Skip to main content
Log in

Drinking Water Treatment Residual Amendment Lowers Inorganic Arsenic Bioaccessibility in Contaminated soils: a Long-Term Study

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Inorganic arsenical pesticides were used widely in agriculture for a long time, leaving large tracts of farmlands and orchards contaminated with high levels of arsenic. These contaminated soils pose a significant public health risk as residential developments encroach on these lands due to urban sprawl. Several studies have documented the effectiveness of iron and aluminum hydroxides in immobilizing arsenic in contaminated soils. Solid residues left from drinking water treatment (Drinking water treatment residuals, or WTRs) have been proposed as a low-cost and effective amendment, as they contain large amounts of aluminum (Al) and iron (Fe) oxides. By conducting in vitro tests after 1 year of equilibration, our group recently documented the effectiveness of two types of WTRs (Fe- and Al-based) in significantly (p < 0.01) lowering As bioaccessibility. However, long-term studies under realistic conditions are necessary to test the ability of WTRs in reducing soil arsenic bioaccessibility. In the current study, the effect of WTRs on inorganic arsenic bioaccessibility and distribution in two soils (Immokalee and Orelia) with variable properties was evaluated over a 3-year time period in a greenhouse setup. Results show that arsenic bioaccessibility decreased significantly (p < 0.001) from 100 to ~25 % after 3 years of equilibration, compared to the unamended controls. There was a significant (p < 0.001) decline in water-soluble arsenic with time, accompanied by an increase in Fe/Al and Ca/Mg-bound fractions, suggesting that these phases control the mobility of arsenic. The negative correlation between arsenic bioaccessibility Fe/Al- and Ca/Mg-bound fractions can be attributed to the transformation of soluble arsenic to less soluble mineral phases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abedin, M. J., Cresser, M. S., Meharg, A. A., Feldmann, J., & Cotter-Howells, J. (2002). Arsenic accumulation and metabolism in rice (Oryza sativa L.). Environmental Science & Technology, 36, 962–968.

    Article  CAS  Google Scholar 

  • Agyin-Birikorang, S., O'Connor, G., Jacobs, L., Makris, K., & Brinton, S. (2007). Long-term phosphorus immobilization by a drinking water treatment residual. Journal of Environmental Quality, 36, 316–323.

    Article  CAS  Google Scholar 

  • Agyin-Birikorang, S., Oladeji, O., O'Connor, G., Obreza, T., & Capece, J. (2009). Efficacy of drinking-water treatment residual in controlling off-site phosphorus losses: a field study in Florida. Journal of Environmental Quality, 38, 1076–1085.

    Article  CAS  Google Scholar 

  • An, B., & Zhao, D. (2012). Immobilization of As(III) in soil and groundwater using a new class of polysaccharide stabilized Fe–Mn oxide nanoparticles. Journal of Hazardous Materials, 211–212, 332–341.

    Article  Google Scholar 

  • Basta, N. T., Rodriguez, R. R., & Casteel, S. W. (2001). Bioavailability and risk of arsenic exposure by the soil ingestion pathway (pp. 117–138). New York: Environmental chemistry of arsenic. Marcel Dekker.

    Google Scholar 

  • Ben‐Dor, E., & Banin, A. (1989). Determination of organic matter content in arid‐zone soils using a simple “loss‐on‐ignition” method. Communications in Soil Science & Plant Analysis, 20, 1675–1695.

    Article  Google Scholar 

  • Bhattacharya, P., Welch, A. H., Stollenwerk, K. G., McLaughlin, M. J., Bundschuh, J., & Panaullah, G. (2007). Arsenic in the environment: biology and chemistry. Science of the Total Environment, 379, 109–120.

    Article  CAS  Google Scholar 

  • Carbonell, A., Aarabi, M., DeLaune, R., Gambrell, R., & Patrick, W., Jr. (1998). Arsenic in wetland vegetation: availability, phytotoxicity, uptake and effects on plant growth and nutrition. Science of the Total Environment, 217, 189–199.

    Article  CAS  Google Scholar 

  • Chunguo, C., & Zihui, L. (1988). Chemical speciation and distribution of arsenic in water, suspended solids and sediment of Xiangjiang River, China. Science of the Total Environment, 77, 69–82.

