Skip to main content
Log in

Immobilization of α-Amylase onto Quantum Dots Prepared from Hypericum perforatum L. Flowers and Hypericum capitatum Seeds: Its Physicochemical and Biochemical Characterization

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Enzyme immobilization is an effective way to increase the catalytic activity and stability of the α-amylase (Amy) enzyme for industrial uses. For this purpose, carbon and graphene quantum dot (QDs) structures were prepared from Hypericum perforatum L. flowers (QD-1), and Hypericum capitatum seeds (QD-2) obtained from an herbalist in Hatay province of Turkey. Structural and morphological characterization of the prepared QDs and QDs/Amy were carried out by Fourier transform infrared spectrophotometer (FTIR), X-ray diffraction (XRD), scanning electron microscope (SEM), and energy dispersive X-ray (EDX). Meanwhile, biochemical characterizations such as optimum pH and temperature, kinetic parameters, effects of metal ions, organic solvents, and trypsin digestion on enzyme activity were performed and compared with free Amy. The Amy enzyme was immobilized with an activity efficiency of 71.15% for QD-1/Amy, and 81.51% for QD-2/Amy under optimal conditions. The difference in activity efficiency between QD-1/Amy and QD-2/Amy was likely due to a change in the surface porosity of QDs structures. While the optimal pH value of all three forms of Amy was recorded as 6.0, their optimal temperature was found to be 40 °C. The activation energy (Ea) of the free Amy was found to be 4.81 kJ/mol, while it was 9.61 kJ/mol, and 3.20 kJ/mol for QD-1/Amy, and QD-2/Amy, respectively. Km values were calculated as 1.18, 1.57, and 1.35 mg/mL for free Amy, QD-1/Amy, and QD-2/Amy, respectively, and Vmax values were calculated as 37.52, 37.60, and 39.93 µmol/min, respectively. Kinetic data revealed that the immobilized enzymes had lower substrate affinity compared to the free Amy. Besides, the QD-1/Amy and QD-2/Amy exhibited more stability than free Amy against metal ions, organic solvents as well as trypsin digestion due to the increment in conformational rigidity caused by changes in the secondary structures of the immobilized enzyme. For instance, after incubation with trypsin for 120 min, free Amy, QD-1/Amy, and QD-2/Amy retained approximately 20%, 35%, and 26% of initial activities, respectively. Finally, it can be proposed that the prepared carriers in this work may a useful to produce stable and active immobilized Amy to be used in industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Pohanka M (2017) Quantum dots in the therapy: current trends and perspectives. Mini-Rev Med Chem 17:650–656

    Article  CAS  PubMed  Google Scholar 

  2. Abbaspourrad A, Datta SS, Weitz DA (2013) Controlling release from pH-responsive microcapsules. Langmuir 29:12697–12702

    Article  CAS  PubMed  Google Scholar 

  3. Peer D, Karp JM, Hong S et al (2007) Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol 2:751–760

    Article  CAS  PubMed  Google Scholar 

  4. Pagano L, Maestri E, White JC et al (2018) Quantum dots exposure in plants: minimizing the adverse response. Curr Opin Environ Sci Health 6:71–76

    Article  Google Scholar 

  5. Wagner AM, Knipe JM, Orive G, Peppas NA (2019) Quantum dots in biomedical applications. Acta Biomater 94:44–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Martins CSM, LaGrow AP, Prior JAV (2022) Quantum dots for cancer-related miRNA monitoring. ACS Sens 7:1269–1299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Xu X, Ray R, Gu Y et al (2004) Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J Am Chem Soc 126:12736–12737

    Article  CAS  PubMed  Google Scholar 

  8. Xue B, Yang Y, Sun Y et al (2019) Photoluminescent lignin hybridized carbon quantum dots composites for bioimaging applications. Int J Biol Macromol 122:954–961

    Article  CAS  PubMed  Google Scholar 

  9. Xu Y, Liu J, Gao C, Wang E (2014) Applications of carbon quantum dots in electrochemiluminescence: a mini review. Electrochem Commun 48:151–154

