Skip to main content
Log in

Tribocorrosion Study of Copper During Chemical Mechanical Polishing in Potassium Periodate-Based Slurry

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Copper chemical mechanical polishing (CMP) in barrier layer slurries with periodate as oxidant has not been intensively studied. This work presents an investigation into copper tribocorrosion in potassium periodate-based slurries during CMP. The research focused on copper tribocorrosion behavior, the surface chemical and electrochemical reaction products, and the electrochemical mechanism during CMP. The copper surface film was characterized by Raman spectra experiments. Tribocorrosion tests combined with CMP chemical experiments were conducted to study the tribochemical behavior and wear-accelerated corrosion effect. The results show that copper corrosion is more severe in acid solutions than in alkaline conditions. The copper surface is mainly passivated with copper oxides, copper hydroxide, and copper iodide. Small amounts of copper iodate, copper periodate, and iodine could be detected under specific pH conditions. Abrasion could help to get a uniform passivation film on copper surface consisting of copper oxides, copper hydroxide, and copper iodide only. The material loss due to wear-accelerated corrosion during CMP was also investigated. The results show that under weakly alkaline conditions (pH 9 and pH 10), the wear-corrosion effect plays an important role in the total material loss due to corrosion. The wear-accelerated corrosion is mainly caused by the exposure of more cathodic reaction sites to the slurry for participation in the redox reaction and the local galvanic corrosion during the CMP process. The high wear corrosion proportion of the total corrosion (ΔI c/I cc) could help to obtain a better surface quality and desirable material removal rate during CMP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Kim, H., Koseki, T., Ohba, T., Ohta, T., Kojima, Y., Sato, H., Shimogaki, Y.: Cu wettability and diffusion barrier property of Ru thin film for Cu metallization. J. Electrochem. Soc. 152, G594–G600 (2005)

    Article  Google Scholar 

  2. Chan, R., Arunagiri, T.N., Zhang, Y., Chyan, O., Wallace, R.M., Kim, M.J., Hurd, T.Q.: Diffusion studies of copper on ruthenium thin film a plateable copper diffusion barrier. Electrochem. Solid-State Lett. 7, G154–G157 (2004)

    Article  Google Scholar 

  3. Sivanandini, M., Dhami, M.K., Dhami, S.S., Pabla, B.S.: Enhancement in surface finish by modification of basic colloidal silica with silane in chemical mechanical polishing. ECS J. Solid State Sci. Technol. 3, P324–P329 (2014)

    Article  Google Scholar 

  4. Hartmannsgruber, E., Zwicker, G., Beekmann, K.: A selective CMP process for stacked low-k CVD oxide films. Microelectron. Eng. 50, 53–58 (2000)

    Article  Google Scholar 

  5. Hung, C., Wang, Y., Lee, W., Chang, S., Wang, Y.: Galvanic corrosion between TaNx barriers and copper seed. Electrochem. Solid-State Lett. 10, H127–H130 (2007)

    Article  Google Scholar 

  6. Wu, C., Lee, W., Chang, S., Wang, Y.: Investigation of the galvanic effect between RuN barriers and Cu seed Layers. Jpn. J. Appl. Phys. 50, 1803 (2011)

    Article  Google Scholar 

  7. Zeng, X., Wang, J., Lu, H., Chen, F., Zhang, X., Qu, X.: Improved removal selectivity of ruthenium and copper by glycine in potassium periodate (KIO4)-based slurry. J. Electrochem. Soc. 159, C525–C529 (2012)

    Article  Google Scholar 

  8. Peethala, B.C., Babu, S.V.: Ruthenium polishing using potassium periodate as the oxidizer and silica abrasives. J. Electrochem. Soc. 158, H271–H276 (2011)

    Article  Google Scholar 

  9. Wu, C., Wang, Y., Lee, W.: Copper electrodeposition on Ru-N barrier with various nitrogen content for 22 nm semiconductor manufacturing application. J. Electrochem. Soc. 159, D684–D689 (2012)

