Skip to main content
Log in

The Role of Ferric Oxide Nanoparticles in Improving Lubricity and Tribo-Electrochemical Performance During Chemical–Mechanical Polishing

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

The role of ferric oxide nanoparticles on the lubricating characteristics of passivating films formed on stainless steel (SS) was discussed in this study. The tribo-electrochemical behavior of mirror-like polished AISI 304 SS, used as an exemplary material, was evaluated in various electrolytes by means of a simulated chemical–mechanical polishing process in laboratory scale. It was clearly demonstrated that a suitable combination of abrasives (ferric oxide nanoparticles) and an oxidizer (nitric acid) can act as an effective lubricant that lowers the friction and wear of the AISI 304 SS surfaces. The excellent lubricating and anti-corrosion properties shown by a slurry containing a high content of ferric oxide nanoparticles at high nitric acid concentrations were attributed to the formation of a stable and robust passive film that was composed of chromium oxide and a mixture of iron oxides. The lack of ferric oxide nanoparticles in two solutions containing nitric acid of different concentrations led to pitting corrosion and abrasive wear. When low concentrations of both ferric oxide nanoparticles and nitric acid were used, wear-accelerated corrosion became the dominant mechanism that was caused by the presence of third-body wear particles in the contact zone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Landolt, D., Mischler, S., Stemp, M.: Electrochemical methods in tribocorrosion: a critical appraisal. Electrochim. Acta 46, 3913–3929 (2001)

    Article  Google Scholar 

  2. Mischler, S., Ponthiaux, P.: A round robin on combined electrochemical and friction tests on alumina/stainless steel contacts in sulphuric acid. Wear 1–2, 211–225 (2001)

    Article  Google Scholar 

  3. Assi, F., Bohni, H.: Study of wear–corrosion synergy with a new microelectrochemical technique. Wear 233–235, 505–514 (1999)

    Article  Google Scholar 

  4. Watson, S.W., Friedersdorf, F.J., Madsen, B.W., Cramer, S.D.: Methods of measuring wear-corrosion synergism. Wear 181–183, 476–484 (1995)

    Article  Google Scholar 

  5. Fang, C.K., Huang, C.C., Chuang, T.H.: Synergistic effects of wear and corrosion for Al2O3 particulate-reinforced 6061 aluminium matrix composites. Metall. Mater. Trans. 30A, 643–651A (1999)

    Article  Google Scholar 

  6. Ponthiaux, P., Wenger, F., Drees, D., Celis, J.-P.: Electrochemical techniques for studying tribocorrosion processes. Wear 256, 459–468 (2004)

    Article  Google Scholar 

  7. Mischler, S.: Triboelectrochemical techniques and interpretation methods in tribocorrosion: a comparative evaluation. Tribol. Int. 41, 573–583 (2008)

    Article  Google Scholar 

  8. Wood, R.J.K.: Tribo-corrosion of coatings: a review. J. Phys. D Appl. Phys. 40, 5502–5521 (2007)

    Article  Google Scholar 

  9. Stack, M.M.: Mapping tribo-corrosion processes in dry and in aqueous conditions: some new directions for the new millennium. Tribol. Int. 35, 681–689 (2002)

    Article  Google Scholar 

  10. Rimbert, J.F., Pagetti, J.: Repassivation kinetics studies on an austenitic stainless steel in chloride media. Corros. Sci. 20(2), 189–210 (1980)

    Article  Google Scholar 

  11. Burstein, G.T., Marshall, P.I.: Growth of passivating films on scratched 304L stainless steel in alkaline solution. Corros. Sci. 23(2), 125–137 (1983)

    Article  Google Scholar 

  12. Burstein, G.T., Gao, G.: Verification of the validity of peak bare surface current densities obtained from the scratched electrode. J. Electrochem. Soc. 138(9), 2627–2630 (1991)

    Article  Google Scholar 

  13. Bastek, P., Newman, R., Kelly, R.: Measurement of passive film effects on scratched electrode behavior. J. Electrochem. Soc. 140, 1884–1889 (1993)

