Skip to main content

Advertisement

Log in

Non-thermal plasma based decomposition of volatile organic compounds in industrial exhaust gases

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

The decomposition of various volatile organic compounds (VOCs), namely butyl acetate, styrene, and methanol, by means of non-thermal plasma technology was investigated in different industrial exhaust gases. Although a great deal of effort on the investigation of these VOCs can be found in literature, data regarding the application in real exhaust gases are missing and provided in this contribution. Measurements were performed in an oil shale processing plant in Estonia and in a yacht hall production site in Poland. Up to 71 % of butyl acetate at a specific input energy (SIE) of about 220 J/L and more than 74 % of styrene and methanol at SIE > 300 J/L were decomposed. The energy efficiency of the decomposition processes was analyzed as well as the products formed by the plasma process. Energy constants of k E < 9.85 L/kJ for butyl acetate and k E < 2.75 L/kJ for styrene and methanol were obtained. Most of the VOCs were partly oxidized to carbon monoxide and, to lesser extent, totally oxidized to carbon dioxide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aerts R, Tu X, Van Gaens W, Whitehead C, Bogaerts A (2013) Gas purification by nonthermal plasma: a case study of ethylene. Environ Sci Technol 47(12):6478–6485. doi:10.1021/es400405c

    CAS  Google Scholar 

  • BGRCI Berufsgenossenschaft Rohstoffe und chemische Industrie (2014a) Sicherheitsdatenblatt n-Butylacetat (in German)

  • BGRCI Berufsgenossenschaft Rohstoffe und chemische Industrie (2014b) Sicherheitsdatenblatt Methanol (in German)

  • BGRCI Berufsgenossenschaft Rohstoffe und chemische Industrie (2014c) Sicherheitsdatenblatt Styrol (in German)

  • Brandenburg R, Barankova H, Bardos L, Chmielewski AG, Dors M, Grosch H, Hołub M, Jõgi I, Laan M, Mizeraczyk J, Pawelec A, Stamate E (2011) Plasma-based depollution of exhausts: principles, state of the art and future prospects. In: Chmielewski AG (ed) Monitoring, control and effects of air pollution. InTech, pp 229–254

  • Caravan P, Budge SM, Roscoe JM (1996) The reactions of O(3P) with some carboxylic acids and esters. Can J Chem 74:516–523

    Article  CAS  Google Scholar 

  • Demidiouk V, Moon SI, Chae JO, Lee DY (2003) Application of a plasma-catalytic system for decomposition of volatile organic compounds. J Korean Phys Soc 42:966–970

    Google Scholar 

  • Fridman A (2008) Plasma chemistry. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Fridman A, Gutsol A, Tak G, Blank K, Adams D, Korobtsev S, Shiryaevsky V, Medvedev D, Abolentsev V, Edwards T, Parvesse T, Griffith CR (2005) Final technical report. doi:10.2172/883846. http://www.osti.gov/scitech/servlets/purl/883846. Accessed 21 Sept 2014

  • Hammer Th (2014) Atmospheric pressure plasma application for pollution control in industrial processes. Contrib Plasma Phys 54(2):187–201. doi:10.1002/ctpp.201310063

    Article  CAS  Google Scholar 

  • Hsiao MC, Merritt BT, Penetrante BM, Vogtlin GE, Wallman PH (1995) Plasma-assisted decomposition of methanol and trichloroethylene in atmospheric pressure air streams by electrical discharge processing. J Appl Phys 78:3451–3456. doi:10.1063/1.359976

    Article  CAS  Google Scholar 

  • Huang H, Ye D, Leung DYC, Feng F, Guan X (2011) Byproducts and pathways of toluene destruction via plasma-catalysis. J Mol Catal A Chem 336:87–93. doi:10.1016/j.molcata.2011.01.002

    Article  CAS  Google Scholar 

  • Jakubowski T, Kalisiak S, Hołub M, Pałka R, Borkowski T, Myśków J (2011) New resonant inverter topology with active energy recovery in PDM mode for DBD plasma reactor supply. In: Proceedings of 14th European conference on power electronics and applications

  • Jakubowski T, Hołub M, Kalisiak S (2013) Resonant inverter with resonance frequency tracking for DBD plasma reactor supply. Euro Phys J Appl Phys 61:24304–24309. doi:10.1051/epjap/2012120430

    Article  Google Scholar 

  • Kim HH (2004) Nonthermal plasma processing for air-pollution control: a historical review, current issues, and future prospects. Plasma Process Polym 1:91–110. doi:10.1002/ppap.200400028

    Article  Google Scholar 

  • Kogelschatz U (2003) Dielectric-barrier discharges: their history, discharge physics, and industrial applications. Plasma Chem Plasma Process 23:1–46

    Article  CAS  Google Scholar 

  • Kosch J (2005) Total hydrocarbon analysis using flame ionization detector. In: Down RD, Lehr JH (eds) Environmental instrumentation and analysis handbook. Wiley, Hoboken, pp 147–156

