Skip to main content

Advertisement

Log in

Non-thermal Plasma as an Innovative Option for the Abatement of Volatile Organic Compounds: a Review

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Volatile organic compounds (VOCs) cause global and local impacts, resulting in environmental, health, and economic adverse effects. Industrial and waste management activities are the main anthropogenic stationary sources of VOCs in the atmosphere. The traditional technologies for the treatment of VOC-contaminated air present several limitations when treating effluents with low VOC concentrations, high airflow rate, and with compounds with low solubility in water. However, a novel technology, based on non-thermal plasmas (NTPs) and catalysis, has shown promising results in air purification. In this framework, after an initial overview on NTP-catalysis principles, this review presents and discusses 20 recent papers, with a threefold purpose: evaluating the most recent applications of NTP and NTP-catalysis reactors to the treatment of air-VOC mixtures, analyzing all the parameters that may influence the abatement efficiency and the by-product formation, and providing the reader with insights into the choice of the preferable configurations to use, based on the effluent type and the destination of the treated air. As a result of this review, NTPs may represent a promising option for indoor air treatment, especially because of the lower expected byproduct formation when treating low-concentrated VOC mixtures with relatively low air flow rates. If the target is the abatement of higher VOC concentrations, the higher energy efficiency obtainable in such conditions makes NTP-catalysis a cost-effective option for industrial applications. In addition, the formation of simpler and more soluble by-products makes NTPs a suitable technology for air pretreatment upstream of water-based removal technologies, such as absorption columns and biofilters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Almarcha, D., Almarcha, M., Nadal, S., & Caixach, J. (2012). Comparison of the depuration efficiency for VOC and other odoriferous compounds in conventional and advanced biofilters in the abatement of odour emissions from municipal waste treatment plants. Chemical Engineering Transactions, 30, 259–264.

    Google Scholar 

  • Anaghizi, S. J., Talebizadeh, P., Rahimzadeh, H., & Ghomi, H. (2015). The configuration effects of electrode on the performance of dielectric barrier discharge reactor for NOx removal. IEEE Transactions on Plasma Science, 43(6), 1944–1953.

    Article  CAS  Google Scholar 

  • Ascenzi, D., Franceschi, P., Guella, G., & Tosi, P. (2006). Phenol production in benzene/air plasmas at atmospheric pressure. Role of radical and ionic routes. The Journal of Physical Chemistry A, 110(25), 7841–7847.

    Article  CAS  Google Scholar 

  • Assadi, A. A., Bouzaza, A., & Lemasle, M. (2015). Removal of trimethylamine and isovaleric acid from gas streams in a continuous flow surface discharge plasma reactor. Chemical Engineering Research and Design, 93, 640–651.

    Article  CAS  Google Scholar 

  • ATSDR (2014). Medical management guidelines for phosgene. Agency for Toxic Substances and Disease Registry. https://www.atsdr.cdc.gov/MMG/MMG.asp?id=1201&tid=182. Accessed 28 February 2017.

  • ATSDR (2015). Public health statement for chlorine. Agency for Toxic Substances and Disease Registry. https://www.atsdr.cdc.gov/phs/phs.asp?id=683&tid=36. Accessed 28 February 2017.

  • Bahri, M., & Haghighat, F. (2014). Plasma-based indoor air cleaning technologies: the state of the art-review. Clean – Soil, Air, Water 2014, 42(12), 1667–1680.

    Article  CAS  Google Scholar 

  • Beloff, B. R., Beaver, E. R., & Massin, H. (2000). Assessing societal costs associated with environmental impacts. Environmental Quality Management, 10(2), 67–82.

    Article  Google Scholar 

  • Brandenburg, B., Kovačević, V. V., Schmidt, M., Basner, R., Kettlitz, M., Sretenović, G. B., et al. (2014). Plasma-based pollutant degradation in gas streams: status, examples and outlook. Contributions to Plasma Physics, 54(2), 202–214.

    Article  CAS  Google Scholar 

  • Chen, H. L., Lee, H. M., Chen, S. H., Chang, M. B., Yu, S. J., & Li, S. N. (2009). Removal of volatile organic compounds by single-stage and two-stage plasma catalysis systems: a review of the performance enhancement mechanisms, current status, and suitable applications. Environmental Science & Technology, 43(7), 2216–2227.

    Article  CAS  Google Scholar 

  • Chen, J., Xie, Z., Tang, J., Zhou, J., Lu, X., & Zhao, H. (2016). Oxidation of toluene by dielectric barrier discharge with photo-catalytic electrode. Chemical Engineering Journal, 284, 166–173.

