Skip to main content
Log in

α-Amylase Immobilized Composite Cryogels: Some Studies on Kinetic and Adsorption Factors

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Stability of enzymes is a significant factor for their industrial feasibility. α-Amylase is an important enzyme for some industries, i.e., textile, food, paper, and pharmaceutics. Pumice particles (PPa) are non-toxic, natural, and low-cost alternative adsorbents with high adsorption capacity. In this study, Cu2+ ions were attached to pumice particles (Cu2+-APPa). Then, Cu2+-APPa embedded composite cryogel was synthesized (Cu2+-APPaC) via polymerization of gel-forming agents at minus temperatures. Characterization studies of the Cu2+-APPaC cryogel column were performed by X-ray fluorescence spectrometry (XRF), scanning electron microscopy (SEM), and Brunauer, Emmett, Teller (BET) method. The experiments were carried out in a continuous column system. α-Amylase was adsorbed onto Cu2+-APPaC cryogel with maximum amount of 858.7 mg/g particles at pH 4.0. Effects of pH and temperature on the activity profiles of the free and the immobilized α-amylase were investigated, and results indicate that immobilization did not alter the optimum pH and temperature values. kcat value of the immobilized α-amylase is higher than that of the free α-amylase while KM value increases by immobilization. Storage and operational stabilities of the free and the immobilized α-amylase were determined for 35 days and for 20 runs, respectively.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Data are available on request.

References

  1. Gong, W., Ran, Z., Ye, F., & Zhao, G. (2017). Lignin from bamboo shoot shells as an activator and novel immobilizing support for α-amylase. Food Chemistry, 228, 455–462. https://doi.org/10.1016/j.foodchem.2017.02.017.

    Article  CAS  PubMed  Google Scholar 

  2. Joshi, S., & Satyanarayana, T. (2015). In vitro engineering of microbial enzymes with multifarious applications: Prospects and perspectives. Bioresource Technology, 176, 273–283. https://doi.org/10.1016/j.biortech.2014.10.151.

    Article  CAS  PubMed  Google Scholar 

  3. Ademakinwa, A. N., Agunbiade, M. O., Ayinla, Z. A., & Agboola, F. K. (2019). Optimization of aqueous two-phase partitioning of Aureobasidium pullulans α-amylase via response surface methodology and investigation of its thermodynamic and kinetic properties. International Journal of Biological Macromolecules, 140, 833–841.

    Article  CAS  Google Scholar 

  4. Homaei, A., & Saberi, D. (2015). Immobilization of α-amylase on gold nanorods: An ideal system for starch processing. Process Biochemistry, 50(9), 1394–1399. https://doi.org/10.1016/j.procbio.2015.06.002.

    Article  CAS  Google Scholar 

  5. Konieczna-Molenda, A., Kochanowski, A., Walaszek, A., Bortel, E., & Tomasik, P. (2009). Immobilization of α-amylase on poly (vinylamine) and poly (vinylformamide) supports and its performance. Chemical Engineering Journal, 146(3), 515–519.

    Article  CAS  Google Scholar 

  6. Rodrigues, É. F., Ficanha, A. M. M., Dallago, R. M., Treichel, H., Reinehr, C. O., Machado, T. P., Nunes, G. B., & Colla, L. M. (2017). Production and purification of amylolytic enzymes for saccharification of microalgal biomass. Bioresource Technology, 225, 134–141. https://doi.org/10.1016/j.biortech.2016.11.047.

    Article  CAS  PubMed  Google Scholar 

  7. Noma, S. A. A., Ulu, A., Acet, Ö., Sanz, R., Sanz-Pérez, E. S., Odabaşi, M., & Ateş, B. (2020). Comparative study of ASNase immobilization on tannic acid-modified magnetic Fe3O4/SBA-15 nanoparticles to enhance stability and reusability. New Journal of Chemistry, 44(11), 4440–4451. https://doi.org/10.1039/d0nj00127a.

    Article  CAS  Google Scholar 

  8. Walsh, G. (2015). Proteins. Proteins: Biochemistry and Biotechnology (Second ed.). John Wiley & Sons, Inc.. https://doi.org/10.1002/9781119117599.

  9. Singh, V., Rakshit, K., Rathee, S., Angmo, S., Kaushal, S., Garg, P., Chung, J. H., Sandhir, R., Sangwan, R. S., & Singhal, N. (2016). Metallic/bimetallic magnetic nanoparticle functionalization for immobilization of α-amylase for enhanced reusability in bio-catalytic processes. Bioresource Technology, 214, 528–533.

