Google Scholar 

  • Gill RA, Jackson RB (2000) Global patterns of root turnover for terrestrial ecosystems. New Phytologyst 147:13–31

    Article  Google Scholar 

  • Giraldo BS (2005) Belowground productivity of mangrove forests in southwest Florida. Ph.D. Dissertation. Louisiana State University: The Department of Oceanography and Coastal Sciences

  • Golley FB, Odum HT, Wilson RF (1962) The structure and metabolism of a Puerto Rican red mangrove forest in May. Ecology 43(1):34–62

    Article  Google Scholar 

  • Golley FB, Mcginnis JT, Clements RG, Child GI, Duever MJ (1975) Mineral cycling in a tropical moist forest ecosystem. The University of Georgia Press, Athens

    Google Scholar 

  • Gómez AH (1977) Determinación de corrientes en la laguna costera Mecoacán de Tabasco, Mexico. Ciencias Marinas 4:67–80

    Article  Google Scholar 

  • Hernández N (2007) Abundancia y distribución de Cnidarios (Medusa) y Ctecnóforos (Agua Mala) En la Laguna Mecoacán Paraíso, Tabasco. Dissertation, Universidad Juárez Autónoma de Tabasco. División Académica de Ciencias Biológicas

  • Infante MD (2011) Estructura y dinámica de las selvas inundables de la planicie costera central del Golfo de Mexico. Ph.D. Dissertation, INECOL. A. C. Jalapa, Veracruz, Mexico

  • Infante-Mata D, Tovilla-Hernández C, Ovalle-Estrada F, De-La-Presa JC, Cruz-Montes G, López-Urbina JH (2014) Caracterización de la salinidad en la temporada de secas en manglares y otros humedales de la laguna Mecoacán, Tabasco. In: González-Espinoza M, Brunel-Manse MC (eds) Montañas, pueblo y agua. Dimensiones y realidades de la cuenca Grijalva Mexico D.F. El Colegio de la Frontera Sur, Villahermosa, pp 283–296

    Google Scholar 

  • Khan MN, Suwa R, Hagihara A (2007) Carbon and nitrogen pools in a mangrove stand of Kandelia obovata (S., L.) Yong: vertical distribution in the soil-vegetation system. Wetlands Ecol Manag 15:141–153

    Article  CAS  Google Scholar 

  • Klute A (1986) Methods of soils analysis. Part 1. Physical and mineralogical methods, 2nd edn. EUA, Madison, p 1188

    Google Scholar 

  • Komiyama A, Havanond S, Srisawatt W, Mochida Y, Fujimoto K, Ohnishi T, Miyagi T (2000) Top/root ratio of a secondary mangrove Ceriops tagal (Perr.) C.B. Rob Forest Forest Ecol Manag 139:127–134

    Article  Google Scholar 

  • Krauss KW, Doyle TW, Twilley RR, Rivera-Monroy V, Sullivan JK (2006) Evaluating the relative contributions of hydroperiod and soil fertility on growth of south Florida mangroves. Hydrobiologia 569:311–324

    Article  CAS  Google Scholar 

  • Krauss KW, McKee KL, Lovelock CE, Cahoon DR, Saintilan N, Reef R, Chen L (2014) How mangrove forests adjust to rising sea level. New Phytol 202(1):19–34

    Article  PubMed  Google Scholar 

  • López B, Sabaté S, Gracia C (1998) Fine root dynamics in a Mediterranean forest: effects of drought and stem density. Tree Physiol 18:601–606

    Article  PubMed  Google Scholar 

  • López-Portillo J, Ezcurra E (1989) Response of three mangroves to salinity in two geoforms. Funct Ecol 3(3):355–361

    Article  Google Scholar 

  • Lugo AE, Brinson MM (1988) Forested wetlands in freshwater and salt-water environments. Limnol Oceanogr 33:894–909

