Skip to main content
Log in

Effect of Graphene Oxide Prepared Under Different Conditions on Immobilized α-Amylase

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Graphene oxide (GO) has broad application prospects in the field of catalysis, especially as enzyme carrier, owing to its unique intriguing physic-chemical properties. In this paper, the layer structure and oxygen functional group content of GO which may affect the properties of the immobilized enzyme were discussed. GO was prepared from 8000 mesh and nanoscale graphite at different reaction temperatures (40 °C and 95 °C), and used as carriers to immobilize α-amylase by deposition and cross-linking methods, respectively. Several analytical tools, including AFM, FT-IR, UV–Vis, XPS, and Raman, were used to character GOs. The enzyme loading of GO-8000-40 °C-E (of GO-NM-95 °C-GA-E) was 122.1 (49.8) mg/g, which retained 94.7 (82.6) % of the free enzyme activity, the optimum pH, optimum temperature, Km and Vmax were 7.0 (7.0), 70 (75) °C, 18.837 (39.989) mg/mL and 1.584 (1.842) μmol/(mL·min), respectively. Overall results indicated that 8000 mesh graphite was suitable for the preparation of immobilized enzyme by deposition method, while nano-graphite had an advantage in cross-linking immobilized enzyme.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Wang JH, Tang MZ, Yu XT, Xu CM, Yang HM, Tang JB (2019) Colloid Surf B 177:506–511

    Article  CAS  Google Scholar 

  2. Kashefi S, Borghei SM, Mahmoodi NM (2019) J Mol Liq 276:153–162

    Article  CAS  Google Scholar 

  3. Wang MF, Qi W, Su RX, He ZM (2015) Chem Eng Sci 135:21–32

    Article  CAS  Google Scholar 

  4. Gao FQ, Guo YJ, Fan XT, Hu MC, Li SN, Zhai QG, Jiang YC, Wang XT (2019) Biochem Eng J 143:101–109

    Article  CAS  Google Scholar 

  5. Liu MQ, Weng XY, Wang Q, Huo WK, Xu X (2017) Catal Lett 147:765–775

    Article  CAS  Google Scholar 

  6. Esmaeili C, Abdi MM, Mathew AP, Jonoobi M, Oksman K, Rezayi M (2015) Sensors 15:24681–24697

    Article  CAS  Google Scholar 

  7. Pervez S, Nawaz MA, Aman A, Qayyum S, Nawaz F, Ul Qader SA (2018) Catal Lett 148:2643–2653

    Article  CAS  Google Scholar 

  8. Kohori NA, da-Silva MKL, Cesarino I (2018) J Solid State Electrochem 22:141–148

    Article  CAS  Google Scholar 

  9. Li QZ, Fan F, Wang Y, Feng W, Ji PJ (2013) Ind Eng Chem Res 52:6343–6348

    Article  CAS  Google Scholar 

  10. Urbanova V, Jayaramulu K, Schneemann A, Kment S, Fischer RA, Zbaril R (2018) ACS Appl Mater Interfaces 10:41089–41097

    Article  CAS  Google Scholar 

  11. Royvaran M, Taheri-Kafrani A, Isfahani AL, Mohammadi S (2016) Chem Eng J 288:414–422

    Article  CAS  Google Scholar 

  12. Fathy M, Moghny TA, Mousa MA (2019) Arab J Sci Eng 44:305–313

    Article  CAS  Google Scholar 

  13. Sur UK, Saha A, Datta A, Ankamwar B, Surti F, Roy SD, Roy D (2016) Bull Mater Sci 39:159–165

    Article  CAS  Google Scholar 

  14. Xing YH, Lu PF, Wang J, Yang JP, Chen YP (2017) Appl Surf Sci 396:243–248

    Article  CAS  Google Scholar 

  15. Fathy M, Hosny R, Keshawy M, Gafer A (2019) Graphene Technol 4:33–40

    Article  Google Scholar 

  16. Eigler S, Dotzer C, Hirsch A (2012) Carbon 50:3666–3673

    Article  CAS  Google Scholar 

  17. Hermanova S, Zarevucka M, Bousa D, Pumera M, Sofer Z (2015) Nanoscale 7:5852–5858

    Article  CAS  Google Scholar 

  18. Perreault F, Faria AF, Nejati S, Elimelech M (2015) ACS Nano 9:7226–7236

    Article  CAS  Google Scholar 

  19. Dimiev AM, Tour JM (2014) ACS Nano 8:3060–3068

    Article  CAS  Google Scholar 

  20. Peter (1995) Methods Enzymol 17:149-158

  21. Tang ZX, Qian JQ, Shi LE (2007) Mater Lett 61:37–40

    Article  CAS  Google Scholar 

  22. Paredes JI, Villar-Rodil S, Solis-Fernandez P, Martinez-Alonso A, Tascon JMD (2009) Langmuir 25:5957–5968

    Article  CAS  Google Scholar 

  23. Movahedi M, Shariat SZAS, Nazem H (2019) Catal Lett 149:562–573

    Article  CAS  Google Scholar 

  24. Bourlinos AB, Gournis D, Petridis D, Szabo T, Szeri A, Dekany I (2003) Langmuir 19:6050–6055

    Article  CAS  Google Scholar 

  25. Li D, Muller MB, Gilje S, Kaner RB, Wallace GG (2008) Nat Nanotechnol 3:101–105

    Article  CAS  Google Scholar 

  26. Pao CW, Liu TH, Chang CC, Srolovitz DJ (2012) Carbon 50:2870–2876

    Article  CAS  Google Scholar 

  27. Bitounis D, Ali-Boucetta H, Hong BH, Min DH, Kostarelos K (2013) Adv Mater 25:2258–2268

    Article  CAS  Google Scholar 

  28. Perreault F, de-Faria AF, Elimelech M (2015) Chem Soc Rev 44:5861–5896

    Article  CAS  Google Scholar 

  29. Chen JN, Peng H, Wang XP, Shao F, Yuan ZD, Han HY (2014) Nanoscale 6:1879–1889

    Article  CAS  Google Scholar 

  30. Zhuang W, He LJ, Zhu JH, Zheng JW, Liu XJ, Dong YH, Wu JL, Zhou JW, Chen Y, Ying HJ (2016) Colloid Surf B 145:785–794

    Article  CAS  Google Scholar 

  31. Li YR, Wang HR, Lu JW, Chu A, Zhang L, Ding ZY, Xu S, Gu ZH, Shi GY (2019) Bioresour Technol 274:9–17

    Article  CAS  Google Scholar 

  32. Sun J, Wang CH, Wang YZ, Ji SX, Liu WF (2019) J Appl Polym Sci 136:47784

    Article  Google Scholar 

  33. Ahmed SA, Mostafa FA, Ouis MA (2018) Int J Biol Macromol 112:371–382

    Article  CAS  Google Scholar 

  34. Sankar K, Achary A, Mehala N, Rajendran L (2017) Catal Lett 147:2232–2245

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The project was supported by Open project of National Key Laboratory of Chemical Resource Engineering (Grants CRE-2017-C-305); Program for Innovative Research Team of Henan Polytechnic University (Grants T2018-3); Projects of Henan Province (Grants 142102210049); Key projects of science and technology of Henan Provincial Department of Education (Grants 14B150026).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaofeng Hua.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Hua, S. & Zhang, L. Effect of Graphene Oxide Prepared Under Different Conditions on Immobilized α-Amylase. Catal Lett 150, 1244–1255 (2020). https://doi.org/10.1007/s10562-019-03055-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-019-03055-4

Keywords

Navigation