    Article  Google Scholar 

  14. Xiulin, J., Biao, H., Yixian, L., Shuqi, W.: Sliding tribocorrosion behavior of bulk metallic glass against bearing steel in 3.5% NaCl solution. Tribol. Int. 91, 214–220 (2015)

    Article  Google Scholar 

  15. Huttunen-Saarivirta, E., Kilpi, L., Hakala, T.J., Carpen, L., Ronkainen, H.: Tribocorrosion study of martensitic and austenitic stainless steels in 0.01 M NaCl solution. Tribol. Int. 95, 358–371 (2016)

    Article  Google Scholar 

  16. Chen, J., Wang, J., Yan, F., Zhang, Q., Li, Q.: Effect of applied potential on the tribocorrosion behaviors of Monel K500 alloy in artificial seawater. Tribol. Int. 81, 1–8 (2015)

    Article  Google Scholar 

  17. Hedayat, A., Yannacopoulos, S., Postlethwaite, J., Sangal, S.: Aqueous corrosion of plain carbon steel during sliding wear. Wear 154, 167–176 (1992)

    Article  Google Scholar 

  18. Totolin, V., Pejakovic, V., Csanyi, T., Hekele, O., Huber, M., Ripoll, M.R.: Surface engineering of Ti6Al4 V surfaces for enhanced tribocorrosion performance in artificial seawater. Mater. Des. 104, 10–18 (2016)

    Google Scholar 

  19. Wu, P., Celis, J.P.: Electrochemical noise measurements on stainless steel during corrosion-wear in sliding contacts. Wear 256, 480–490 (2004)

    Article  Google Scholar 

  20. Malfatti, C.F., Veit, H.M., Santos, C.B., Metzner, M., Hololeczek, H., Bonino, J.-P.: Heat treated NiP-SiC composite coatings: elaboration and tribocorrosion behaviour in NaCl solution. Tribol. Lett. 36, 165–173 (2009)

    Article  Google Scholar 

  21. Bazzoni, A., Mischler, S., Espallargas, N.: Tribocorrosion of pulsed plasma-nitrided CoCrMo implant alloy. Tribol. Lett. 49, 157–167 (2013)

    Article  Google Scholar 

  22. Yu, S.Y., Ishii, H., Chuang, T.H.: Corrosive wear of SiC whisker-and 6061 aluminum alloy composites particulate-reinforced. Metall. Mater. Trans. A 27A, 2653–2662 (1996)

    Article  Google Scholar 

  23. Salasi, M., Stachowiak, G., Stachowiak, G.: Tribo-electrochemical behaviour of 316L stainless steel: the effects of contact configuration, tangential speed, and wear mechanism. Corros. Sci. 98, 20–32 (2015)

    Article  Google Scholar 

  24. Salasi, M., Stachowiak, G., Stachowiak, G.: New experimental rig to investigate abrasive-corrosive characteristics of metals in aqueous media. Tribol. Lett. 40, 71–84 (2010)

    Article  Google Scholar 

  25. Sun, D., Wharton, J.A., Wood, R.J.K.: Abrasive size and concentration effects on the tribo-corrosion of cast CoCrMo alloy in simulated body fluids. Tribol. Int. 42, 1595–1604 (2009)

    Article  Google Scholar 

  26. Zu, J.B., Hutchings, I.M., Burstein, G.T.: Design of a slurry erosion test rig. Wear 140, 331–344 (1990)

    Article  Google Scholar 

  27. Barik, R.C., Wharton, J.A., Wood, R.J.K., Stokes, K.R.: Electro-mechanical interactions during erosion-corrosion. Wear 267, 1900–1908 (2009)

    Article  Google Scholar 

  28. Cheng, J., Wang, T., Chai, Z., Lu, X.: Tribocorrosion study of copper during chemical mechanical polishing in potassium periodate-based slurry. Tribol. Lett. 58, 8 (2015)

    Article  Google Scholar 

  29. Li, J., Chai, Z., Liu, Y., Lu, X.: Tribo-chemical behavior of copper in chemical mechanical planarization. Tribol. Lett. 50, 177–184 (2013)

