Skip to main content

Advertisement

Log in

Bioavailability and Bioaccessibility of Arsenic in a Soil Amended with Drinking-Water Treatment Residuals

  • Published:
Archives of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

Earlier incubation and greenhouse studies in our laboratory confirmed the effectiveness of drinking-water treatment residual (WTR) in decreasing soil arsenic (As) bioaccessibility as determined with in vitro tests, which led us to hypothesize a similar outcome if animal studies were to be conducted. Our objective was to evaluate the potential of WTR in lowering soil As bioavailability by conducting in vivo experiments and compare the in vitro to the in vivo As data. This study was performed using 6-week-old male BALB/c mice that were fed with an As-contaminated soil slurry using the gavage method. Blood and stomach contents were collected at 1 and 24 h after feeding. Urine and excreta were collected at time 0 (before feeding) and 24 h after feeding. Relative As bioavailability (RBA) values calculated from the blood samples of mice fed with WTR and WTR-amended soil samples ranged from 13% to 24% and from 25% to 29%, respectively; both were significantly (p < 0.001) lower than that of the unamended (no-WTR) soil (~100% RBA). Absolute As bioavailability (ABA) in the gastric phase was significantly (p < 0.001) lowered, to 7–16%, in the WTR-amended soil compared with that of the unamended control (26%). A significant (p < 0.001) linear correlation (r = 0.94) was observed between the in vitro (stomach-phase) and the in vivo RBA data. Percentage recovery of As obtained from four mice tissue compartments (i.e., blood, stomach, urine, and fecal matter) after oral and intramuscular administrations was 63–80%. Results illustrate the effectiveness of in situ WTR amendment in decreasing in vivo soil As bioavailability, thereby lowering the potential cancer risk via an oral ingestion pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Antimisiaris S, Klepetsanis P, Chariou V, Giannopoulou E, Ioannou P (2005) In vivo distribution of arsenic after i.p. injection of arsonoliposomes in Balb/c mice. Int J Pharm 289:151–158. doi:10.1016/j.ijpharm.2004.11.002

    Article  CAS  Google Scholar 

  • Balani S, Li P, Nguyen J, Cardoza K, Zeng H, Mu D, Wu J, Gan L, Lee FW (2004) Effective dosing regimen of 1-aminobenzotriazole for inhibition of antipyrine clearance in guinea pigs and mice using serial sampling. Drug Metab Dispos 32:1092–1095. doi:10.1124/dmd.104.000349

    Article  CAS  Google Scholar 

  • Beak DG, Basta NT, Scheckel KG, Traina SJ (2006a) Bioaccessibility of arsenic (V) bound to ferrihydrite using a simulated gastrointestinal system. Environ Sci Technol 40:1364–1370. doi:10.1021/es0516413

    Article  CAS  Google Scholar 

  • Beak DG, Basta NT, Scheckel KG, Traina SJ (2006b) Bioaccessibility of arsenic bound to corundum using a simulated gastrointestinal system. Environ Chem 3:208–214. doi:10.1071/EN05067

    Article  CAS  Google Scholar 

  • Ben-Dor E, Banin A (1989) Determination of organic matter content in arid-zone soils using a simple “loss-on-ignition” method. Commun Soil Sci Plant Anal 20:1675–1695. doi:10.1080/00103628909368175

    Article  Google Scholar 

  • Casteel SW, Brown LD, Dunsmore ME, Weis CP, Henningsen GM, Hoffman E, Brattin WJ, Hammon TL (1997) Relative bioavailability of arsenic in mining wastes. U.S. Environmental Protection Agency, Region 8, Denver, CO

  • Casteel SW, Weis CP, Henningsen GM, Brattin WJ (2006) Estimation of relative bioavailability of lead in soil and soil-like materials using young swine. Environ Health Perspec 114:1162–1171

    CAS  Google Scholar 

  • Chowdhury UK, Zakharyan RA, Hernandez A, Avram MD, Kopplin MJ, Aposhian HY (2006) Glutathione-S-transferase-omega [MMA(V) reductase] knockout mice: enzyme and arsenic species concentrations in tissues after arsenate administration. Toxicol Appl Pharmacol 216:446–457. doi:10.1016/j.taap.2006.06.014