    Article  CAS  Google Scholar 

  • Copelli, S., Torretta, V., Raboni, M., Viotti, P., Luciano, A., Mancini, et al. (2012). Improving biotreatment efficiency of hot waste air streams: experimental upgrade of a full plant. Chemical Engineering Transactions, 30, 49–54.

    Google Scholar 

  • Devashasdin, S., Fan, C., Li, J. K., & Chen, D. H. (2003). TiO2 photocatalytic oxidation of nitric oxide: transient behavior and reaction kinetics. Journal of Photochemistry and Photobiology A: Chemistry, 156, 161–170.

    Article  CAS  Google Scholar 

  • Einaga, H., & Futamura, S. (2004). Catalytic oxidation of benzene with ozone over alumina-supported manganese oxides. Journal of Catalysis, 227(2), 304–312.

    Article  CAS  Google Scholar 

  • Fan, X., Zhu, T. L., Wang, M. Y., & Li, X. M. (2009). Removal of low-concentration BTX in air using a combined plasma catalysis system. Chemosphere, 75(10), 1301–1306.

    Article  CAS  Google Scholar 

  • Fang, Z., Qiu, Y., Zhang, C., & Kuffel, E. (2007). Factors influencing the existence of the homogeneous dielectric barrier discharge in air at atmospheric pressure. Journal of Physics D: Applied Physics, 40(5), 1401–1407.

    Article  CAS  Google Scholar 

  • Fridman, A. (2008). Plasma chemistry. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Fridman, A., Chirocov, A., & Gutsol, A. (2005). Non-thermal atmospheric pressure discharges. Journal of Physics D: Applied Physics, 38(2), R1–R24.

    Article  CAS  Google Scholar 

  • Futamura, S., Zhang, A., Einaga, H., & Kabashima, H. (2002). Involvement of catalyst materials in nonthermal plasma chemical processing of hazardous air pollutants. Catalysis Today, 72(3–4), 259–265.

    Article  CAS  Google Scholar 

  • Hammer, T. (2014). Atmospheric pressure plasma application for pollution control in industrial processes. Contributions to Plasma Physics, 54(2), 187–201.

    Article  CAS  Google Scholar 

  • Hashim, S. A., Samsudin, F. N. D. B., Wong, C. S., Bakar, K. A., Yap, S. L., & Zin, M. F. M. (2016). Non-thermal plasma for air and water remediation. Archives of Biochemistry and Biophysics, 605, 34–40.

    Article  CAS  Google Scholar 

  • Huixian, D., & Zengfeng, Z. (2009). Plasma-catalytic removal of formaldehyde in atmospheric pressure gas streams. In K. Yan (Ed.), Electrostatic precipitation (pp. 665–669). Berlin: Springer.

    Chapter  Google Scholar 

  • IARC, 2017. IARC Monograph on the Evaluation of Carcinogenic Risks to Humans – List of Classifications, Volumes 1–117. International Agency for Research on Cancer. http://monographs.iarc.fr/ENG/Classification/latest_classif.php. Accessed 28 February 2017.

  • Ikaunieks, J., Mezmale, L., Zandeckis, A., Pubule, J., Blumberga, A., & Veidenbergs, I. (2011). Non-thermal plasma for VOC treatment in flue gases. Environmental and Climate Technologies, 6(1), 31–37.

    Google Scholar 

  • Inoue, K., Okano, H., Yamagata, Y., Muraoka, K., & Teraoka, Y. (2011). Performance tests of newly developed adsorption/plasma combined system for decomposition of volatile organic compounds under continuous flow condition. Journal of Environmental Sciences, 23(1), 139–144.

    Article  CAS  Google Scholar 

  • Isakson, H. R., & Ecker, M. D. (2008). An analysis of the impact of swine CAFOs on the value of nearby houses. Agricultural Economics, 39(3), 365–372.

    Article  Google Scholar 

  • Jiang, N., Lu, N., Shang, K., Li, J., & Wu, Y. (2013). Effects of electrode geometry on the performance of dielectric barrier/packed-bed discharge plasmas in benzene degradation. Journal of Hazardous Materials, 262, 387–393.

    Article  CAS  Google Scholar 

  • Jiang, N., Hu, J., Li, J., Shang, K., Lu, N., & Wu, Y. (2016a). Plasma-catalytic degradation of benzene over Ag-Ce bimetallic oxide catalysts using hybrid surface/packed-bed discharge plasmas. Applied Catalysis B: Environmental, 184, 355–363.