    Article  Google Scholar 

  30. Zhao, D., Lu, X.: Chemical mechanical polishing: theory and experiment. Friction 1, 306–326 (2013)

    Article  Google Scholar 

  31. Kao, M.J., Hsu, F.C., Peng, D.X.: Synthesis and characterization of SiO2 nanoparticles and their efficacy in chemical mechanical polishing steel substrate. Adv. Mater. Sci. Eng. (2014). doi:10.1155/2014/691967

    Google Scholar 

  32. Peng, D.-X.: Chemical mechanical polishing of steel substrate using aluminum nanoparticles abrasive slurry. Ind. Lubr. Tribol. 66, 124–130 (2014)

    Article  Google Scholar 

  33. Jiang, L., He, Y., Luo, J.: Chemical mechanical polishing of steel substrate using colloidal silica-based slurries. Appl. Surf. Sci. 330, 487–495 (2015)

    Article  Google Scholar 

  34. Hu, X., Song, Z., Liu, W., Qin, F., Zhang, Z., Wan, H.: Chemical mechanical polishing of stainless steel foil as flexible substrate. Appl. Surf. Sci. 258, 5798–5802 (2012)

    Article  Google Scholar 

  35. Yun, D.-J., Lim, S.-H., Lee, T.-W., Rhee, S.-W.: Fabrication of the flexible pentacene thin-film transistors on 304 and 430 stainless steel (SS) substrate. Org. Electron. 10, 970–977 (2009)

    Article  Google Scholar 

  36. Stojadinovic, J., Mischler, S., Bouvet, D., Declercq, M.: Tribocorrosion of tungsten: effect of potential on wear. Tribol. Ind. 29, 41–44 (2007)

    Google Scholar 

  37. Gao, F., Liang, H.: Material removal mechanisms in electrochemical-mechanical polishing of tantalum. Electrochim. Acta 54, 6808–6815 (2009)

    Article  Google Scholar 

  38. Jang, K., Nam, E., Lee, C.-Y., Seok, J., Min, B.-K.: Mechanisms of synergistic material removal by electrochemical magnetorheological polishing. Int. J. Mach. Tools Manuf 70, 88–92 (2013)

    Article  Google Scholar 

  39. Totolin, V., Göcerler, H., Rodríguez Ripoll, M., Jech, M.: Tribo-electrochemical study of stainless steel surfaces during chemical-mechanical polishing. Lubr. Sci. 28, 363–380 (2016)

    Article  Google Scholar 

  40. Iida, S., Hidaka, Y.: Influence of the iron oxide layer on lubricating properties in seamless pipe hot rolling. Tetsu-to-Hagane 94, 244–250 (2008)

    Article  Google Scholar 

  41. Hu, Z.S., Dong, J.X., Chen, G.X.: Study on antiwear and reducing friction additive of nanometer ferric oxide. Tribol. Int. 31, 355–360 (1998)

    Article  Google Scholar 

  42. Inzelt, G.: Pseudo-reference electrodes, handbook of reference electrodes, pp. 331–332. Springer, Berlin (2013)

    Book  Google Scholar 

  43. Kasem, K., Jones, S.: Platinum as a reference electrode in electrochemical measurements. Platin. Met. Rev. 52, 100–106 (2008)

    Article  Google Scholar 

  44. Pejakovic, V., Totolin, V., Göcerler, H., Brenner, J., Rodriguez Ripoll, M.: Friction and wear behavior of selected titanium and zirconium based nitride coatings in Na2SO4 aqueous solution under low contact pressure. Tribol. Int. 91, 267–273 (2015)

    Article  Google Scholar 

  45. Beverskog, B., Puigdomenech, I.: Pourbaix diagrams for the ternary system of iron-chromium-nickel. Corrosion 55, 1077–1087 (1999)

    Article  Google Scholar 

  46. Bardwell, J.A., Sproule, G.I., MacDougall, B., Graham, M.J., Davenport, A.J., Isaacs, H.S.: In situ XANES detection of Cr(VI) in the passive film on Fe-26Cr. J. Electrochem. Soc. 139, 371–373 (1992)