    Article  CAS  Google Scholar 

  10. Liao, Y. C., & Syu, M. J. (2005). Novel immobilized metal ion affinity adsorbent based on cross-linked β-cyclodextrin matrix for repeated adsorption of α-amylase. Biochemical Engineering Journal, 23(1), 17–24. https://doi.org/10.1016/j.bej.2004.10.004.

    Article  CAS  Google Scholar 

  11. Straksys, A., Kochane, T., & Budriene, S. (2016). Catalytic properties of maltogenic α-amylase from Bacillus stearothermophilus immobilized onto poly(urethane urea) microparticles. Food Chemistry, 211, 294–299. https://doi.org/10.1016/j.foodchem.2016.05.071.

    Article  CAS  PubMed  Google Scholar 

  12. Konovalova, V., Guzikevich, K., Burban, A., Kujawski, W., Jarzynka, K., & Kujawa, J. (2016). Enhanced starch hydrolysis using α-amylase immobilized on cellulose ultrafiltration affinity membrane. Carbohydrate Polymers, 152, 710–717. https://doi.org/10.1016/j.carbpol.2016.07.065.

    Article  CAS  PubMed  Google Scholar 

  13. Jiang, J., Chen, Y., Wang, W., Cui, B., & Wan, N. (2016). Synthesis of superparamagnetic carboxymethyl chitosan/sodium alginate nanosphere and its application for immobilizing α-amylase. Carbohydrate Polymers, 151, 600–605.

    Article  CAS  Google Scholar 

  14. Acet, Ö., Aksoy, N. H., Erdönmez, D., & Odabaşı, M. (2018). Determination of some adsorption and kinetic parameters of α-amylase onto Cu+2-PHEMA beads embedded column. Artificial Cells, Nanomedicine and Biotechnology, 46(sup3), S538–S545. https://doi.org/10.1080/21691401.2018.1501378.

    Article  CAS  Google Scholar 

  15. Tüzmen, N., Kalburcu, T., & Denizli, A. (2012). α-Amylase immobilization onto dye attached magnetic beads: Optimization and characterization. Journal of Molecular Catalysis B: Enzymatic, 78, 16–23.

    Article  Google Scholar 

  16. Yavuz, H., Odabaşi, M., Akgöl, S., & Denizli, A. (2005). Immobilized metal affinity beads for ferritin adsorption. Journal of Biomaterials Science. Polymer Edition, 16(5), 673–684. https://doi.org/10.1163/1568562053783713.

    Article  CAS  PubMed  Google Scholar 

  17. Kaya, M., Odabasi, M., Mujtaba, M., Sen, M., Bulut, E., & Akyuz, B. (2016). Novel three-dimensional cellulose produced from trunk of Astragalus gummifer (Fabaceae) tested for protein adsorption performance. Materials Science and Engineering: C, 62, 144–151. https://doi.org/10.1016/j.msec.2016.01.047.

    Article  CAS  Google Scholar 

  18. Bulut, E., Sargin, I., Arslan, O., Odabasi, M., Akyuz, B., & Kaya, M. (2017). In situ chitin isolation from body parts of a centipede and lysozyme adsorption studies. Materials Science and Engineering C, 70(Pt 1), 552–563. https://doi.org/10.1016/j.msec.2016.08.048.

    Article  CAS  PubMed  Google Scholar 

  19. Porath, J., Carlsson, J., Olsson, I., & Belfrage, G. (1975). Metal chelate affinity chromatography, a new approach to protein fractionation. Nature, 258(5536), 598–599. https://doi.org/10.1038/258598a0.

    Article  CAS  PubMed  Google Scholar 

  20. Cömert, Ş. C., & Odabaşı, M. (2014). Investigation of lysozyme adsorption performance of Cu2+-attached PHEMA beads embedded cryogel membranes. Materials Science and Engineering: C, 34, 1–8. https://doi.org/10.1016/j.msec.2013.09.033.

    Article  CAS  Google Scholar 

  21. Acet, Ö., Önal, B., Sanz, R., Sanz-Pérez, E. S., Erdönmez, D., & Odabaşi, M. (2019). Preparation of a new chromatographic media and assessment of some kinetic and interaction parameters for lysozyme. Journal of Molecular Liquids, 276, 480–487. https://doi.org/10.1016/j.molliq.2018.12.037.

    Article  CAS  Google Scholar 

  22. Acet, Ö., Baran, T., Erdönmez, D., Aksoy, N. H., Alacabey, İ., Menteş, A., & Odabaşi, M. (2018). O-carboxymethyl chitosan Schiff base complexes as affinity ligands for immobilized metal-ion affinity chromatography of lysozyme. Journal of Chromatography A, 1550, 21–27. https://doi.org/10.1016/j.chroma.2018.03.022.