    Article  CAS  Google Scholar 

  10. Sun H, Wu L, Wei W, Qu X (2013) Recent advances in graphene quantum dots for sensing. Mater Today 16:433–442

    Article  CAS  Google Scholar 

  11. Yu H, Shi R, Zhao Y et al (2016) Smart utilization of carbon dots in semiconductor photocatalysis. Adv Mater 28:9454–9477

    Article  CAS  PubMed  Google Scholar 

  12. Chung S, Revia RA, Zhang M et al (2021) Graphene quantum dots and their applications in bioimaging, biosensing, and therapy. Adv Mater 33:1904362

    Article  CAS  Google Scholar 

  13. Li M, Chen T, Gooding JJ, Liu J (2019) Review of carbon and graphene quantum dots for sensing. ACS Sens 4:1732–1748

    Article  CAS  PubMed  Google Scholar 

  14. Önal Y, Kır Ş, Dehri İ, Esen RJ (2019) Synthesis and characterization of graphene quantum dots from dried pine leaves. JOTCSB 2:109–120

    Google Scholar 

  15. Luo PG, Sahu S, Yang ST et al (2013) Carbon “quantum” dots for optical bioimaging. J Mater Chem B 1:2116–2127

    Article  CAS  PubMed  Google Scholar 

  16. Luo PG, Yang F, Yang ST et al (2014) Carbon-based quantum dots for fluorescence imaging of cells and tissues. RSC Adv 4:10791–10807

    Article  CAS  Google Scholar 

  17. Wang L, Zhou HS (2014) Green synthesis of luminescent nitrogen-doped carbon dots from milk and its imaging application. Anal Chem 86:8902–8905

    Article  CAS  PubMed  Google Scholar 

  18. Nasseri MA, Keshtkar H, Kazemnejadi M, Allahresani A (2020) Phytochemical properties and antioxidant activity of Echinops persicus plant extract: green synthesis of carbon quantum dots from the plant extract. SN Appl Sci 2:670

    Article  CAS  Google Scholar 

  19. Nasseri MA, Shahabi M, Allahresani A, Kazemnejadi M (2019) Eco-friendly biosynthesis of silver nanoparticles using aqueous solution of Spartium junceum flower extract. Asian J Green Chem 3:382–390

    CAS  Google Scholar 

  20. Mehta J, Bhardwaj N, Bhardwaj SK et al (2017) Graphene quantum dot modified screen printed immunosensor for the determination of parathion. Anal Biochem 523:1–9

    Article  CAS  PubMed  Google Scholar 

  21. Tuteja SK, Chen R, Kukkar M et al (2016) A label-free electrochemical immunosensor for the detection of cardiac marker using graphene quantum dots (GQDs). Biosens Bioelectron 86:548–556

    Article  CAS  PubMed  Google Scholar 

  22. Mollarasouli F, Serafín V, Campuzano S et al (2018) Ultrasensitive determination of receptor tyrosine kinase with a label-free electrochemical immunosensor using graphene quantum dots-modified screen-printed electrodes. Anal Chim Acta 1011:28–34

    Article  CAS  PubMed  Google Scholar 

  23. Hu T, Zhang L, Wen W et al (2016) Enzyme catalytic amplification of miRNA-155 detection with graphene quantum dot-based electrochemical biosensor. Biosens Bioelectron 77:451–456

    Article  CAS  PubMed  Google Scholar 

  24. Mahmoudi M, Lynch I, Ejtehadi MR et al (2011) Protein-nanoparticle interactions: opportunities and challenges. Chem Rev 111:5610–5637

    Article  CAS  PubMed  Google Scholar 

  25. Murthy SK (2007) Nanoparticles in modern medicine: state of the art and future challenges. Int J Nanomed 2:129

    CAS  Google Scholar 

  26. de Souza PM, Magalhães PO (2010) Application of microbial α-amylase in industry—a review. Braz J Microbiol 41:850–861

    Article  PubMed  PubMed Central  Google Scholar 

  27. Van Der Maarel MJEC, Van Der Veen B, Uitdehaag JCM et al (2002) Properties and applications of starch-converting enzymes of the α-amylase family. J Biotechnol 94:137–155