  • Jiang, L., Li, H., Chen, J., Zhang, D., Cao, S., & Ye, J. (2016b). Combination of non-thermal plasma and biotrickling filter for chlorobenzene removal. Journal of Chemical Technology and Biotechnology, 91, 3079–3087.

  • Jiang, N., Qiu, C., Guo, L., Shang, K., Lu, N., Li, J., et al. (2017a). Post plasma-catalysis of low concentration VOC over alumina-supported silver catalysts in a surface/packed-bed hybrid discharge reactor. Water, Air, & Soil Pollution, 228, 113.

    Article  CAS  Google Scholar 

  • Jiang, L., Li, S., Cheng, Z., Chen, J., & Nie, G. (2017b). Treatment of 1,2-dichloroethane and n-hexane in a combined system of non-thermal plasma catalysis reactor coupled with a biotrickling filter. Journal of Chemical Technology and Biotechnology. https://doi.org/10.1002/jctb.5331.

  • Jo, J. O., Trinh, H. Q., Kim, S. H., & Mok, Y. S. (2016). Simultaneous removal of hydrocarbon and CO using a nonthermal plasma-catalytic hybrid reactor system. Chemical Engineering Journal, 299, 93–103.

    Article  CAS  Google Scholar 

  • Jun, T. H., Kim, M. J., Kim, S., Jung, Y. H., Moon, H.-R., & Kim, K.-S. (2017). Evaluation of activated carbon-coated electrode in electrostatic precipitator and its regeneration for volatile organic compounds removal. Water, Air, & Soil Pollution, 228, 110.

    Article  CAS  Google Scholar 

  • Karatoum, O., & Deshusses, M. A. (2016). A comparative study of dilute VOCs treatment in a non-thermal plasma reactor. Chemical Engineering Journal, 294, 308–315.

    Article  CAS  Google Scholar 

  • Karuppiah, J., Reddy, E. L., Reddy, P. M. K., Ramaraju, B., Karvembu, R., & Subrahmanyam, C. (2012). Abatement of mixture of volatile organic compounds (VOCs) in catalytic non-thermal plasma reactor. Journal of Hazardous Materials, 237–238, 283–289.

    Article  CAS  Google Scholar 

  • Karuppiah, J., Reddy, E. L., Reddy, P. M. K., Ramaraju, B., & Subrahmanyam, C. (2014). Catalytic nonthermal plasma reactor for the abatement of low concentrations of benzene. International journal of Environmental Science and Technology, 1(2), 311–318.

    Article  CAS  Google Scholar 

  • Kim, H. H. (2004). Nonthermal plasma processing for air-pollution control: a historical review, current issues and future prospects. Plasma Processes and Polymers, 1(2), 91–110.

    Article  CAS  Google Scholar 

  • Kim, H.-H., Oh, S.-M., Ogata, A., & Futamura, S. (2005). Decomposition of gas-phase benzene using plasma-driven catalyst (PDC) reactor packed with Ag/TiO2 catalyst. Applied Catalysis B: Environmental, 56(3), 213–220. https://doi.org/10.1016/j.apcatb.2004.09.008.

    Article  CAS  Google Scholar 

  • Kim, H. H., Teramoto, Y., Negishi, N., & Ogata, A. (2015). A multidisciplinary approach to understand the interactions of non-thermal plasma and catalyst: a review. Catalysis Today, 256, 13–22.

    Article  CAS  Google Scholar 

  • Kim, H. H., Teramoto, Y., Ogata, A., Takagi, H., & Nanba, T. (2016). Plasma catalysis for environmental treatment and energy applications. Plasma Chemistry and Plasma Processing, 36(1), 45–72.

    Article  CAS  Google Scholar 

  • Kogelschatz, U. (2003). Dielectric-barrier discharges: their history, discharge physics and industrial applications. Plasma Chemistry and Plasma Processing, 23(1), 1–46.

    Article  CAS  Google Scholar 

  • Kogelschatz, U. (2004). Atmospheric-pressure plasma technology. Plasma Physics and Controlled Fusion, 46(12B), B63–B75.

    Article  CAS  Google Scholar 

  • Kostov, K. G., Honda, R. Y., Alves, L. M. S., & Kayama, M. B. (2009). Characteristics of dielectric barrier discharge reactor for material treatment. Brazilian Journal of Physics, 39(2), 322–325.

    Article  CAS  Google Scholar 

  • Kulkarni, N., & Grigg, J. (2015). Effect of air pollution on children. Paediatrics and Child Health, 18(5), 238–243.