    Article  CAS  PubMed  Google Scholar 

  23. Alkan, H., Cömert, Ş. C., Gürbüz, F., Doğru, M., & Odabaşı, M. (2017). Cu2+-attached pumice particles embedded composite cryogels for protein purification. Artificial Cells, Nanomedicine and Biotechnology, 45(1), 90–97. https://doi.org/10.3109/21691401.2015.1129627.

    Article  CAS  Google Scholar 

  24. Baran, N. Y., Acet, Ö., & Odabaşı, M. (2017). Efficient adsorption of hemoglobin from aqueous solutions by hybrid monolithic cryogel column. Materials Science and Engineering: C, 73, 15–20. https://doi.org/10.1016/j.msec.2016.12.036.

    Article  CAS  Google Scholar 

  25. Enayatpour, B., Rajabi, M., Yari, M., Mirkhan, S. M. R., Najafi, F., Moradi, O., … Gupta, V. K. (2017). Adsorption/desorption study of proteins onto multi-walled carbon nanotubes and amino multi-walled carbon nanotubes surfaces as adsorbents. Journal of Molecular Liquids, 231, 566–571.

  26. Masson, S., Gineys, M., Delpeux-Ouldriane, S., Reinert, L., Guittonneau, S., Béguin, F., & Duclaux, L. (2016). Single, binary, and mixture adsorption of nine organic contaminants onto a microporous and a microporous/mesoporous activated carbon cloth. Microporous and Mesoporous Materials, 234, 24–34. https://doi.org/10.1016/j.micromeso.2016.07.001.

    Article  CAS  Google Scholar 

  27. Wu, J., Li, X., Yan, Y., Hu, Y., Zhang, Y., & Tang, Y. (2013). Protein adsorption onto nanozeolite: Effect of micropore openings. Journal of Colloid and Interface Science, 406, 130–138. https://doi.org/10.1016/j.jcis.2013.05.073.

    Article  CAS  PubMed  Google Scholar 

  28. Gurbuz, F., Ceylan, Ş., Odabaşı, M., & Codd, G. A. (2016). Hepatotoxic microcystin removal using pumice embedded monolithic composite cryogel as an alternative water treatment method. Water Research, 90, 337–343. https://doi.org/10.1016/j.watres.2015.12.042.

    Article  CAS  PubMed  Google Scholar 

  29. Gurbuz, F., Akpınar, Ş., Ozcan, S., Acet, Ö., & Odabaşı, M. (2019). Reducing arsenic and groundwater contaminants down to safe level for drinking purposes via Fe3+-attached hybrid column. Environmental Monitoring and Assessment, 191(12), 722. https://doi.org/10.1007/s10661-019-7862-9.

    Article  CAS  PubMed  Google Scholar 

  30. Bernfeld, P. (1955). Amylases, alpha and beta. Methods in enzymology, (1), 149–158.https://doi.org/10.1016/0076-6879(55)01021-5.

  31. Freer, S. N. (1993). Purification and characterization of the extracellular α-amylase from Streptococcus bovis JB1. Applied and Environmental Microbiology, 59(5), 1398–1402.

    Article  CAS  Google Scholar 

  32. Zachariou, M., & Hearn, M. T. W. (1996). Application of immobilized metal ion chelate complexes as pseudocation exchange adsorbents for protein separation. Biochemistry., 35(1), 202–211. https://doi.org/10.1021/bi9511503.

    Article  CAS  PubMed  Google Scholar 

  33. Zachariou, M., & Hearn, M. T. W. (1995). Protein selectivity in immobilized metal affinity chromatography based on the surface accessibility of aspartic and glutamic acid residues. Journal of Protein Chemistry, 14(6), 419–430. https://doi.org/10.1007/BF01888136.

    Article  CAS  PubMed  Google Scholar 

  34. Çorman, M. E., Öztürk, N., Tüzmen, N., Akgöl, S., & Denizli, A. (2010). Magnetic polymeric nanospheres as an immobilized metal affinity chromatography (IMAC) support for catalase. Biochemical Engineering Journal, 49(2), 159–164. https://doi.org/10.1016/j.bej.2009.11.002.

    Article  CAS  Google Scholar 

  35. Serinbaş, A., Önal, B., Acet, Ö., Özdemir, N., Dzmitruk, V., Halets-Bui, I., Shcharbin, D., & Odabaşı, M. (2020). A new application of inorganic sorbent for biomolecules: IMAC practice of Fe3+-nano flowers for DNA separation. Materials Science and Engineering C, 113(January), 111020. https://doi.org/10.1016/j.msec.2020.111020.