    Article  PubMed  Google Scholar 

  28. Mohamad NR, Marzuki NHC, Buang NA et al (2015) An overview of technologies for immobilization of enzymes and surface analysis techniques for immobilized enzymes. Biotechnol Biotechnol Equip 29:205–220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Noma SAA, Ulu A, Koytepe S et al (2020) Preparation and characterization of amino and carboxyl functionalized core-shell Fe3O4/SiO2 for L-asparaginase immobilization: a comparison study. Biocatal Biotrans 38:392–404

    Article  CAS  Google Scholar 

  30. Khan MJ, Husain Q, Azam A (2012) Immobilization of porcine pancreatic α-amylase on magnetic Fe2O3 nanoparticles: applications to the hydrolysis of starch. Biotechnol Bioprocess Eng 17:377–384

    Article  CAS  Google Scholar 

  31. Defaei M, Taheri-Kafrani A, Miroliaei M, Yaghmaei P (2020) Alpha-amylase immobilized on polycaprolactone-grafted magnetic nanoparticles: improving stability and reusability. J Chem Technol Biotechnol 95:2243–2250

    Article  CAS  Google Scholar 

  32. Almulaiky YQ, Aqlan FM, Aldhahri M et al (2018) α-amylase immobilization on amidoximated acrylic microfibres activated by cyanuric chloride. R Soc Open Sci 5:172164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kahraman MV, Bayramoǧlu G, Kayaman-Apohan N, Güngör A (2007) α-amylase immobilization on functionalized glass beads by covalent attachment. Food Chem 104:1385–1392

    Article  CAS  Google Scholar 

  34. Doğan D, Ulu A, Sel E et al (2021) α-Amylase immobilization on P(HEMA-co-PEGMA) hydrogels: preparation, characterization, and catalytic investigation. Starch Stärke 73:2000217

    Article  Google Scholar 

  35. Almulaiky YQ, Khalil NM, El-Shishtawy RM et al (2021) Hydroxyapatite-decorated ZrO2 for α-amylase immobilization: toward the enhancement of enzyme stability and reusability. Int J Biol Macromol 167:299–308

    Article  CAS  PubMed  Google Scholar 

  36. Mulko L, Pereyra JY, Rivarola CR et al (2019) Improving the retention and reusability of alpha-amylase by immobilization in nanoporous polyacrylamide-graphene oxide nanocomposites. Int J Biol Macromol 122:1253–1261

    Article  CAS  PubMed  Google Scholar 

  37. Açarı İK, Önal Y (2021) St. John’s Wort (Hypericum Perforatum L.) flower based carbon/graphene quantum dot structure production and characterization for bioimaging and drug delivery systems. J Inonu Univ Health Serv Vocat Sch 9:862–872

    Google Scholar 

  38. Noma SAA, Ulu A, Acet O et al (2020) Comparative study of ASNase immobilization on tannic acid-modified magnetic Fe3O4/SBA-15 nanoparticles to enhance stability and reusability. New J Chem 44:4440–4451

    Article  CAS  Google Scholar 

  39. Noma SAA, Acet Ö, Ulu A et al (2020) L-asparaginase immobilized p(HEMA-GMA) cryogels: a recent study for biochemical, thermodynamic and kinetic parameters. Polym Test 93:106980

    Article  Google Scholar 

  40. Bokare A, Nordlund D, Melendrez C et al (2020) Surface functionality and formation mechanisms of carbon and graphene quantum dots. Diam Relat Mater 110:108101

    Article  CAS  Google Scholar 

  41. Dager A, Uchida T, Maekawa T, Tachibana M (2019) Synthesis and characterization of mono-disperse carbon quantum dots from fennel seeds: photoluminescence analysis using machine learning. Sci Rep 9:14004

    Article  PubMed  PubMed Central  Google Scholar 

  42. Atiroğlu V, Atiroğlu A, Özacar M (2021) Immobilization of α-amylase enzyme on a protein @metal–organic framework nanocomposite: a new strategy to develop the reusability and stability of the enzyme. Food Chem 349:129127