    Article  CAS  Google Scholar 

  • Csanaky I, Gregus Z (2002) Species variations in the biliary and urinary excretion of arsenate, arsenite and their metabolites. Comp Biochem Physiol C 131:355–365

    Google Scholar 

  • Czupyrna G, Levy RD, MacLean AI, Gold H (1989) In situ immobilization of heavy metal contaminated soils. Noyes Data Corp., Park Ridge, NJ

    Google Scholar 

  • Datta R, Makris KC, Sarkar D (2007) Arsenic fractionation and bioaccessibility in two alkaline Texas soils incubated with sodium arsenate. Arch Environ Contam Toxicol 52:475–482. doi:10.1007/s00244-006-0147-7

    Article  CAS  Google Scholar 

  • Davis A, Ruby MV, Bergstrom PD (1992) Bioavailability of arsenic and lead from Butte Montana, mining district. Environ Sci Technol 26:461–468. doi:10.1021/es00027a002

    Article  CAS  Google Scholar 

  • Ehlhardt WJ, Woodland JM, Toth JE, Ray JE, Martin DL (1997) Disposition and metabolism of the sulfonylurea oncolytic agent LY295501 in mouse, rat, and monkey. Drug Metab Dispos 25:701–708

    CAS  Google Scholar 

  • Elliott HA, Dempsey BA (1991) Agronomic effects of land application of water treatment sludges. J AWWA 83:126–131

    CAS  Google Scholar 

  • Erry BV, Macnair MR, Meharg AA, Shore RF (1999) Seasonal variation in dietary and body organ arsenic concentrations in wood mice Apodemus sylvaticus and bank voles Clethrionomys glareolus. Bull Environ Contam Toxicol 63:567–574. doi:10.1007/s001289901018

    Article  CAS  Google Scholar 

  • Erry BV, Macnair MR, Meharg AA, Shore RF (2000) Arsenic contamination in wood mice (Apodemus sylvaticus) and bank voles (Clethrionomys glareolus) on abandoned mine sites in southwest Briatain. Environ Pollut 110:179–187. doi:10.1016/S0269-7491(99)00270-5

    Article  CAS  Google Scholar 

  • Erry BV, Macnair MR, Meharg AA, Shore RF (2005) The distribution of arsenic in the body of wood mice and bank voles. Arch Environ Contam Toxicol 49:569–576. doi:10.1007/s00244-004-0229-3

    Article  CAS  Google Scholar 

  • Freeman GB, Johnson JD, Liao SC, Schoof RA, Bergtrom PD (1993a) Proceedings of international conference on arsenic exposure and health effects, New Orleans, July 28–30. SEGH, Los Angeles, pp 8–10

  • Freeman GB, Johnson JD, Killinger JM, Liao SC, Davis AO, Ruby MV, Chaney RL, Lovre SC, Bergstrom PD (1993b) Bioavailabiltiy of arsenic in soil impacted by smelter activities following oral administration in rabbits. Fund Appl Toxicol 21:83–88. doi:10.1006/faat.1993.1075

    Article  CAS  Google Scholar 

  • Freeman GB, Schoof RA, Ruby MV, Davis AO, Dill JA, Liao SC, Lapin CA, Bergstrom PD (1995) Bioavailability of arsenic in soil and dust impacted by smelter activities following oral administration in cynomolgus monkeys. Fund Appl Toxicol 28:215–222. doi:10.1006/faat.1995.1162

    Article  CAS  Google Scholar 

  • Golub MS, Keen CL, Commisso JF, Salocks CB, Hathaway TR (1999) Arsenic tissue concentration of immature mice one hour after oral exposure to gold mine tailing. Environ Geochem Health 21:199–209. doi:10.1023/A:1006604928479

    Article  CAS  Google Scholar 

  • Hanlon EA, Gonzalez JS, Bartos JM (1997a) Soil pH (1:2v/v). IFAS Extension Soil Testing Laboratory (ESTL) and Analytical Research Laboratory (ARL) chemical procedures and training manual. Fla Coop Ext Ser Cir 812. University of Florida, Gainesville

