Skip to main content

Advertisement

Log in

Evaluating the relative contributions of hydroperiod and soil fertility on growth of south Florida mangroves

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Low and high water periods create contrasting challenges for trees inhabiting periodically flooded wetlands. Low to moderate flood durations and frequencies may bring nutrient subsidies, while greater hydroperiods can be energetically stressful because of oxygen deficiency. We tested the hypothesis that hydroperiod affects the growth of mangrove seedlings and saplings in a greenhouse experiment by varying flood duration while keeping salinity and soil fertility constant. We measured the growth of mangrove trees along a hydroperiod gradient over a two-year period by tracking fine-scale diameter increment. Greenhouse growth studies indicated that under a full range of annual flood durations (0–8760 h/year), hydroperiod alone exerted a significant influence on growth for one species, Laguncularia racemosa, when flooding was imposed for two growing seasons. Field evaluations, on the other hand, indicated that increased flood duration may provide nutrient subsidies for tree growth. Diameter growth was related curvilinearly to site hydroperiod, including flood duration and frequency, as well as to salinity and soil fertility. An analysis of soil physico-chemical parameters suggests that phosphorus fertility, which was also linked directly to hydroperiod, is likely to influence growth on south Florida mangrove sites. The physical removal of phosphorus by greater flood frequencies from upland sources and/or addition of phosphorus from tidal flooding balanced against increased soil aeration and reduced water deficits may be an extremely important growth determinant for south Florida mangroves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • K. I. Aspila H. Agemian S. Y. Chau (1976) ArticleTitleA semi-automated method for determination of inorganic, organic and total phosphorus in sediments Analyst 101 187–197 Occurrence Handle1259177 Occurrence Handle10.1039/an9760100187 Occurrence Handle1:CAS:528:DyaE28Xkt1yht74%3D

    Article  PubMed  CAS  Google Scholar 

  • S. L. Brown (1981) ArticleTitleA comparison of the structure, primary productivity, and transpiration of cypress ecosystems in Florida Ecological Monographs 51 403–427 Occurrence Handle10.2307/2937322

    Article  Google Scholar 

  • D. R. Cahoon J. C. Lynch (1997) ArticleTitleVertical accretion and shallow subsidence in a mangrove forest of southwestern Florida, U.S.A Mangroves and Salt Marshes 1 173–186 Occurrence Handle10.1023/A:1009904816246

    Article  Google Scholar 

  • P. J. Cattelino C. A. Becker L. G. Fuller (1986) ArticleTitleConstruction and installation of homemade dendrometer bands Northern Journal of Applied Forestry 3 73–75

    Google Scholar 

  • V. J. Chapman (1976) Mangrove Vegetation J. Cramer Vaduz, Germany

    Google Scholar 

  • R. Chen R. R. Twilley (1998) ArticleTitleA gap dynamic model of mangrove forest development along gradients of soil salinity and nutrient resources Journal of Ecology 86 37–52 Occurrence Handle10.1046/j.1365-2745.1998.00233.x

    Article  Google Scholar 

  • R. Chen R. R. Twilley (1999) ArticleTitlePatterns of mangrove forest structure and soil nutrient dynamics along the Shark River Estuary, Florida Estuaries 22 955–970 Occurrence Handle10.2307/1353075

    Article  Google Scholar 

  • S. E. Davis SuffixIII D. L. Childers J. W. Day SuffixJr. D. T. Rudnick F. H. Sklar (2001) ArticleTitleWetland-water column exchanges of carbon, nitrogen, and phosphorus in a southern Everglades dwarf mangrove Estuaries 24 610–622 Occurrence Handle1:CAS:528:DC%2BD3MXnsVCgu7o%3D

    CAS  Google Scholar 

  • Day, R. H., 1990. Growth rates of three species of mangroves bordering Laguna de Términos, Campeche, Mexico. Thesis, The University of Texas, Austin TX.

  • P. Delgado P. F. Hensel J. A. Jiménez J. W. Day ParticleJr. (2001) ArticleTitleThe importance of propagule establishment and physical factors in mangrove distributional patterns in a Costa Rican estuary Aquatic Botany 71 157–178 Occurrence Handle10.1016/S0304-3770(01)00188-7

    Article  Google Scholar 

  • M. J. Duever J. F. Meeder L. C. Meeder J. M. McCollom (1994) The climate of south Florida and its role in shaping the Everglades ecosystem S. M. Davis J. C. Ogden (Eds) Everglades: The Ecosystem and its Restoration St. Lucie Press Delray Beach FL 225–248