    Article  Google Scholar 

  10. Qu, X., Tan, J., Zhou, M., Chen, T., Xie, Q., Ru, G., Li, B.Z.: Improved barrier properties of ultrathin Ru film with TaN interlayer for copper metallization. Appl. Phys. Lett. 88, 151912 (2006)

    Article  Google Scholar 

  11. Chyan, O., Arunagiri, T.N., Ponnuswamy, T.: Electrodeposition of copper thin film on ruthenium a potential diffusion barrier for Cu interconnects. J. Electrochem. Soc. 150, C347–C350 (2003)

    Article  Google Scholar 

  12. Cui, H., Park, J., Park, J.: Corrosion inhibitors in sodium periodate slurry for chemical mechanical planarization of ruthenium film. ECS J. Solid State Sci. Technol. 2, P71–P75 (2013)

    Article  Google Scholar 

  13. Cui, H., Park, J., Park, J.: Study of ruthenium oxides species on ruthenium chemical mechanical planarization using periodate-based slurry. J. Electrochem. Soc. 159, H335–H341 (2012)

    Article  Google Scholar 

  14. Lee, W., Park, H.: Development of novel process for Ru CMP using ceric ammonium nitrate (CAN)-containing nitric acid. Appl. Surf. Sci. 228, 410–417 (2004)

    Article  Google Scholar 

  15. Victoria, S.N., Sharma, P.P., Suni, I.I., Ramanathan, S.: Potassium bromate as an oxidizing agent in a titania-based Ru CMP slurry. Electrochem. Solid-State Lett. 13, H385–H387 (2010)

    Article  Google Scholar 

  16. Kim, I., Kang, Y., Kwon, T., Cho, B., Park, J., Park, J., Park, H.: Effect of sodium periodate in alumina-based slurry on Ru CMP for metal-insulator-metal capacitor. Electrochem. Solid-State Lett. 11, H150–H153 (2008)

    Article  Google Scholar 

  17. Peethala, B.C., Roy, D., Babu, S.V.: Controlling the galvanic corrosion of copper during chemical mechanical planarization of ruthenium barrier films. Electrochem. Solid-State Lett. 14, H306–H310 (2011)

    Article  Google Scholar 

  18. Jiang, L., He, Y., Niu, X., Li, Y., Luo, J.: Synergetic effect of benzotriazole and non-ionic surfactant on copper chemical mechanical polishing in KIO4-based slurries. Thin Solid Films 558, 272–278 (2014). doi:10.1016/j.tsf.2014.01.086

    Article  Google Scholar 

  19. Chockalingam, A.M., Lagudu, U.R.K., Babu, S.V.: Potassium periodate-based solutions for minimizing galvanic corrosion at the Cu-Mn interface and for polishing the associated Cu interconnect structures. ECS J. Solid State Sci. Technol. 2, P160–P165 (2013)

    Article  Google Scholar 

  20. Jiang, J., Stack, M.M., Neville, A.: Modelling the tribo-corrosion interaction in aqueous sliding conditions. Tribol. Int. 35, 669–679 (2002)

    Article  Google Scholar 

  21. Vieira, A.C., Rocha, L.A., Papageorgiou, N., Mischler, S.: Mechanical and electrochemical deterioration mechanisms in the tribocorrosion of Al alloys in NaCl and in NaNO3 solutions. Corros. Sci. 54, 26–35 (2012)

    Article  Google Scholar 

  22. Stojadinovic, J., Bouvet, D., Declercq, M., Mischler, S.: Influence of chelating agents on the tribocorrosion of tungsten in sulphuric acid solution. Electrochim. Acta 56, 7131–7140 (2011)

    Article  Google Scholar 

  23. Li, J., Chai, Z., Liu, Y., Lu, X.: Tribo-chemical behavior of copper in chemical mechanical planarization. Tribol. Lett. 50, 177–184 (2013)

    Article  Google Scholar 

  24. Stojadinović, J., Mendia, L., Bouvet, D., Declercq, M., Mischler, S.: Electrochemically controlled wear transitions in the tribocorrosion of ruthenium. Wear 267, 186–194 (2009)

    Article  Google Scholar 

  25. Hernandez, J., Wrschka, P., Oehrlein, G.S.: Surface chemistry studies of copper chemical mechanical planarization. J. Electrochem. Soc. 148, G389–G397 (2001)