    Article  Google Scholar 

  • Kuraica, M. M., Obradović, B. M., Manojlović, D., Ostojić, D. R., & Purić, J. (2004). Ozonized water generator based on coaxial dielectric-barrier-discharge in air. Vacuum, 73(3–4), 705–708.

    Article  CAS  Google Scholar 

  • Lee, H., Lee, D. H., Song, Y. H., Choi, W. C., Park, Y. K., & Kim, D. H. (2015). Synergistic effect of non-thermal plasma-catalysis hybrid system on methane complete oxidation over Pd. Chemical Engineering Journal, 259, 761–770.

    Article  CAS  Google Scholar 

  • Li, S., Huang, Y., Wang, F., Liu, J., Feng, F., Shen, X., et al. (2014). Fundamentals and environmental applications of non-thermal plasmas: Multi-pollutants emission control from coal-fired flue gas. Plasma Chemistry and Plasma Processing, 24(3), 579–603.

    Article  CAS  Google Scholar 

  • Li, Y., Fan, Z., Shi, J., Liu, Z., Zhou, J., & Shangguan, W. (2015). Modified manganese oxide octahedral molecular sieves M’-OMS-2 (M’=Co,Ce,Cu) as catalyst in post plasma catalysis for acetaldehyde degradation. Catalysis Today, 256, 178–185.

    Article  CAS  Google Scholar 

  • Liang, W. J., Li, J., Li, J. X., Zhu, T., & Jin, Y. Q. (2010). Formaldehyde removal from gas streams by means of NaNO2 dielectric barrier discharge plasma. Journal of Hazardous Materials, 175, 1090–1095.

    Article  CAS  Google Scholar 

  • Liotta, L. F. (2010). Catalytic oxidation of volatile organic compounds on supported noble metals. Applied Catalysis B: Environmental, 100(3–4), 403–412.

    Article  CAS  Google Scholar 

  • Locke, B. R., Lukes, P., & Brisset, J. L. (2012). Elementary chemical and physical phenomena in electrical discharge plasma in gas-liquid environments and in liquids. In V. I. Parvulescu, M. Magureanu, & P. Lukes (Eds.), Plasma chemistry and catalysis in gases and liquids (pp. 185–241). Weinheim: Wiley-VCH Verlag GmbH & Co..

    Chapter  Google Scholar 

  • Luciano, A., Torretta, V., Mancini, G., Eleuteri, A., Raboni, M., & Viotti, P. (2017). The modelling of odour dispersion as a support tool for the improvements of high odours impact plants. Environmental Technology, 38(5), 588–597.

    Article  CAS  Google Scholar 

  • Luengas, A., Barona, A., Hort, C., Gallastegui, G., Platel, V., & Elias, A. (2015). A review of indoor air treatment technologies. Reviews in Environmental Science and Bio/Technology, 14, 499–522.

  • Ma, T. J., & Lan, W. S. (2015). Ethylene decomposition with a wire-plate dielectric barrier discharge reactor: parameteres and kinetic study. International journal of Science and Technology, 12(12), 3951–3956.

  • Magureanu, M., Mandache, N. B., Parvulescu, V. I., Subrahmanyam, C., Renken, A., & Kiwi-Minsker, L. (2007a). Improved performance of non-thermal plasma reactor during decomposition of trichloroethylene: optimization of the reactor geometry and introduction of catalytic electrode. Applied Catalysis B: Environmental, 74(3–4), 270–277.

    Article  CAS  Google Scholar 

  • Magureanu, M., Mandache, N. B., Hu, J., Richards, R., Florea, M., & Parvulescu, V. I. (2007b). Plasma-assisted catalysis total oxidation of trichloroethylene over gold nano-particles embedded in SBA-15 catalysts. Applied Catalysis B: Environmental, 76(3–4), 275–281.

    Article  CAS  Google Scholar 

  • Mohsenian, S., Esmaili, M. S., Shokri, B., & Ghorbanalilu, M. (2015). Physical characteristics of twin DC thermal plasma torch applied to polymer waste treatment. Journal of Electrostatics, 76, 231–237.

    Article  CAS  Google Scholar 

  • Mudliar, S., Giri, B., Padoley, K., Satpute, D., Dixit, R., Bhatt, P., et al. (2010). Bioreactors for treatment of VOCs and odours – a review. Journal of Environmental Management, 91, 1039–1054.

    Article  CAS  Google Scholar 

  • Nehra, V., Kumar, A., & Dwidedi, H. K. (2008). Atmospheric non-thermal plasma sources. International Journal of Engineering, 2(1), 53–68.