    Google Scholar 

  • I. C. Feller (1995) ArticleTitleEffects of nutrient enrichment on growth and herbivory of dwarf red mangrove (Rhizophora mangle) Ecological Monographs 65 477–505 Occurrence Handle10.2307/2963499

    Article  Google Scholar 

  • D. D. Hook (1984a) ArticleTitleWaterlogging tolerance of lowland tree species of the south Southern Journal of Applied Forestry 8 136–149

    Google Scholar 

  • D. D. Hook (1984b) Adaptations to flooding with fresh water T. T. Kozlowski (Eds) Flooding and Plant Growth Academic Press Orlando FL 265–294

    Google Scholar 

  • J. E. Keeley (1979) ArticleTitlePopulation differentiation along a flood frequency gradient: physiological adaptations to flooding in Nyssa sylvatica Ecological Monographs 49 89–108 Occurrence Handle10.2307/1942574 Occurrence Handle1:CAS:528:DyaE1MXksFejs7k%3D

    Article  CAS  Google Scholar 

  • M. S. Koch (1996) Resource availability and abiotic effects on Rhizophora mangle L. (Red Mangrove) development in South Florida Dissertation, University of Miami Coral Gables FL

    Google Scholar 

  • M. S. Koch (1997) ArticleTitleRhizophora mangle L. seedling development into the sapling stage across resource and stress gradients in subtropical Florida Biotropica 29 427–439 Occurrence Handle10.1111/j.1744-7429.1997.tb00037.x

    Article  Google Scholar 

  • M. S. Koch S. C. Snedaker (1997) ArticleTitleFactors influencing Rhizophora mangle L. seedling development in Everglades carbonate soils Aquatic Botany 59 87–98 Occurrence Handle10.1016/S0304-3770(97)00027-2

    Article  Google Scholar 

  • Lahmann, E. J., 1988. Effects of different hydrological regimes on the productivity of Rhizophora mangle L.: a case study of mosquito control impoundments at Hutchinson Island, Saint Lucie County, Florida. Dissertation, University of Miami, Coral Gables FL.

  • J. L. Lockwood M. S. Ross J. P. Sah (2003) ArticleTitleSmoke on the water: the interplay of fire and water flow on Everglades restoration Frontiers in Ecology and the Environment 1 462–468

    Google Scholar 

  • A. E. Lugo G. Evink M. M. Brinson A. Broce S. C. Snedaker (1975) Diurnal rates of photosynthesis, respiration, and transpiration in mangrove forests of south Florida F. B. Golley E. Medina (Eds) Tropical Ecological Systems Springer-Verlag New York NY 335–350

    Google Scholar 

  • K. L. McKee (1995) ArticleTitleSeedling recruitment patterns in a Belizean mangrove forest: effects of establishment ability and physico-chemical factors Oecologia 101 448–460 Occurrence Handle10.1007/BF00329423

    Article  Google Scholar 

  • K. L. McKee (1996) ArticleTitleGrowth and physiological responses of neotropical mangrove seedlings to root zone hypoxia Tree Physiology 16 883–889 Occurrence Handle14871780

    PubMed  Google Scholar 

  • K. L. McKee I. C. Feller M. Popp W. Wanek (2002) ArticleTitleMangrove isotopic (δ15N and δ13C) fractionation across nitrogen vs. phosphorus limitation gradient Ecology 83 1065–1075

    Google Scholar 

  • J. S. McKnight D. D. Hook O. G. Langdon R. L. Johnson (1981) Flood tolerance and related characteristics of trees of the bottomland forests of the southern United States J. R. Clark J. Benforado (Eds) Wetlands of Bottomland Hardwood Forests Elsevier The Netherlands 26–69

    Google Scholar 

  • E. Medina (1999) Mangrove physiology: the challenge of salt, heat, and light stress under recurrent flooding A. Yáñez-Arancibia A. L. Lara-Dominguez (Eds) Mangrove Ecosystems in Tropical America UICN/ORMA and NOAA/NMFS Silver Springs MD 109–126

    Google Scholar 

  • J. P. Megonigal W. H. Conner S. Kroeger R. R. Sharitz (1997) ArticleTitleAboveground production in Southeastern floodplain forests: a test of the subsidy-stress hypothesis Ecology 78 370–384 Occurrence Handle10.2307/2266014

    Article  Google Scholar 

  • J. P. Megonigal F. P. Day (1992) ArticleTitleEffects of flooding on root and shoot production of bald cypress in large experimental enclosures Ecology 73 1182–1193 Occurrence Handle10.2307/1940668

    Article  Google Scholar 

  • W. J. Mitsch W. G. Rust (1984) ArticleTitleTree growth responses to flooding in a bottomland forest in northeastern Illinois Forest Science 30 499–510