    CAS  Google Scholar 

  • Lugo AE, Snedaker SC (1974) The ecology of mangroves. Annu Rev Ecol Syst 5:39–64

    Article  Google Scholar 

  • Mackey AP (1993) Biomass of the mangrove Avicennia marina (Forsk.) Vierh. Near Brisbane, South-eastern Queensland. Aust J Mar Freshw Res 44(5):721–725

    Article  Google Scholar 

  • McKee KL, Mendelssohn IA, Hester MW (1988) Reexamination of pore water sulfide concentrations and redox potentials near the aerial roots of Rhizophora mangle and Avicennia germinans. Am J Botany 75(9):1352–1359

    Article  Google Scholar 

  • McKee KL, Cahoon DR, Feller IC (2007) Caribbean mangroves adjust to rising sea level through biotic controls on change in soil elevation. Glob Ecol Biogeogr 16:545–556

    Article  Google Scholar 

  • Middleton BA, Mckee KL (2001) Degradation of mangrove tissues and implications for peat formation in Belizean island forests. J Ecol 89:818–828

    Article  Google Scholar 

  • Moreno-Casasola P, Warner B (2009) Breviario para describir, observar y manejar humedales. Serie Costa Sustentable no 1. RAMSAR, Instituto de Ecología A.C., CONANP, US Fish and Wildlife Service, US State Department. Xalapa, Ver. México. 406 pp. http://www1.inecol.edu.mx/inecol/libros/Breviario_Humedales.pdf

  • Pennington TD, Sarukhán J (2005) Árboles tropicales de Mexico: manual para la identificación de las principales especies. UNAM/FCE, Mexico

    Google Scholar 

  • Peralta PL, Infante DM, Moreno-Casasola P (2009) Construcción e instalación de Piezómetros. In: Moreno-Casasola P, Warner BG (eds) Breviario para describir, observar y manejar humedales. Xalapa, Veracruz, Mexico: Serie Costa Sustentable No. 1. RAMSAR, Instituto de Ecología, A.C.; Fish and Wildlife Service, US State Department, pp 17–30

  • Peters EC, Gassman NJ, Firman JR, Richmond H, Power EA (1997) Ecotoxicology of tropical marine ecosystems. Environ Toxicol Chem 16:12–40

    Article  CAS  Google Scholar 

  • Pezeshki MR, DeLaune RD, Patrick WH (1990) Differential response of selected mangroves to soil flooding and salinity: gas exchange and biomass partitioning. Can J For Res 20:869–874

    Article  Google Scholar 

  • Pezeshki SR, DeLaune RD, Patrick WH (1993) Responses of forested wetlands species to alteration of soil hydrology/chemistry. In: Landin MC (eds) Wetlands. New Orleans: proceedings of 13th annual conference society of wetland scientists, pp 878–885

  • Pool DJ, Snedaker SC, Lugo AE (1977) Structure of mangrove forests in Florida. Biotrópica 9(3):195–212

    Article  Google Scholar 

  • Powell SW, Day FP (1991) Root production in four communities in the Great Dismal Swamp. Am J Bot 78:288–297

    Article  Google Scholar 

  • Purnobasuki H, Suzuki M (2005) Functional anatomy or air conducting network on the pneumatophores of a mangrove plant, Avicennia marina (Forsk) Vierh. Asian J Plant Sci 4(4):334–347

    Article  Google Scholar 

  • Reef R, Winter K, Morales J, Adame MF, Reef DL (2015) The effect of atmospheric carbon dioxide concentrations on the performance of the mangrove Avicennia germinans over a range of salinities. Physiol Plant 154:358–368

    Article  CAS  PubMed  Google Scholar 

  • Reef R, Slot M, Motro U, Motro M, Motro Y, Adame MF, Garcia M, Aranda J, Lovelock CE, Winter K (2016) The effects of CO2 and nutrient fertilisation on the growth and temperature response of the mangrove Avicennia germinans. Photosynth Res 129:159–170