    Google Scholar 

  • Nguyen Dinh, M. T., Giraudon, J. M., Lamonier, J. F., Vandenroucke, A., De Geyter, N., Leys, C., & Morent, R. (2014). Plasma-catalysis of low TCE concentration in air using LaMnO3+d as catalyst. Applied Catalysis B: Environmental, 147, 904–911.

    Article  CAS  Google Scholar 

  • Nguyen Dinh, M. T., Giraudon, J. M., Vandenbroucke, A. M., Morent, R., De Geyter, N., & Lamonier, J. F. (2015). Post plasma-catalysis for total oxidation of trichloroethylene over Ce-Mn based oxides synthesized by a modified “redox-precipitation route”. Applied Catalysis B: Environmental, 172, 65–72.

    Article  CAS  Google Scholar 

  • Ondarts, M., Hajji, W., Outin, J., Bejat, T., & Gonze, E. (2017). Non-Thermal Plasma for indoor air treatment: toluene degradation in a corona discharge at ppbv levels. Chemical Engineering Research and Design, 118, 194–205.

    Article  CAS  Google Scholar 

  • Pangilinan, C. D. C., Kurniawan, W., Salim, C., & Hinode, H. (2016). Effect of Ag/TiO2 catalyst preparation on gas-phase benzene decomposition using non-thermal plasma driven catalysis under oxygen plasma. Reaction Kinetics, Mechanisms and Catalysis, 117(1), 103–118.

    Article  CAS  Google Scholar 

  • Patil, B. S., Cherkasov, N., Lang, J., Ibhadon, A. O., Hessel, V., & Wang, Q. (2016). Low temperature plasma-catalytic NOx synthesis in a packed DBD reactor: Effect of support materials and supported active metal oxides. Applied Catalysis B: Environmental, 194, 123–133.

    Article  CAS  Google Scholar 

  • Pham Huu, T., Sivachandiran, L., Da Costa, P., & Khacef, A. (2017). Methane, propene and toluene oxidation by plasma-Pd/g-Al2O3 hybrid reactor: investigation of a synergetic effect. Topics in Catalysis, 60(3–5), 326–332.

    Article  CAS  Google Scholar 

  • Preis, S., Klauson, D., & Gregor, A. (2013). Potential of electric discharge plasma methods in abatement of volatile organic compounds originating from the food industry. Journal of Environmental Management, 114, 125–138.

    Article  CAS  Google Scholar 

  • Raboni, M., Torretta, V., & Viotti, P. (2016). Airborne toluene removal for minimizing occupational health exposure by means of a trickle bed biofilter. Environmental Science and Pollution Research, 23(12), 11751–11758.

    Article  CAS  Google Scholar 

  • Raboni, M., Torretta, V., & Viotti, P. (2017). Treatment of airborne BTEX by a two-stage biotrickling filter and biofilter, exploiting selected bacterial and fungal consortia. International journal of Environmental Science and Technology, 14(1), 19–28.

    Article  CAS  Google Scholar 

  • Rada, E. C., Raboni, M., Torretta, V., Copelli, S., Ragazzi, M., Caruson, P., et al. (2014). Removal of benzene from oil refinery wastewater treatment plant exchaused gases with a multi-stage biofiltration pilot plant. Revista de Chemie, 65(1), 68–70.

    CAS  Google Scholar 

  • Ragazzi, M., Tosi, P., Rada, E. C., Torretta, V., & Schiavon, M. (2014). Effluents from MBT plants: plasma techniques for the treatments of VOCs. Waste Management, 34(11), 2400–2406.

    Article  CAS  Google Scholar 

  • Ramaraju, B., & Subrahmanyam, C. (2014). Catalytic non-thermal plasma for stripping the VOCs from air. Composite Interfaces, 21(7), 651–658.

    Article  CAS  Google Scholar 

  • Ramaraju, B., Reddy, E. L., Karuppiah, J., Reddy, P. M. K., & Subrahmanyam, C. (2013). Catalytic non-thermal plasma reactor for the decomposition of a mixture of volatile organic compounds. Journal of Chemical Sciences, 125(3), 673–678.

    Article  CAS  Google Scholar 

  • Sano, T., Negishi, N., Sakai, E., & Matsuzawa, S. (2006). Contributions of photocatalytic/catalytic activities of TiO2 and γ-Al2O3 in nonthermal plasma on oxidation of acetaldehyde and CO. Journal of Molecular Catalysis A: Chemical, 245, 235–241.