    Article  PubMed  Google Scholar 

  43. Swarnalatha V, Esther RA, Dhamodharan R (2013) Immobilization of α-amylase on gum acacia stabilized magnetite nanoparticles, an easily recoverable and reusable support. J Mol Catal B Enzym 96:6–13

    Article  CAS  Google Scholar 

  44. Kir Ş, Dehri İ, Önal Y, Esen R (2021) Graphene quantum dots prepared from dried lemon leaves and microcrystalline mosaic structure. Luminescence 36:1365–1376

    Article  CAS  PubMed  Google Scholar 

  45. Sharma N, Sharma I, Bera MK (2022) Microwave-assisted green synthesis of carbon quantum dots derived from calotropis gigantea as a fluorescent probe for bioimaging. J Fluoresc 32:1039–1049

    Article  CAS  PubMed  Google Scholar 

  46. Baslak C, Demirel S, Kocyigit A et al (2022) Supercapacitor behaviors of carbon quantum dots by green synthesis method from tea fermented with kombucha. Mater Sci Semicond Process 147:106738

    Article  CAS  Google Scholar 

  47. Hafızosmanoğlu G, Ulu A, Köytepe S et al (2021) Fabrication of oleic acid grafted starch-based hybrid carriers for L-asparaginase encapsulation. Starch Stärke 2100152. https://doi.org/10.1002/star.202100152

    Article  Google Scholar 

  48. Owen JD, Evans SJ, Guirguis A et al (2019) Method development for the determination of elements in Hypericum perforatum L. (St John’s wort) herb and preparations using inductively coupled plasma–optical emission spectroscopy and microwave digestion. J Pharm Pharmacol 71:38–45

    Article  CAS  PubMed  Google Scholar 

  49. Xin-ping Y, Jian-ping L, Ge L (2004) Determinationof elements of Hypericum perforatum L. in Xinjiang by microwave digestion-ICP-AES. Spectrosc Spect Anal 24:890–892

    Google Scholar 

  50. Sekeroglu N, Karaoglan M, Gezici S et al (2018) Variation in the composition of the essential oils, hypericin and mineral elements in aerial parts, stem and flower of Hypericum capitatum (CHOISY) growing in Turkey with oxidative DNA damage protective activity. J Pharm Res 17:67–77

    CAS  Google Scholar 

  51. Agrawal DC, Yadav A, Kesarwani R et al (2020) Immobilization of fenugreek β-amylase onto functionalized graphene quantum dots (GQDs) using Box-Behnken design: Its biochemical, thermodynamic and kinetic studies. Int J Biol Macromol 144:170–182

    Article  CAS  PubMed  Google Scholar 

  52. Mehandia S, Sharma SC, Arya SK (2020) Immobilization of laccase on chitosan-clay composite beads to improve its catalytic efficiency to degrade industrial dyes. Mater Today Commun 25:101513

    Article  CAS  Google Scholar 

  53. Acet Ö, İnanan T, Acet BÖ et al (2021) α-amylase immobilized composite cryogels: some studies on kinetic and adsorption factors. Appl Biochem Biotechnol 193:2483–2496

    Article  CAS  PubMed  Google Scholar 

  54. Leontieș AR, Răducan A, Culiță DC et al (2022) Laccase immobilized on chitosan-polyacrylic acid microspheres as highly efficient biocatalyst for naphthol green B and indigo carmine degradation. Chem Eng J 439:135654

    Article  Google Scholar 

  55. Monier M, Shafik AL, El-Mekabaty A (2020) Designing and investigation of photo-active gellan gum for the efficient immobilization of catalase by entrapment. Int J Biol Macromol 161:539–549

    Article  CAS  PubMed  Google Scholar 

  56. Mirzaei F, Valizadeh H, Pazhang M (2022) Immobilization of papain on nitrogen-doped graphene quantum dots improves the enzymatic properties and makes it a biosensor for cystatin C. Process Biochem 118:307–316