    Google Scholar 

  • Hanlon EA, Gonzalez JS, Bartos JM (1997b) Electrical conductivity. IFAS Extension Soil Testing Laboratory (ESTL) and Analytical Research Laboratory (ARL) chemical procedures and training manual. Fla Coop Ext Ser Cir 812. University of Florida, Gainesville

    Google Scholar 

  • Hettiarachchi GM, Pierzynski GM, Oehme FW, Sonmez O, Ryan JA (2003) Treatment of contaminated soil with phosphorus and manganese oxide reduces lead absorption by Sprague-Dawley rats. J Environ Qual 32:1335–1345

    CAS  Google Scholar 

  • Hughes MF, Menache M, Thompson DJ (1994) Dose-dependent disposition of sodium arsenate in mice following acute oral exposure. Fund Appl Toxicol 22:80–89. doi:10.1006/faat.1994.1011

    Article  CAS  Google Scholar 

  • Hughes MF, Devesa V, Adair BM, Styblo M, Kenyon EM, Thomas DJ (2005) Tissue dosimetry, metabolism and excretion of pentavalent and trivalent monomethylated arsenic in mice after oral administration. Toxicol Appl Pharmacol 208:186–197. doi:10.1016/j.taap.2005.02.008

    Article  CAS  Google Scholar 

  • Juhasz AL, Smith E, Weber J, Rees M, Rofe A, Kuchel T, Sansom L, Naidu R (2007) Comparison of in vivo and in vitro methodologies for the assessment of arsenic bioavailability in contaminated soils. Chemosphere 69:961–966. doi:10.1016/j.chemosphere.2007.05.018

    Article  CAS  Google Scholar 

  • Kenyon EM, Del Razo LM, Hughes MF (2005) Tissue distribution and urinary excreation of inorganic arsenic and its methylated metabolites in mice following acute oral administration of arsenate. Toxicol Sci 85:468–475. doi:10.1093/toxsci/kfi107

    Article  CAS  Google Scholar 

  • Lew YS, Brown SL, Griffin RJ, Song CW, Kim JH (1999) Arsenic trioxide causes selective necrosis in solid murine tumors by vascular shutdown. Cancer Res 59:6033–6037

    CAS  Google Scholar 

  • Livesey NT, Huang PM (1981) Adsorption of arsenate by soils and its relation to selected chemical properties and anions. Soil Sci 131:88–94. doi:10.1097/00010694-198102000-00004

    Article  CAS  Google Scholar 

  • Loeppert RH, Inskeep WP (1996) Iron. In: Sparks DL, Page AL, Helmke PA, Loeppert RH, Soltanpour PN, Tabatabai MA, Johnston CT, Summer ME (eds) Method of soil analysis. Part 3. Chemical methods. SSSA, Madison, WI, pp 639–664

    Google Scholar 

  • Lombi E, Hamon RE, Wieshammer G, McLaughlin MJ, McGrath SP (2004) Assessment of the use of industrial by-products to remediate a copper-and arsenic-contaminated soil. J Environ Qual 33:902–910

    Article  CAS  Google Scholar 

  • Makris KC, Harris WG, O’Connor GA, Obreza TA (2004) Phosphorus immobilization in micropores of drinking-water treatment residuals: implications for long-term stability. Environ Sci Technol 38:6590–6596. doi:10.1021/es049161j

    Article  CAS  Google Scholar 

  • Makris KC, O’Connor GA (2007) Beneficial utilization of drinking-water treatment residuals as contaminant mitigating agents. In: Sarkar D, Datta R, Hannigan R (eds) Concepts and applications in environmental geochemistry. Elsevier, Amsterdam, pp 609–636

    Chapter  Google Scholar 

  • Makris KC, Sarkar D, Datta R (2006) Evaluating a drinking-water waste by-product as a novel sorbent for arsenic. Chemosphere 64:730–741. doi:10.1016/j.chemosphere.2005.11.054

    Article  CAS  Google Scholar 

  • Makris KC, Sarkar D, Parsons JG, Datta R, Gardea-Torresdey JL (2007) Surface arsenic speciation of a drinking-water treatment residual using X-ray absorption spectroscopy. J Colloid Interf Sci 311:544–550. doi:10.1016/j.jcis.2007.02.078