    Article  CAS  Google Scholar 

  • Sarkar, U., Longhurst, P. J., & Hobbs, S. E. (2003). Community modelling: a tool for correlating estimates of exposure with perception of odour from municipal solid waste (MSW) landfills. Journal of Environmental Management, 68(2), 133–140.

    Article  Google Scholar 

  • Saulich, K., & Müller, S. (2013). Removal of formaldehyde by adsorption and plasma treatment of mineral adsorbent. Journal of Physics D: Applied Physics, 46, 045201.

    Article  CAS  Google Scholar 

  • Schiavon, M., Scapinello, M., Tosi, P., Ragazzi, M., Torretta, V., & Rada, E. C. (2015). Potential of non-thermal plasmas for helping the biodegradation of volatile organic compounds (VOCs) released by waste management plants. Journal of Cleaner Production, 104, 211–219.

    Article  CAS  Google Scholar 

  • Schiavon, M., Ragazzi, M., Rada, E. C., & Torretta, V. (2016a). Air pollution control through biotrickling filters: a review considering operational aspects and expected performance. Critical Reviews in Biotechnology, 36(6), 1143–1155.

    Article  CAS  Google Scholar 

  • Schiavon, M., Ragazzi, M., Torretta, V., & Rada, E. C. (2016b). Comparison between conventional biofilters and biotrickling filters applied to waste bio-drying in terms of atmospheric dispersion and air quality. Environmental Technology, 37(8), 975–982.

    Article  CAS  Google Scholar 

  • Schiavon, M., Schiorlin, M., Torretta, V., Ragazzi, M., & Rada, E. C. (2016c). Biofiltration combined with non-thermal plasma for air pollution control: a preliminary investigation. International Journal of Sustainable Development and Planning, 11(4), 627–635.

    Article  Google Scholar 

  • Schiavon, M., Schiorlin, M., Torretta, V., Brandenburg, R., & Ragazzi, M. (2017). Non-thermal plasma assisting the biofiltration of volatile organic compounds. Journal of Cleaner Production, 148, 498–508.

    Article  CAS  Google Scholar 

  • Schiorlin, M., Marotta, E., Rea, M., & Paradisi, C. (2009). Comparison of toluene removal in air at atmospheric conditions by different corona discharges. Environmental Science & Technology, 43(24), 9386–9392.

    Article  CAS  Google Scholar 

  • Schmidt, M., Jõgi, L., Hołub, M., & Brandenburg, R. (2015). Non-thermal plasma based decomposition of volatile organic compounds in industrial exhaust gases. International journal of Environmental Science and Technology, 12(12), 3745–3754.

    Article  CAS  Google Scholar 

  • Shahna, F. G., Bahrami, A., Alimohammadi, I., Yarahmadi, R., Jaleh, B., Gandomi, M., et al. (2017). Chlorobenzene degradation by non-thermal plasma combined with EG-TiO2/ZnO as a photocatalyst: effect of photocatalyst on CO2 selectivity and byproducts reduction. Journal of Hazardous Materials, 324, 544–553.

    Article  CAS  Google Scholar 

  • Shao, P., An, J., Xin, J., Wu, F., Wang, J., Ji, D., et al. (2016). Source apportionment of VOCs and the contribution to photochemical ozone formation during summer in the typical industrial area in the Yangtze River Delta, China. Atmospheric Research, 176–177, 64–74.

    Article  CAS  Google Scholar 

  • Shin, D. H., Hong, Y. C., Lee, S. J., Kim, Y. J., Cho, C. H., Ma, S. H., et al. (2013). A pure steam microwave plasma torch: gasification of powdered coal in the plasma. Surface and Coatings Technology, 228(S1), S520–S523.

    Article  CAS  Google Scholar 

  • Subrahmanyam, C., Renken, A., & Kiwi-Minsker, L. (2007). Novel catalytic dielectric barrier discharge reactor for gas-phase abatement of isopropanol. Plasma Chemistry and Plasma Processing, 27, 13–22.

    Article  CAS  Google Scholar 

  • Subrahmanyam, C., Renken, A., & Kiwi-Minsker, L. (2010). Catalytic non-thermal plasma reactor for abatement of toluene. Chemical Engineering Journal, 160(2), 677–682.

    Article  CAS  Google Scholar 

  • Surov, A. V., Popov, S. D., Popov, V. E., Subbotin, D. I., Serba, E. O., Spodobin, V. A., et al. (2017). Multi-gas AC plasma torches for gasification of organic substances. Fuel, 203, 1007–1014.

    Article  CAS  Google Scholar 

  • Tam, B. N., & Neumann, C. M. (2004). A human health assessment of hazardous air pollutants in Portland, OR. Journal of Environmental Management, 73(2), 131–145.