    Article  Google Scholar 

  47. Bojinov, M., Fabricius, G., Kinnunen, P., Laitinen, T., Makela, K., Saario, T., Sundholm, G.: The mechanism of transpassive dissolution of Ni–Cr alloys in sulphate solutions. Electrochim. Acta 45, 2791–2802 (2000)

    Article  Google Scholar 

  48. Schmuki, P., Virtanen, S., Isaacs, H.S., Ryan, M.R., Davenport, A.J., Bohni, H., Stenberge, T.: Electrochemical behaviour of Cr2O3/Fe2O3 artificial passive films studied by in situ XANES. J. Electrochem. Soc. 145, 791–801 (1998)

    Article  Google Scholar 

  49. Ningshen, S., Kamachi, M.U., Ramya, S., Raj, B.: Corrosion behavior of AISI type 304L stainless steel in nitric acid media containing oxidizing species. Corros. Sci. 53, 64–70 (2011)

    Article  Google Scholar 

  50. Evans, U.R.: The corrosion and oxidation of metals: scientific principles and practical applications. Edward Arnold, London (1960)

    Google Scholar 

  51. Fauvet, P., Balbaud, F., Robin, R., Tran, Q.T., Mugnier, A., Espinoux, D.: Corrosion mechanisms of austenitic stainless steels in nitric media used in reprocessing plants. J. Nucl. Mater. 375, 52–64 (2008)

    Article  Google Scholar 

  52. Ningshen, S., Kamachi, M.U., Amarendra, G., Raj, B.: Corrosion assessment of nitric acid grade austenitic stainless steels. Corros. Sci. 51, 322–329 (2009)

    Article  Google Scholar 

  53. Godet, M.: 3rd-Bodies in tribology. Wear 136, 29–45 (1990)

    Article  Google Scholar 

  54. Landolt, D., Mischler, S., Stemp, M., Barril, S.: Third body effects and material fluxes in tribocorrosion systems involving a sliding contact. Wear 256, 517–524 (2004)

    Article  Google Scholar 

  55. Stachowiak, G.W., Batchelor, A.W.: Engineering tribology, 3rd edn. Elsevier Butterworth-Heinemann, Amsterdam (2005)

    Google Scholar 

  56. Mohapatra, M., Anand, S.: Synthesis and applications of nano-structured iron oxides/hydroxides: a review. Int. J. Eng. Sci. Technol. 2, 127–146 (2010)

    Google Scholar 

  57. Lorang, G., Cunha Belo, M.D., Simoes, A.M.P., Ferreira, M.G.S.: Chemical composition of passive films on AISI 304 stainless steel. J. Electrochem. Soc. 141, 3347–3356 (1994)

    Article  Google Scholar 

  58. Husein, M.M., Zakaria, M.F., Hareland, G.: Use of nanoparticles as a lubricity additive in well fluids. WO Patent 2013116921 A1 (2013)

  59. Freire, L., Catarino, M.A., Godinho, M.I., Ferreira, M.J., Ferreira, M.G.S., Simões, A.M.P., Montemor, M.F.: Electrochemical and analytical investigation of passive films formed on stainless steels in alkaline media. Cement Concr. Compos. 34, 1075–1081 (2012)

    Article  Google Scholar 

  60. Milanti, A., Koivuluoto, H., Vuoristo, P., Bolelli, G., Bozza, F., Lusvarghi, L.: Microstructural characteristics and tribological behavior of HVOF-sprayed novel Fe-based alloy coatings. Coatings 4, 98–120 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by the Austrian COMET-Program (Project K2 XTribology, Grant No. 849109) and has been carried out within the Excellence Centre of Tribology. The authors would like to thank Christoph Gabler for performing the XPS analyses and Fjorda Xhiku for the topography measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Totolin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Totolin, V., Göcerler, H., Rodríguez Ripoll, M. et al. The Role of Ferric Oxide Nanoparticles in Improving Lubricity and Tribo-Electrochemical Performance During Chemical–Mechanical Polishing. Tribol Lett 65, 20 (2017). https://doi.org/10.1007/s11249-016-0806-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-016-0806-4

Keywords

Navigation