    Article  Google Scholar 

  26. Cano, E., López, M.F., Simancas, J., Bastidas, J.M.: X-ray photoelectron spectroscopy study on the chemical composition of copper tarnish products formed at low humidities. J. Electrochem. Soc. 148, E26–E30 (2001)

    Article  Google Scholar 

  27. Melendres, C.A., Bowmaker, G.A., Leger, J.M., Beden, B.: In-situ synchrotron far infrared spectroscopy of surface films on a copper electrode in aqueous solutions. J. Electroanal. Chem. 449, 215–218 (1998)

    Article  Google Scholar 

  28. Li, Y., Babu, S.V.: Chemical mechanical polishing of copper and tantalum in potassium iodate-based slurries. Electrochem. Solid-State Lett. 4, G20–G22 (2001)

    Article  Google Scholar 

  29. Luo, Q.: Copper dissolution behavior in acidic iodate solutions. Langmuir 16, 5154–5158 (2000)

    Article  Google Scholar 

  30. Anik, M.: Selection of an oxidant for copper chemical mechanical polishing: copper-iodate system. J. Appl. Electrochem. 35, 1–7 (2005)

    Article  Google Scholar 

  31. Näsänen, R.: Studies on copper (II) periodates. Acta Chem. Scand. 8, 1587–1592 (1954)

    Article  Google Scholar 

  32. Deplano, P., Devillanova, F.A., Ferraro, J.R., Isaia, F., Lippolis, V., Mercuri, M.L.: On the use of Raman spectroscopy in the characterization of iodine in charge-transfer complexes. Appl. Spectrosc. 46, 1625–1629 (1992)

    Article  Google Scholar 

  33. Klaeboe, P.: The Raman spectra of some iodine, bromine, and iodine monochloride charge-transfer coomplexes in solution. J. Am. Chem. Soc. 89, 3667–3676 (1967)

    Article  Google Scholar 

  34. Wu, Z., Zhang, Z., Liu, L.: Electrochemical studies of a Cu (II)-Cu (III) couple: cyclic voltammetry and chronoamperometry in a strong alkaline medium and in the presence of periodate anions. Electrochim. Acta 42, 2719–2723 (1997)

    Article  Google Scholar 

  35. Zhou, Y., Xu, F., Mo, X., Ye, F.: Calorimetric studies for the dissolution of orthoperiodate salt of the type: M2HIO6·nH2O (M = Cu2+, Zn2+, Cd2+). Thermochim. Acta 398, 23–26 (2003). doi:10.1016/S0040-6031(02)00361-1

    Article  Google Scholar 

  36. Kiefer, W.: Recent advances in linear and non-linear Raman spectroscopy. Part III+. J. Raman Spectrosc. 40, 1766–1779 (2009)

    Article  Google Scholar 

  37. Li, J., Liu, Y., Lu, X., Luo, J., Dai, Y.: Material removal mechanism of copper CMP from a chemical-mechanical synergy perspective. Tribol. Lett. 49, 11–19 (2013)

    Article  Google Scholar 

  38. Hamilton, J.C., Farmer, J.C., Anderson, R.J.: In situ Raman spectroscopy of anodic films formed on copper and silver in sodium hydroxide solution. J. Electrochem. Soc. 133, 739–745 (1986)

    Article  Google Scholar 

  39. Niaura, G.: Surface-enhanced Raman spectroscopic observation of two kinds of adsorbed OH ions at copper electrode. Electrochim. Acta 45, 3507–3519 (2000)

    Article  Google Scholar 

  40. Texier, F., Servant, L., Bruneel, J.L., Argoul, F.: In situ probing of interfacial processes in the electrodeposition of copper by confocal Raman microspectroscopy. J. Electroanal. Chem. 446, 189–203 (1998)

    Article  Google Scholar 

  41. Persson, D., Leygraf, C.: In situ infrared reflection absorption spectroscopy for studies of atmospheric corrosion. J. Electrochem. Soc. 140, 1256–1260 (1993)