    Article  CAS  Google Scholar 

  • Tang, S., Lu, N., Li, J., & Wu, Y. (2012). Design and application of an up-scaled dielectric barrier discharge plasma reactor for regeneration of phenol-saturated granular activated carbon. Separation and Purification Technology, 95, 73–79.

    Article  CAS  Google Scholar 

  • Thakur, P. K., Rahul, Mathur, A. K., & Balomajumder, C. (2011). Biofiltration of volatile organic compounds (VOCs)—an overview. Research Journal of Chemical Sciences, 1(8), 83–92.

  • Thevenet, F., Guaitella, O., Puzenat, E., Guillard, C., & Rousseau, A. (2008). Influence of water vapour on plasma/photocatalytic oxidation efficiency of acetylene. Applied Catalysis B: Environmental, 84(3–4), 813–820.

    Article  CAS  Google Scholar 

  • Torretta, V., Raboni, M., Copelli, S., & Caruson, P. (2013). Application of a multi-stage biofilter pilot plants to remove odor and VOCs from industrial activities air emissions. WIT Transactions on Ecology and the Environment, 176, 3–13.

    Article  CAS  Google Scholar 

  • Torretta, V., Rada, E. C., Schiavon, M., & Trulli, E. (2014). An example of removal of organic pollutants from off gas generated from small activities in proximity of urban areas. WIT Transactions on Ecology and the Environment, 191, 1413–1422.

    Article  Google Scholar 

  • Torretta, V., Collivignarelli, M. C., Raboni, M., & Viotti, P. (2015). Experimental treatment of a refinery waste air stream, for BTEX removal, by water scrubbing and biotrickling on a bed of Mitilus edulis shells. Environmental Technology, 36(18), 2300–2307.

    Article  CAS  Google Scholar 

  • Torretta, V., Schiavon, M., Papa, E. A., Caruson, P., & Capodaglio, A. G. (2016). Removal of odorous sulphur compounds from industrial gases by biotrickling filters. Revista Ambiente & Agua, 11(3), 499–507.

    Article  Google Scholar 

  • Trinh, Q. H., & Mok, Y. S. (2015a). Non-thermal plasma combined with cordierite-supported Mn and Fe based catalyst for the decomposition of diethylether. Catalysts, 5(2), 800–814.

    Article  CAS  Google Scholar 

  • Trinh, Q. H., & Mok, Y. S. (2015b). Effect of the adsorbent/catalyst preparation method and plasma reactor configuration on the removal of dilute ethylene from air stream. Catalysis Today, 256, 170–177.

    Article  CAS  Google Scholar 

  • Trinh, Q. H., & Mok, Y. S. (2016). Environmental plasma-catalysis for the energy-efficient treatment of volatile organic compounds. Korean Journal of Chemical Engineering, 33(3), 735–748.

    Article  CAS  Google Scholar 

  • Trinh, Q. H., Sanjeeva Gandhi, M., & Mok, Y. S. (2014). Adsorption and plasma-catalytic oxidation of acetone over zeolite-supported silver catalyst. Japanese Journal of Applied Physics, 54(1S), 01AG04.

    Article  CAS  Google Scholar 

  • U.S. Environmental Protection Agency (2015). Benzene; CASRN 71-43-2. Integrated Risk Information System (IRIS) Chemical Assessment Summary. U.S. Environmental Protection Agency. https://cfpub.epa.gov/ncea/iris/iris_documents/documents/subst/0276_summary.pdf. Accessed 28 February 2017.

  • Van Durme, J., Dewulf, J., Sysmans, W., Leys, C., & Van Langenhove, H. (2007). Efficient toluene abatement in indoor air by a plasma catalytic hybrid system. Applied Catalysis B: Environmental, 74, 161–169.

    Article  CAS  Google Scholar 

  • Van Durme, J., Dewulf, J., Leys, C., & Van Langenhove, H. (2008). Combining non-thermal plasma with heterogeneous catalysis in waste gas treatment: A review. Applied Catalysis B: Environmental, 78, 324–333.

    Article  CAS  Google Scholar 

  • Van Durme, J., Dewulf, J., Demeestere, K., Leys, C., & Van Langenhove, H. (2009). Post-plasma catalytic technology for the removal of toluene from indoor air: effect of humidity. Applied Catalysis B: Environmental, 87, 78–83.

    Article  CAS  Google Scholar 

  • Van Laer, K., & Bogaerts, A. (2015). Improving the conversion and energy efficiency of carbon dioxide splitting in a zirconia-packed barrier discharge reactor. Energy Technology, 3(10), 1038–1044.