    Article  Google Scholar 

  • Datta, R., Makris, K. C., & Sarkar, D. (2007a). Arsenic fractionation and bioaccessibility in two alkaline Texas soils incubated with sodium arsenate. Archives of Environmental Contamination and Toxicology, 52, 475–482.

    Article  CAS  Google Scholar 

  • Datta, R., Sarkar, D., Hussein, H., & Therapong, C. (2007b). Remediation of arsenical pesticide applied soils using water treatment residuals: preliminary greenhouse results. Developments in Environmental Science, 5, 543–559.

    Article  CAS  Google Scholar 

  • Dayton, E., & Basta, N. (2005). A method for determining the phosphorus sorption capacity and amorphous aluminum of aluminum-based drinking water treatment residuals. Journal of Environmental Quality, 34, 1112–1118.

    Article  CAS  Google Scholar 

  • Elliott, H., O'Connor, G., & Brinton, S. (2002a). Phosphorus leaching from biosolids-amended sandy soils. Journal of Environmental Quality, 31, 681–689.

    Article  CAS  Google Scholar 

  • Elliott, H. A., O'Connor, G. A., Lu, P., & Brinton, S. (2002b). Influence of water treatment residuals on phosphorus solubility and leaching. Journal of Environmental Quality, 31, 1362–1369.

    Article  CAS  Google Scholar 

  • Elliott, H., Brandt, R., & O'Connor, G. (2005). Runoff phosphorus losses from surface-applied biosolids. Journal of Environmental Quality, 34, 1632–1639.

    Article  CAS  Google Scholar 

  • Fendorf, S., La Force, M. J., & Li, G. (2004). Temporal changes in soil partitioning and bioaccessibility of arsenic, chromium, and lead. Journal of Environmental Quality, 33, 2049–2055.

    Article  CAS  Google Scholar 

  • Hanlon, E. A., Gonzalez, J. S., & Bartos, J. M. (1997a). Soil pH (1:2v/v). IFAS extension soil testing laboratory (ESTL) and analytical research laboratory (ARL) chemical procedures and training manual. Fl. Coop. Ext. Ser. Cir. 812 (p. 15). Gainesville: Univ. of Florida.

    Google Scholar 

  • Hanlon, E. A., Gonzalez, J. S., & Bartos, J. M. (1997b). Electrical Conductivity. In: IFAS extension soil testing laboratory (ESTL) and analytical research laboratory (ARL) chemical procedures and training manual. Fl. Coop. Ext. Ser. Cir. 812 (p. 24). Gainesville: Univ. of Florida.

    Google Scholar 

  • Heil, D., & Barbarick, K. (1989). Water treatment sludge influence on the growth of sorghum-sudangrass. Journal of Environmental Quality, 18, 292–298.

    Article  CAS  Google Scholar 

  • Ippolito, J., Barbarick, K., & Redente, E. (1999). Co-application effects of water treatment residuals and biosolids on two range grasses. Journal of Environmental Quality, 28, 1644–1650.

    Article  CAS  Google Scholar 

  • Ippolito, J., Barbarick, K., & Elliott, H. (2011). Drinking water treatment residuals: a review of recent uses. Journal of Environmental Quality, 40, 1–12.

    Article  CAS  Google Scholar 

  • Juhasz, A. L., Smith, E., Weber, J., Rees, M., Rofe, A., Kuchel, T., Sansom, L., & Naidu, R. (2007). Comparison of in vivo and in vitro methodologies for the assessment of arsenic bioavailability in contaminated soils. Chemosphere, 69, 961–966.

    Article  CAS  Google Scholar 

  • Livesey, N., & Huang, P. (1981). Adsorption of arsenate by soils and its relation to selected chemical properties and anions. Soil Science, 131, 88–94.

    Article  CAS  Google Scholar 

  • Loeppert, RH and Inskeep, WP (1996). Iron. In DL Sparks, AL Page, PA Helmke, RH Loeppert, PN Soltanpour, MA Tabatabai, CT Johnston, ME Summer (Eds.), Method of Soil Analysis Part 3 Chemical methods (pp. 639–664). SSSA Book Series.

  • Lombi, E., Hamon, R. E., Wieshammer, G., McLaughlin, M. J., & McGrath, S. P. (2004). Assessment of the use of industrial by-products to remediate a copper-and arsenic-contaminated soil. Journal of Environmental Quality, 33, 902–910.