    Google Scholar 

  • G. Naidoo H. Rogalla D. J. Willert Particlevon (1997) ArticleTitleGas exchange responses of a mangrove species, Avicennia marina, to waterlogged and drained conditions Hydrobiologia 352 39–47 Occurrence Handle10.1023/A:1003088803335 Occurrence Handle1:CAS:528:DyaK1cXhtFylsQ%3D%3D

    Article  CAS  Google Scholar 

  • E. P. Odum J. T. Finn E. H. Franz (1979) ArticleTitlePerturbation theory and the subsidy-stress gradient BioScience 29 349–352 Occurrence Handle10.2307/1307690

    Article  Google Scholar 

  • S. R. Pezeshki R. D. DeLaune W. H. Patrick ParticleJr. (1990) ArticleTitleDifferential response of selected mangroves to soil flooding and salinity: gas exchange and biomass partitioning Canadian Journal of Forest Research 20 869–874

    Google Scholar 

  • S. R. Pezeshki R. D. DeLaune J. F. Meeder (1997) ArticleTitleCarbon assimilation and biomass partitioning in Avicennia germinans and Rhizophora mangle seedlings in response to soil redox conditions Environmental and Experimental Botany 37 161–171 Occurrence Handle10.1016/S0098-8472(96)01051-9 Occurrence Handle1:CAS:528:DyaK2sXntlygt78%3D

    Article  CAS  Google Scholar 

  • V. H. Rivera-Monroy R. R. Twilley (1996) ArticleTitleThe relative role of denitrification and immobilization in the fate of inorganic nitrogen in mangrove sediments (Terminos Lagoon, Mexico) Limnology and Oceanography 41 284–296 Occurrence Handle1:CAS:528:DyaK28Xjs1eru7Y%3D Occurrence Handle10.4319/lo.1996.41.2.0284

    Article  CAS  Google Scholar 

  • R. E. Sherman T. J. Fahey R. W. Howarth (1998) ArticleTitleSoil–plant interactions in a neotropical mangrove forest: iron, phosphorus and sulfur dynamics Oecologia 115 553–563 Occurrence Handle10.1007/s004420050553

    Article  Google Scholar 

  • T. J. Smith SuffixIII (1992) Forest structure A. I. Robertson D. M. Alongi (Eds) Tropical Mangrove Ecosystems American Geophysical Union Washington DC 101–136

    Google Scholar 

  • E. Z. Steever R. S. Warren W. A. Niering (1976) ArticleTitleTidal energy subsidy and standing crop production of Spartina alterniflora Estuarine and Coastal Marine Science 4 473–478 Occurrence Handle10.1016/0302-3524(76)90022-0

    Article  Google Scholar 

  • R. R. Twilley (1985) ArticleTitleThe exchange of organic carbon in basin mangrove forests in a southwest Florida estuary Estuarine, Coastal and Shelf Science 20 543–557 Occurrence Handle10.1016/0272-7714(85)90106-4 Occurrence Handle1:CAS:528:DyaL2MXmt1Sgtbo%3D

    Article  CAS  Google Scholar 

  • R. R. Twilley A. E. Lugo C. Patterson-Zucca (1986) ArticleTitleLitter production and turnover in basin mangrove forests in southwest Florida Ecology 67 670–683 Occurrence Handle10.2307/1937691

    Article  Google Scholar 

  • R. R. Twilley R. Chen (1998) ArticleTitleA water budget and hydrology model of a basin mangrove forest in Rookery Bay, Florida Marine and Freshwater Research 49 309–323 Occurrence Handle10.1071/MF97220 Occurrence Handle1:CAS:528:DyaK1cXnt1KitLk%3D

    Article  CAS  Google Scholar 

  • C. N. Ende Particlevon (2001) Repeated measures analysis S. M. Scheiner J. Gurevitch (Eds) Design and Analysis of Ecological Experiments EditionNumber2 Oxford University Press Oxford, UK 134–157

    Google Scholar 

  • J. H. Zar (1999) Biostatistical Analysis EditionNumber4 Prentice Hall New Jersey

    Google Scholar 

  • J. G. Watson (1928) ArticleTitleMangrove forests of the Malay Peninsula Malayan Forest Records 6 1–275

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ken W. Krauss.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krauss, K.W., Doyle, T.W., Twilley, R.R. et al. Evaluating the relative contributions of hydroperiod and soil fertility on growth of south Florida mangroves. Hydrobiologia 569, 311–324 (2006). https://doi.org/10.1007/s10750-006-0139-7

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-006-0139-7

Keywords

Navigation