    Article  CAS  Google Scholar 

  • Vandenbroucke, A. M., Morent, R., De Geyter, N., & Leys, C. (2011). Non-thermal plasmas for non-catalytic and catalytic VOC abatement. Journal of Hazardous Materials, 195, 30–54.

    Article  CAS  Google Scholar 

  • Vandenbroucke, A. M., Nguyen Dinh, M. T., Nuns, N., Giraudon, J. M., De Geyter, N., Leys, C., et al. (2016). Combination of non-thermal plasma and Pd/LaMnO3 for dilute trichloroethylene abatement. Chemical Engineering Journal, 283, 668–675.

    Article  CAS  Google Scholar 

  • Voltolina, S., Nodari, L., Aibéo, C., Egel, E., Pamplona, M., Simon, S., et al. (2016). Assessment of plasma torches as innovative tool for cleaning of historical stone materials. Journal of Cultural Heritage, 22, 940–950.

    Article  Google Scholar 

  • Wan, Y., Fan, X., & Zhu, T. (2011). Removal of low-concentration formaldehyde in air by DC corona discharge plasma. Chemical Engineering Journal, 171(1), 314–319.

    Article  CAS  Google Scholar 

  • Wei, Z. S., Li, H. Q., He, J. C., Ye, Q. H., Huang, Q. R., & Luo, Y. W. (2013). Removal of dimethyl sulfide by the combination of non-thermal plasma and biological process. Bioresource Technology, 146, 451–456.

    Article  CAS  Google Scholar 

  • Wilbur, S., Williams, M., Williams, R., Scinicariello, F., Klotzbach, J. M., Diamond, G. L., et al. (2012). Toxicological profile for carbon monoxide. Agency for Toxic Substances and Disease Registry. https://www.atsdr.cdc.gov/toxprofiles/tp201.pdf. Accessed 28 February 2017.

  • Sarigiannis, D. A. (2013). Combined or multiple exposure to health stressors in indoor built environments. An evidence-based review preapared for the WHO training workshop "Multiple environmental exposures and risks" 16-18 October 2013. World Health Organization.http://www.euro.who.int/__data/assets/pdf_file/0020/248600/Combined-or-multiple-exposure-to-health-stressors-in-indoor-built-environments.pdf. Accessed 23 August 2017.

  • Xia, D., Li, Z., Xie, Y., & Zhang, X. (2016). Kinetic simulations of volatile organic compounds decomposition by non-thermal plasma treatment. Water, Air, & Soil Pollution, 227, 463.

    Article  CAS  Google Scholar 

  • Xiao, G., Xu, W., Wu, R., Ni, M., Du, C., Gao, X., et al. (2014). Non-thermal plasmas for VOCs abatement. Plasma Chemistry and Plasma Processing, 34(5), 1033–1065.

    Article  CAS  Google Scholar 

  • Xu, X., Wu, J., Xu, W., He, M., Fu, M., Chen, L., et al. (2017). High-efficiency non-thermal plasma-catalysis of cobalt incorporated mesoporous MCM-41 for toluene removal. Catalysis Today, 281, 527–533.

    Article  CAS  Google Scholar 

  • Yao, S., Wu, Z., Han, J., Tang, X., Jiang, B., Lu, H., et al. (2015). Study of ozone generation in an atmospheric dielectric barrier discharge reactor. Journal of Electrostatics, 75, 35–42.

    Article  CAS  Google Scholar 

  • Yehia, A. (2016). The electrical characteristics of the dielectric barrier discharges. Physics of Plasmas, 23, 063520.

    Article  CAS  Google Scholar 

  • Zhu, X., Gao, X., Qin, R., Zeng, Y., Qu, R., Zheng, C., et al. (2015a). Plasma-catalytic removal of formaldehyde over Cu-Ce catalysts in a dielectric barrier discharge reactor. Applied Catalysis B: Environmental, 170–171, 293–300.

    Article  CAS  Google Scholar 

  • Zhu, X., Gao, X., Yu, X., Zheng, C., & Tu, X. (2015b). Catalyst screening for acetone removal in a single-stage plasma-catalysis system. Catalysis Today, 256, 106–114.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Schiavon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schiavon, M., Torretta, V., Casazza, A. et al. Non-thermal Plasma as an Innovative Option for the Abatement of Volatile Organic Compounds: a Review. Water Air Soil Pollut 228, 388 (2017). https://doi.org/10.1007/s11270-017-3574-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-017-3574-3

Keywords

Navigation