    Article  CAS  Google Scholar 

  57. Samanta S, Das A, Halder SK et al (2014) Thermodynamic and kinetic characteristics of an a-amylase from Bacillus licheniformis SKB4. Acta Biol Szegediensis 58:147–156

    Google Scholar 

  58. Wang Y, Wang Q, Song X, Cai J (2019) Hydrophilic polyethylenimine modified magnetic graphene oxide composite as an efficient support for dextranase immobilization with improved stability and recyclable performance. Biochem Eng J 141:163–172

    Article  CAS  Google Scholar 

  59. Yang L, Liu X, Zhou N, Tian Y (2019) Characteristics of refold acid urease immobilized covalently by graphene oxide-chitosan composite beads. J Biosci Bioeng 127:16–22

    Article  CAS  PubMed  Google Scholar 

  60. Du L, Huang M, Feng J-XX (2017) Immobilization of α-amylase on eggshell membrane and Ag-nanoparticle-decorated eggshell membrane for the biotransformation of starch. Starch Stärke 69:1600352

    Article  Google Scholar 

  61. Yandri Y, Tiarsa ER, Suhartati T et al (2022) The stability improvement of α-amylase enzyme from Aspergillus fumigatus by Immobilization on a bentonite matrix. Biochem Res Int 2022:3797629

    Article  PubMed  PubMed Central  Google Scholar 

  62. Homaei A, Saberi D (2015) Immobilization of α-amylase on gold nanorods: an ideal system for starch processing. Process Biochem 50:1394–1399

    Article  CAS  Google Scholar 

  63. Al-Najada AR, Almulaiky YQ, Aldhahri M et al (2019) Immobilisation of α-amylase on activated amidrazone acrylic fabric: a new approach for the enhancement of enzyme stability and reusability. Sci Rep 9:12672

    Article  PubMed  PubMed Central  Google Scholar 

  64. Akkaya B, Yenidunya AF, Akkaya R (2012) Production and immobilization of a novel thermoalkalophilic extracellular amylase from bacilli isolate. Int J Biol Macromol 50:991–995

    Article  CAS  PubMed  Google Scholar 

  65. Deb P, Talukdar SA, Mohsina K et al (2013) Production and partial characterization of extracellular amylase enzyme from Bacillus amyloliquefaciens P-001. Springerplus 2:154

    Article  PubMed  PubMed Central  Google Scholar 

  66. Zaferanloo B, Bhattacharjee S, Ghorbani MM et al (2014) Amylase production by Preussia minima, a fungus of endophytic origin: optimization of fermentation conditions and analysis of fungal secretome by LC-MS. BMC Microbiol 14:55

    Article  PubMed  PubMed Central  Google Scholar 

  67. Zhang L, Tang W, Ma T et al (2019) Laccase-immobilized tannic acid-mediated surface modification of halloysite nanotubes for efficient bisphenol-A degradation. RSC Adv 9:38935–38942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Pereira SE, Fernandes KF, Ulhoa CJ (2017) Immobilization of Cryptococcus flavus α-amylase on glass tubes and its application in starch hydrolysis. Starch Stärke 69:1600189

    Article  Google Scholar 

  69. Mortazavi S, Aghaei H (2020) Make proper surfaces for immobilization of enzymes: immobilization of lipase and α-amylase on modified Na-sepiolite. Int J Biol Macromol 164:1–12

    Article  CAS  PubMed  Google Scholar 

  70. Bindu VU, Mohanan PV (2020) Thermal deactivation of α-amylase immobilized magnetic chitosan and its modified forms: a kinetic and thermodynamic study. Carbohydr Res 498:108185

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the Scientific Research Projects Unit of Inönü University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ahmet Ulu or Burhan Ateş.

Ethics declarations

Conflict of interest

The authors report no declarations of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karaca Açarı, İ., Dik, G., Bakar, B. et al. Immobilization of α-Amylase onto Quantum Dots Prepared from Hypericum perforatum L. Flowers and Hypericum capitatum Seeds: Its Physicochemical and Biochemical Characterization. Top Catal 66, 563–576 (2023). https://doi.org/10.1007/s11244-022-01699-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-022-01699-y

Keywords

Navigation