    Article  CAS  Google Scholar 

  • Makris, K., & O’Connor, G. (2007). Beneficial utilization of drinking-water treatment residuals as contaminant-mitigating agents. Developments in Environmental Science, 5, 609–635.

    Article  CAS  Google Scholar 

  • Makris, K., Harris, W., O'Connor, G., & Obreza, T. (2004). Phosphorus immobilization in micropores of drinking-water treatment residuals: implications for long-term stability. Environmental Science & Technology, 38, 6590–6596.

    Article  CAS  Google Scholar 

  • Makris, K., Sarkar, D., & Datta, R. (2006). Evaluating a drinking-water waste by-product as a novel sorbent for arsenic. Chemosphere, 64, 730–741.

    Article  CAS  Google Scholar 

  • Makris, K., Sarkar, D., Parsons, J., Datta, R., & Gardea-Torresdey, J. (2007). Surface arsenic speciation of a drinking-water treatment residual using X-ray absorption spectroscopy. Journal of Colloid and Interface Science, 311, 544–550.

    Article  CAS  Google Scholar 

  • Martin, T. A., & Ruby, M. V. (2003). In situ remediation of arsenic in contaminated soils. Remediation Journal, 14, 21–32.

    Article  Google Scholar 

  • Nagar, R., Sarkar, D., Makris, K., Datta, R., & Sylvia, V. (2009). Bioavailability and bioaccessibility of arsenic in a soil amended with drinking-water treatment residuals. Archives of Environmental Contamination and Toxicology, 57, 755–766.

    Article  CAS  Google Scholar 

  • Nagar, R., Sarkar, D., Makris, K., & Datta, R. (2010). Effect of solution chemistry on arsenic sorption by Fe- and Al-based drinking-water treatment residuals. Chemosphere, 78, 1028–1035.

    Article  CAS  Google Scholar 

  • Nielsen, S. S., Petersen, L. R., Kjeldsen, P., & Jakobsen, R. (2011). Amendment of arsenic and chromium polluted soil from wood preservation by iron residues from water treatment. Chemosphere, 84, 383–389.

    Article  CAS  Google Scholar 

  • Novak, J., & Watts, D. (2004). Increasing the phosphorus sorption capacity of southeastern Coastal Plain soils using water treatment residuals. Soil Science, 169, 206–214.

    Article  CAS  Google Scholar 

  • Onken, B., & Adriano, D. (1997). Arsenic availability in soil with time under saturated and subsaturated conditions. Soil Science Society of America Journal, 61, 746–752.

    Article  CAS  Google Scholar 

  • Pierce, M. L., & Moore, C. B. (1982). Adsorption of arsenite and arsenate on amorphous iron hydroxide. Water Research, 16, 1247–1253.

    Article  CAS  Google Scholar 

  • Prakash, P., & Sengupta, A. K. (2003). Selective coagulant recovery from water treatment plant residuals using donnan membrane process. Environmental Science & Technology, 37, 4468–4474.

    Article  CAS  Google Scholar 

  • Rodriguez, R. R., Basta, N. T., Casteel, S. W., & Pace, L. W. (1999). An in vitro gastrointestinal method to estimate bioavailable arsenic in contaminated soils and solid media. Environmental Science & Technology, 33, 642–649.

    Article  CAS  Google Scholar 

  • Ruby, M. V., Davis, A., Schoof, R., Eberle, S., & Sellstone, C. M. (1996). Estimation of lead and arsenic bioavailability using a physiologically based extraction test. Environmental Science & Technology, 30, 422–430.

    Article  CAS  Google Scholar 

  • Sall, J., Creighton, L., & Lehman, A. (2005). JMP start statistics (8th ed.). Cary: SAS Institute.

    Google Scholar 

  • Sarkar, D., & Datta, R. (2003). A modified in-vitro method to assess bioavailable arsenic in pesticide-applied soils. Environmental Pollution, 126, 363–366.

    Article  CAS  Google Scholar 

  • Sarkar, D., & Datta, R. (2004). Arsenic fate and bioaccessibility in two soils contaminated with sodium arsenate pesticide: an incubation study. Bull Environ Contam Toxicol., 72, 240–247.