    Article  Google Scholar 

  42. Kliche, G., Popovic, Z.V.: Far-infrared spectroscopic investigations on CuO. Phys. Rev. B 42, 10060 (1990)

    Article  Google Scholar 

  43. Biton, M., Salitra, G., Aurbach, D., Mishkov, P., Ilzycer, D.: On the electrochemical behavior and passivation of copper and brass (Cu70/Zn30) electrodes in concentrated aqueous KOH solutions. J. Electrochem. Soc. 153, B555–B565 (2006)

    Article  Google Scholar 

  44. Irish, D.E., Stolberg, L., Shoesmith, D.W.: Surface enhanced Raman spectroscopy and electrochemistry at the copper/iodide, water interface. Surf. Sci. 158, 238–253 (1985)

    Article  Google Scholar 

  45. Anderson, A., Sun, T.S.: Raman spectra of molecular crystals I. Chlorine, bromine, and iodine. Chem. Phys. Lett. 6, 611–616 (1970)

    Article  Google Scholar 

  46. Nassau, K., Shiever, J.W., Prescott, B.E.: Transition metal iodates. I. Preparation and characterization of the 3d iodates. J. Solid State Chem. 7, 186–204 (1973)

    Article  Google Scholar 

  47. Botova, M., Nagel, R., Haeuseler, H.: Präparation, kristallstruktur, schwingungsspektren und thermische analyse von kupfer-tetrahydrogen-decaoxo-diperiodat-hexahydrat CuH4I2O10·6H2O. Zeitschrift für anorganische und allgemeine Chemie 630, 179–184 (2004)

    Article  Google Scholar 

  48. Zhang, X.L., Jiang, Z.H., Yao, Z.P., Song, Y., Wu, Z.D.: Effects of scan rate on the potentiodynamic polarization curve obtained to determine the Tafel slopes and corrosion current density. Corros. Sci. 51, 581–587 (2009)

    Article  Google Scholar 

  49. Deltombe, E., De Zoubov, N., Pourbaix, M.: Atlas of electrochemical equilibria in aqueous solutions. Pergamon Press, Oxford (1966)

    Google Scholar 

  50. Wang, M.T., Tsai, M.S., Liu, C., Tseng, W.T., Chang, T.C., Chen, L.J., Chen, M.C.: Effects of corrosion environments on the surface finishing of copper chemical mechanical polishing. Thin Solid Films 308–309, 518–522 (1997). doi:10.1016/S0040-6090(97)00500-2

    Article  Google Scholar 

  51. Varadarajan, T.K., Ramakrishna, T.V., Kalidas, C.: Ion solvation of some copper (II) salts in water + N-Methyl-2-pyrrolidinone solvent mixtures at 30° C. J. Chem. Eng. Data 42, 453–457 (1997)

    Article  Google Scholar 

  52. Landolt, D.: Corrosion and surface chemistry of metals. CRC Press, Lausanne (2007)

    Book  Google Scholar 

  53. Mischler, S., Spiegel, A., Landolt, D.: The role of passive oxide films on the degradation of steel in tribocorrosion systems. Wear 225, 1078–1087 (1999)

    Article  Google Scholar 

  54. Mindivan, H., Baydogan, M., Kayali, E.S., Cimenoglu, H.: Wear behaviour of 7039 aluminum alloy. Mater. Charact. 54, 263–269 (2005)

    Article  Google Scholar 

  55. Li, J., Liu, Y., Wang, T., Lu, X., Luo, J.: Electrochemical investigation of copper passivation kinetics and its application to low-pressure CMP modeling. Appl. Surf. Sci. 265, 764–770 (2013)

    Article  Google Scholar 

Download references

Acknowledgment

The authors greatly appreciate the financial support of the Science Fund for Creative Research Groups (51321092), National Natural Science Foundation of China (51205226, 91323302), and National Basic Research Program of China (2015CB057203).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinchun Lu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, J., Wang, T., Chai, Z. et al. Tribocorrosion Study of Copper During Chemical Mechanical Polishing in Potassium Periodate-Based Slurry. Tribol Lett 58, 8 (2015). https://doi.org/10.1007/s11249-015-0474-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-015-0474-9

Keywords

Navigation