    Article  CAS  PubMed  Google Scholar 

  • Saifullah SM, Elahi E (1992) Pneumatophore density and size in mangroves of Karachi, Pakistan. Pak J Bot 42(1):5–10

    Google Scholar 

  • Saintilan N (1997a) Above- and below-ground biomasses of two species of mangrove on the Hawkesbury River estuary, New South Wales. Mar Freshw Res 48(2):147–152

    Article  CAS  Google Scholar 

  • Saintilan N (1997b) Above and below-ground biomass of mangroves in a sub-tropical estuary. Mar Freshw Res 48(7):601–604

    Article  Google Scholar 

  • Sherman RE, Fahey TJ, Martinez P (2003) Spatial patterns of biomass and aboveground net primary productivity in a mangrove ecosystem in the Dominican Republic. Ecosystems 6:384–398

    Article  Google Scholar 

  • Steel A, Torrie M (1996) Bioestadística: Principios y procedimientos, 2nd edn. Mexico, Edit. McGrawHill

    Google Scholar 

  • Tam NF, Wong YS (1997) Accumulation and distribution of heavy metals in a simulated mangrove system treated with sewage. Hydrobiologia 352:67–75

    Article  CAS  Google Scholar 

  • Tam NFY, Wong YS, Lan CY, Chen GZ (1995) Community structure and standing crop biomass of a mangrove forest in Futian Nature Reserve, Shenzhen, China. Hydrobiologia 295:193–201

    Article  Google Scholar 

  • Thom BG (1967) Mangrove ecology and deltaic geomorphology: Tabasco, Mexico. J Ecol 55:301–343

    Article  Google Scholar 

  • Toma TK, Nakamura P, Patanaponpaiboon P, Ogino K (1991) Effect of flooding water level and plant density on growth of pneumatophore of Avicennia marina. Tropics 1:75–82

    Article  Google Scholar 

  • Tomlinson PB (1986) The botany of mangrove. University Press, Cambridge, p 413

    Google Scholar 

  • Torres JR, Infante-Mata D, Sánchez AJ, Espinoza-Tenorio A, Barba E (2017) Atributos estructurales, productividad (hojarasca) y fenología del manglar en la Laguna Mecoacán, Golfo de Mexico. Revista de Biología Tropical 65(4):1592–1608

    Article  Google Scholar 

  • Torres JR, Infante-Mata D, Sánchez AJ, Espinoza-Tenorio A, Barba E (2018) Degradación de hojarasca y aporte de nutrientes del manglar en la Laguna Mecoacán, Golfo de Mexico. Revista de Biología Tropical 66(2):892–907

    Article  Google Scholar 

  • Twilley RR, Rivera-Monroy V (2005) Developing performance measures of mangrove wetlands using simulation models of hydrology, nutrient biogeochemistry, and community dynamics. J Coast Res 40:79–93

    Google Scholar 

  • Vogt KA, Vogt DJ, Bloomfield J (1998) Analysis of some direct and indirect methods for estimating root biomass and production of forests at an ecosystem level. Plant Soil 200:71–89

    Article  CAS  Google Scholar 

  • Walkley A, Black LA (1934) An examination of the method for determining soil organic matter, and proposed modification of the chromic acidtritation method. Soil Sci 37:29–38

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study related part of the research activities carried out with the Grant offered for Project 269540 by National Council of Science and Technology (CONACyT) and the National Commission for Natural Protected Areas (CONANP). Additional support was provided by the Network for the Knowledge of Coastal Resources in Southeastern Mexico (RECORECOS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jony R. Torres.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Torres, J.R., Barba, E. & Choix, F.J. Production and biomass of mangrove roots in relation to hydroperiod and physico-chemical properties of sediment and water in the Mecoacan Lagoon, Gulf of Mexico. Wetlands Ecol Manage 27, 427–442 (2019). https://doi.org/10.1007/s11273-019-09669-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11273-019-09669-0

Keywords

Navigation