    Article  CAS  Google Scholar 

  • Sarkar, D., & O'Connor, G. (2001). Using Pi soil test to estimate available phosphorus in biosolids-amended soil*. Communications in Soil Science and Plant Analysis, 32, 2049–2063.

    Article  CAS  Google Scholar 

  • Sarkar, D., Makris, K., Vandanapu, V., & Datta, R. (2007a). Arsenic immobilization in soils amended with drinking-water treatment residuals. Environmental Pollution, 146, 414–419.

    Article  CAS  Google Scholar 

  • Sarkar, D., Quazi, S., Makris, K., Datta, R., & Khairom, A. (2007b). Arsenic bioaccessibility in a soil amended with drinking-water treatment residuals in the presence of phosphorus fertilizer. Archives of Environmental Contamination and Toxicology, 53, 329–336.

    Article  CAS  Google Scholar 

  • Sheppard, S. (1992). Summary of phytotoxic levels of soil arsenic. Water, Air, and Soil Pollution, 64, 539–550.

    Article  CAS  Google Scholar 

  • Smedley, P., & Kinniburgh, D. G. (2013). Arsenic in groundwater and the environment. In O. Selinus (Ed.), Essentials of medical geology (pp. 279–310). Netherlands: Springer.

  • Subacz, J. L., Barnett, M. O., Jardine, P. M., & Stewart, M. A. (2007). Decreasing arsenic bioaccessibility/bioavailability in soils with iron amendments. Journal of Environmental Science and Health Part A, 42, 1317–1329.

    Article  CAS  Google Scholar 

  • Tang, X.-Y., Zhu, Y.-G., Shan, X.-Q., McLaren, R., & Duan, J. (2007). The ageing effect on the bioaccessibility and fractionation of arsenic in soils from China. Chemosphere, 66, 1183–1190.

    Article  CAS  Google Scholar 

  • USEPA. (2000). Test methods for evaluating solid waste, physical/chemical methods, USEPA-65 FR 70678, Draft Update IVB SW-846. Washington: US Governmental Printing Office.

    Google Scholar 

  • Walsh L and Keeney D (1975). Behavior and phytotoxicity of inorganic arsenicals in soils, ACS Symp. Ser.;(United States). Univ. of Wisconsin, Madison.

  • Walsh, L. M., Sumner, M. E., & Keeney, D. R. (1977). Occurrence and distribution of arsenic in soils and plants. Environmental Health Perspectives, 19, 67.

    Article  CAS  Google Scholar 

  • Woolson, E., Axley, J., & Kearney, P. (1971). Correlation between available soil arsenic, estimated by six methods, and response of corn (Zea mays L.). Soil Science Society of America Journal, 35, 101–105.

    Article  CAS  Google Scholar 

  • Xie, Z. M., & Huang, C. Y. (1998). Control of arsenic toxicity in rice plants grown on an arsenic‐polluted paddy soil. Communications in Soil Science & Plant Analysis, 29, 2471–2477.

    Article  CAS  Google Scholar 

  • Xu, X., Lin, L., Papelis, C., Myint, M., Cath, T. Y., & Xu, P. (2015). Use of drinking water treatment solids for arsenate removal from desalination concentrate. Journal of Colloid and Interface Science, 445, 252–261.

    Article  CAS  Google Scholar 

  • Yang, J.-K., Barnett, M. O., Jardine, P. M., Basta, N. T., & Casteel, S. W. (2002). Adsorption, sequestration, and bioaccessibility of As (V) in soils. Environmental Science & Technology, 36, 4562–4569.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank NIH-SCORE, SALSI, and USEPA-STAR programs for funding this study. The help of Dr. Konstantinos Makris in reviewing the experimental design and data analysis is gratefully acknowledged. RN and PP would like to thank the Center for Writing Excellence (CWE) at Montclair State University (MSU), Montclair, NJ, USA, for proofreading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dibyendu Sarkar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nagar, R., Sarkar, D., Punamiya, P. et al. Drinking Water Treatment Residual Amendment Lowers Inorganic Arsenic Bioaccessibility in Contaminated soils: a Long-Term Study. Water Air Soil Pollut 226, 366 (2015). https://doi.org/10.1007/s11270-015-2631-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-015-2631-z

Keywords

Navigation