    Article  CAS  Google Scholar 

  • Makris KC, Quazi S, Nagar R, Sarkar D, Datta R, Sylvia VL (2008) In vitro model improves the prediction of soil As bioavailabiltiy: worst-case scenario. Environ Sci Technol 42:6278–6284. doi:10.1021/es800476p

    Article  CAS  Google Scholar 

  • Martin TA, Ruby MV (2003) In situ remediation of arsenic in contaminated soils. Remediat J 14:21–31. doi:10.1002/rem.10092

    Article  Google Scholar 

  • McKinney JD (1992) Metabolism and deposition of inorganic arsenic in laboratory animals and humans. Environ Geochem Health 14:43–48. doi:10.1007/BF01783627

    Article  CAS  Google Scholar 

  • NAS (1977) Medical and biological effects of environmental pollutants: arsenic. National Academy of Sciences, Washington, DC

    Google Scholar 

  • Ng JC, Kratzmann SM, Qi L, Crawley H, Chiswell B, Moore MR (1998) Speciation and absolute bioavailability: risk assessment of arsenic-contaminated sites in a residential suburb in Canberra. Analyst 123:889–892. doi:10.1039/a707728i

    Article  CAS  Google Scholar 

  • Oomen AG, Hack A, Minekus M, Zeijdner E, Cornelis C, Schoeters G, Verstraete W, De Wiele TV, Wragg J, Rompelberg CJM (2002) Comparison of five in vitro digestion models to study the bioaccessibility of soil contaminants. Environ Sci Technol 36:3326–3334. doi:10.1021/es010204v

    Article  CAS  Google Scholar 

  • Pascoe GA, Blanchet RJ, Linder G (1994) Bioavailability of metals and arsenic to small mammals at a mining waste-contaminated wetland. Arch Environ Contam Toxicol 27:44–50

    Article  CAS  Google Scholar 

  • Patterson R, Vega L, Trouba K, Bortner C, Germolec D (2004) Arsenic-induced alterations in the contact hypersensitivity response in Balb/c mice. Toxicol Appl Pharm 198:434–443. doi:10.1016/j.taap.2003.10.012

    Article  CAS  Google Scholar 

  • Poet TS, Soelberg JJ, Weitz KK, Mast TJ, Miller RA, Thrall BD, Corley RA (2003) Mode of action and pharmacokinetics studies of 2-butoxyethanol in the mouse with an emphasis on forestomach dosimetry. Toxicol Sci 71:176–189. doi:10.1093/toxsci/71.2.176

    Article  CAS  Google Scholar 

  • Potter M (1985) The BALB/c mouse—genetics and immunology—preface. Curr Top Microbiol Immunol 122:R5–R7

    Google Scholar 

  • Pouschat P, Zagury GJ (2006) In-vitro gastrointestinal bioavailability of arsenic in soils collected near CCA-treated utility poles. Environ Sci Technol 40:4317–4323. doi:10.1021/es0604156

    Article  CAS  Google Scholar 

  • Rabinowitz MB, Koppel JD, Wetherill GW (1980) Effect of food intake on fasting gastrointestinal lead adsorption in humans. Am J Clin Nutr 33:1784–1788

    CAS  Google Scholar 

  • Rao GN, Knapka JJ (1987) Contaminant and nutrient concentrations of natural ingredient rat and mouse diet used in chemical toxicology studies. Fund Appl Toxicol 9:329–338. doi:10.1016/0272-0590(87)90055-8

    Article  CAS  Google Scholar 

  • Roberts SM, Weimar WR, Vinson JRT, Munson JW, Bergeron RJ (2002) Measurement of arsenic bioavailability in soil using a primate model. Toxicol Sci 67:303–310. doi:10.1093/toxsci/67.2.303

    Article  CAS  Google Scholar 

  • Roberts SM, Munson JW, Lowney YW, Ruby MV (2007) Relative oral bioavailability of arsenic from contaminated soils measured in the cynomolgus monkey. Toxicol Sci 95:281–288. doi:10.1093/toxsci/kfl117

    Article  CAS  Google Scholar 

  • Rodriguez RR, Basta NT, Casteel S, Pace L (1999) An in vitro gastro-intestinal method to estimate bioavailable arsenic in contaminated soil and solid media. Environ Sci Technol 33:642–649. doi:10.1021/es980631h