    Chapter  Google Scholar 

  • MCgroup Merchant Research and Consulting Ltd (2014a) Butyl acetate (BAC): 2014 world market outlook and forecast up to 2018. http://mcgroup.co.uk/researches/butyl-acetate Accessed 08 July 2014

  • MCgroup Merchant Research and Consulting Ltd (2014b) World methanol consumption touched close to 63 Mln Tonnes Mark in 2012. http://mcgroup.co.uk/news/20140207/methanol-consumption-touched-lose-63-mln-tonnes-mark.html. Accessed 13 Aug 2014

  • MCgroup Merchant Research and Consulting Ltd (2014c) Global styrene production exceeded 26.4 million tonnes in 2012, http://mcgroup.co.uk/news/20130830/global-styrene-production-exceeded-264-million-tonnes.html Accessed 08 July 2014

  • Mizuno A (2007) Industrial applications of atmospheric non-thermal plasma in environmental remediation. Plasma Phys Control Fusion 49:A1–A15

    Article  CAS  Google Scholar 

  • Müller S, Zahn R-J (2007) Air pollution control by non-thermal plasma. Contrib Plasma Phys 47:520–529. doi:10.1002/ctpp.200710067

    Article  Google Scholar 

  • Picquet B, Heroux S, Chebbi A, Doussin J-F, Durand-Jolibois R, Monod A, Loirat H, Carlier P (1998) Kinetics of the reactions of OH radicals with some oxygenated volatile organic compounds under simulated atmospheric conditions. Int J Chem Kinet 30:839–847

    Article  CAS  Google Scholar 

  • Rudolph R, Francke K-P, Miessner H (2002) Concentration dependence of VOC decomposition by dielectric barrier discharges. Plasma Chem Plasma Process 22:401–412

    Article  CAS  Google Scholar 

  • Testa GmbH (2014) Kohlenwasserstoffe richtig messen mit dem FID (in german). http://www.testa-fid.de/index.php?id=richtig. Accessed 01 July 2014

  • Van Durme J, Dewulf J, Sysmans W, Leys C, Van Langenhove H (2007) Abatement and degradation pathways of toluene in indoor air by positive corona discharge. Chemosphere 68:1821–1829. doi:10.1016/j.chemosphere.2007.03.053

    Article  Google Scholar 

  • Vandenbroucke AM, Morent R, De Geyter N, Leys C (2011) Non-thermal plasmas for non-catalytic and catalytic VOC abatement. J Hazard Mater 195:30–54

    Article  CAS  Google Scholar 

  • Vandenbroucke AM, Morent R, De Geyter N, Leys C (2012) Decomposition of toluene with plasma-catalysis: a review. J Adv Oxid Technol 15(2):232–241

    CAS  Google Scholar 

  • Wagner H-E, Brandenburg R, Kozlov KV, Sonnenfeld A, Michel P, Behnke JF (2003) The barrier discharge: basic properties and applications to surface treatment. Vacuum 71(2):417–436

    Article  CAS  Google Scholar 

  • Wang LK, Pereira NC, Hung Y-T (2004) Handbook of environmental engineering volume 1 air pollution control engineering. Human Press, Totowa

    Book  Google Scholar 

  • Weltmann K-D, Kindel E, von Woedtke T, Hähnel M, Stieber M, Brandenburg R (2010) Atmospheric-pressure plasma sources: prospective tools for plasma medicine. Pure Appl Chem 82:1223–1237

    Article  CAS  Google Scholar 

  • World Health Organization (2005) Concise international chemical assessment document 64 butyl acetates. WHO Press, Geneva

    Google Scholar 

  • Zhang X, Zhu J, Huang Y, Yan K (2009) Experimental investigation on styrene emission with a 1000 m3/h plasma system. In: Yan K (ed) Electrostatic precipitation. Zhejiang University Press, Zhejiang, pp 649–652

    Google Scholar 

  • Zhang X, Zhu J, Li X, Ren X, Yan K (2011) Characteristics of styrene removal with an AC/DC streamer corona plasma system. IEEE 39(6):1482–1488

    CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Mr. Wolfgang Reich and Mr. Alexander Schwock for their support on this work. The work was partly supported by the European Regional Development Fund, Baltic Sea Region programme 2007–2013 (project No 033, “Dissemination and Fostering of Plasma-Based Technological Innovation for Environment Protection in The Baltic Sea Region,” PlasTEP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Schmidt.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schmidt, M., Jõgi, I., Hołub, M. et al. Non-thermal plasma based decomposition of volatile organic compounds in industrial exhaust gases. Int. J. Environ. Sci. Technol. 12, 3745–3754 (2015). https://doi.org/10.1007/s13762-015-0814-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-015-0814-1

Keywords

Navigation