    Article  CAS  PubMed  Google Scholar 

  36. Inanan, T. (2019). Chitosan Co-polymeric nanostructures for catalase immobilization. Reactive and Functional Polymers, 135, 94–102. https://doi.org/10.1016/j.reactfunctpolym.2018.12.013.

    Article  CAS  Google Scholar 

  37. Bibi, N. S., Singh, N. K., Dsouza, R. N., Aasim, M., & Fernández-Lahore, M. (2013). Synthesis and performance of megaporous immobilized metal-ion affinity cryogels for recombinant protein capture and purification. Journal of Chromatography. A, 1272, 145–149. https://doi.org/10.1016/j.chroma.2012.11.036.

    Article  CAS  PubMed  Google Scholar 

  38. Tüzmen, N., Kalburcu, T., & Denizli, A. (2012). Immobilization of catalase via adsorption onto metal-chelated affinity cryogels. Process Biochemistry, 47(1), 26–33. https://doi.org/10.1016/j.procbio.2011.09.021.

    Article  CAS  Google Scholar 

  39. Mulko, L., Pereyra, J. Y., Rivarola, C. R., Barbero, C. A., & Acevedo, D. F. (2019). Improving the retention and reusability of Alpha-amylase by immobilization in nanoporous polyacrylamide-graphene oxide nanocomposites. International Journal of Biological Macromolecules, 122, 1253–1261. https://doi.org/10.1016/j.ijbiomac.2018.09.078.

    Article  CAS  PubMed  Google Scholar 

  40. Mardani, T., Khiabani, M. S., Mokarram, R. R., & Hamishehkar, H. (2018). Immobilization of α-amylase on chitosan-montmorillonite nanocomposite beads. International Journal of Biological Macromolecules, 120(Pt A), 354–360. https://doi.org/10.1016/j.ijbiomac.2018.08.065.

    Article  CAS  PubMed  Google Scholar 

  41. Klapiszewski, Ł., Zdarta, J., & Jesionowski, T. (2018). Titania/lignin hybrid materials as a novel support for α-amylase immobilization: A comprehensive study. Colloids and Surfaces B: Biointerfaces, 162, 90–97. https://doi.org/10.1016/j.colsurfb.2017.11.045.

    Article  CAS  PubMed  Google Scholar 

  42. Antony, N., & Mohanan, P. V. (2019). Template synthesized polypyrroles as a carrier for diastase alpha amylase immobilization. Biocatalysis and Agricultural Biotechnology, 19, 101164. https://doi.org/10.1016/j.bcab.2019.101164.

    Article  Google Scholar 

  43. Almulaiky, Y. Q., Khalil, N. M., El-Shishtawy, R. M., Altalhi, T., Algamal, Y., Aldhahri, M., … Mohammed, M. M. (2021). Hydroxyapatite-decorated ZrO2 for α-amylase immobilization: Toward the enhancement of enzyme stability and reusability. International Journal of Biological Macromolecules, 167, 299–308. https://doi.org/10.1016/j.ijbiomac.2020.11.150

  44. Uygun, D. A., Akduman, B., Uygun, M., Akgöl, S., & Denizli, A. (2015). Immobilization of alcohol dehydrogenase onto metal-chelated cryogels. Journal of Biomaterials Science. Polymer Edition, 26(7), 446–457. https://doi.org/10.1080/09205063.2015.1023241.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author thanks Prof. Fatma Gurbuz for providing pumice particles. Also, the authors gratefully acknowledge the Scientific and Technological Application and Research Center of Aksaray University (ASUBTAM) for use of the services and facilities.

Author information

Authors and Affiliations

Authors

Contributions

Ömür Acet: investigation, writing—review and editing

Tülden İnanan: investigation, conceptualization, writing—review and editing

Burcu Önal Acet: investigation

Emrah Dikici: investigation

Mehmet Odabaşı: conceptualization, writing—review and editing

All the authors agreed to submit the manuscript.

Corresponding author

Correspondence to Mehmet Odabaşı.

Ethics declarations

Consent to Participate

All the authors agreed to participate in the scientific work

Ethical Approval

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Acet, Ö., İnanan, T., Acet, B.Ö. et al. α-Amylase Immobilized Composite Cryogels: Some Studies on Kinetic and Adsorption Factors. Appl Biochem Biotechnol 193, 2483–2496 (2021). https://doi.org/10.1007/s12010-021-03559-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-021-03559-z

Keywords

Navigation