    Article  CAS  Google Scholar 

  • Ruby MV, Davis A, Link TE, Schoof TE, Steve E, Christopher SE (1996) Estimation of lead and arsenic bioavailability using a physiologically based extraction test. Environ Sci Technol 33:422–430. doi:10.1021/es950057z

    Article  Google Scholar 

  • Ruby MV, Schoof R, Brattin W, Goldade M, Post G, Harnois M, Mosby DE, Casteel SW, Berti W, Carpenter M, Edwards D, Cragin D, Chappell W (1999) Advances in evaluating the oral bioavailability of inorganics in soil for use in human health risk assessment. Environ Sci Technol 33:3697–3705. doi:10.1021/es990479z

    Article  CAS  Google Scholar 

  • Sarkar D, Datta R (2003) A modified in-vitro method to assess bioavailable arsenic in pesticides-applied soils. Environ Pollut 126:363–366. doi:10.1016/S0269-7491(03)00268-9

    Article  CAS  Google Scholar 

  • Sarkar D, Makris KC, Vandanapu V, Datta R (2007a) Arsenic immobilization in soils amended with drinking-water treatment residuals. Environ Pollut 146:414–419. doi:10.1016/j.envpol.2006.06.035

    Article  CAS  Google Scholar 

  • Sarkar D, Makris KC, Parra-Noonan MT, Datta R (2007b) Effect of soil properties on arsenic fractionation and bioaccessibility in cattle and sheep dipping vat sites. Environ Int 33:164–169. doi:10.1016/j.envint.2006.09.004

    Article  CAS  Google Scholar 

  • Sarkar D, Quazi S, Makris KC, Datta R, Khairom A (2007c) Arsenic bioaccessibility in a soil amended with drinking-water treatment residuals in the presence of phosphorus fertilizer. Arch Environ Contam Toxicol 53:329–336. doi:10.1007/s00244-006-0170-8

    Article  CAS  Google Scholar 

  • Seaman JC, Hutchison J, Jackson BP, Vulava V (2003) In situ treatment of metals in contaminated soils using phytate. J Environ Qual 32:153–161

    CAS  Google Scholar 

  • USEPA (1991, April) Sample preparation procedure for spectrochemical determination of total recoverable elements in biological tissues (method 200.3). USEPA, Cincinnati, OH

  • USEPA (1997) Review of recent developments of in situ treatment of metal contaminated soil. Report EPA 542-R-97–004. U.S. EPA Technology Innovation Office

  • USEPA (2000a) Test methods for evaluating solid waste, physical/chemical methods. USEPA-65 FR 70678. Draft update IVB SW-846. U.S. Governmental Printing Office, Washington, DC

    Google Scholar 

  • USEPA (2000b) Short sheet: TRW recommendations for sampling and analysis of soil at lead (Pb) sites. OSWER 9285.7–38. U.S. Environmental Protection Agency. Office of Solid Waste and Emergency Response, Washington, DC

    Google Scholar 

  • USEPA (2005, March) Estimation of relative bioavailability of arsenic in soil and soil-like materials by in vivo and in vitro methods. USEPA review draft. U.S. Environmental Protection Agency, Region 8, Denver, CO

  • Vahter M, Marafante E, Dencker L (1984) Tissue distribution and retention of As-dimethylarsinic acid in mice and rats. Arch Environ Contam Toxicol 13:259–264. doi:10.1007/BF01055275

    Article  CAS  Google Scholar 

  • Weis CP, LaVelle JM (1991) Characteristics to consider when choosing an animal model for the study of lead bioavailability. Chem Speciat Bioavail 3:113–119

    CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Environmental Geochemistry Laboratory, University of Texas at San Antonio (UTSA) and University of Texas Health Science Center (UTHSC), San Antonio, Texas, USA, for analytical facilities. The NIH-SCORE, SALSI, and USEPA-STAR programs are acknowledged for funding this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstantinos C. Makris.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nagar, R., Sarkar, D., Makris, K.C. et al. Bioavailability and Bioaccessibility of Arsenic in a Soil Amended with Drinking-Water Treatment Residuals. Arch Environ Contam Toxicol 57, 755–766 (2009). https://doi.org/10.1007/s00244-009-9318-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00244-009-9318-7

Keywords

Navigation