Skip to main content
Log in

The Experimental Study of Convection Heat Transfer Characteristics and Pressure Drop of Magnetite Nanofluid in a Porous Metal Foam Tube

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

In the present study, the laminar forced convection heat transfer improvement and pressure loss of magnetite \(\hbox {Fe}_{3}\hbox {O}_{4}\)/water nanofluid flowing through a porous metal foam tube have been studied experimentally. To reach this goal, the magnetite \(\hbox {Fe}_{3}\hbox {O}_{4}\) nanoparticles with 30 nm diameter are synthesized. The investigation of the effect of nanoparticle weight fraction and Reynolds number on the convection heat transfer and pressure drop characteristics are two objectives of this work. The experimental observations reveal that the increment of nanoparticle weight fraction and Reynolds number improves the Nusselt number. Furthermore, the Nusselt number enhancement is more pronounced for the high Reynolds numbers due to the addition of nanoparticles. By dispersing 1% weight fraction of magnetite nanoparticles inside DI-water, 7.4 and 11.7% heat transfer enhancements are achieved at \(Re = 200\) and 1000, respectively. A slight increase in magnetite \(\hbox {Fe}_{3}\hbox {O}_{4}\) nanofluid pressure drop is observed rather than that of DI-water due to the increment of nanofluid viscosity by nanoparticle dispersion inside the water. A performance index is proposed to consider the effects of Nusselt number enhancement and pressure drop simultaneously. It is shown that the performance index is higher than unity at all conditions in this study. Therefore, the convection heat transfer improvement dominates the pressure loss. A novel correlation is derived and presented based on the experiments to predict the Nusselt number.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

D :

Diameter (m)

L :

Tube length (m)

x :

Axial distance from the tube entrance (m)

\({q}^{\prime \prime }\) :

Heat flux (w/m\(^{2}\))

Q :

Heat transfer rate (W)

\(\dot{m}\) :

Mass flow rate (kg/s)

P :

Pressure (kPa)

v :

Velocity (m/s)

T :

Temperature (\({^{\circ }}\)C)

k :

Thermal conductivity (W/m K)

\(C_\mathrm{p}\) :

Specific heat (J/kg K)

h :

Convective heat transfer coefficient (W/m\(^{2}\) K)

V :

Voltage (V)

I :

Current (A)

f :

Friction factor

PPI:

Pore per inch

Re :

Reynolds number

Pr :

Prandtl number

Nu :

Nusselt number

\(\varphi \) :

Nanoparticle fraction (%)

\(\rho \) :

Density (kg/m\(^{3}\))

\(\mu \) :

Dynamic viscosity (pa.s)

\(\varepsilon \) :

Porosity

\(\eta \) :

Performance index

m:

Bulk of fluid

s:

Surface, solid

nf:

Nanofluid

f:

Base fluid

p:

Particle

w:

Water

eff:

Effective

References

  • Alimohamadi, H., Dehghan-Niri, V., Sarmadi, P., Ashjaee, M.: Improvement of heat transfer performances of biomangnetic flow in a rectangular duct under different types of magnetic fields. Int. J. Technol. Enhanc. Emerg. Eng. Res. 2, 44–48 (2014)

    Google Scholar 

  • Alveroğlu, E., Sözeri, H., Baykal, A., Kurtan, U., Şenel, M.: Fluorescence and magnetic properties of hydrogels containing Fe\(_3\)O\(_4\) nanoparticles. J. Mol. Struct. 1037, 361–366 (2013)

    Article  Google Scholar 

  • Azmi, W.H., Sharma, K.V., Sarma, P.K., Mamat, R., Anuar, S., Dharma Rao, V.: Experimental determination of turbulent forced convection heat transfer and friction factor with SiO\(_2\) nanofluid. Exp. Therm. Fluid Sci. 51, 103–111 (2013)

    Article  Google Scholar 

  • Bağcı, Ö., Dukhan, N., Kavurmacıoğlu, L.A.: Forced-convection measurements in the fully developed and exit regions of open-cell metal foam. Transp. Porous Media 109, 513–526 (2015)

    Article  Google Scholar 

  • Bhadauria, B.S., Agarwal, S.: Convective transport in a nanofluid saturated porous layer with thermal non equilibrium model. Transp. Porous Media 88, 107–131 (2011)

    Article  Google Scholar 

  • Bhattacharya, A., Calmidi, V.V., Mahajan, R.L.: Thermophysical properties of high porosity metal foams. Int. J. Heat Mass Transf. 45, 1017–1031 (2002)

    Article  Google Scholar 

  • Brinkman, H.C.: The viscosity of concentrated suspensions and solutions. J. Chem. Phys. 20, 571 (1952)

    Article  Google Scholar 

  • Buonomo, B., Manca, O., Lauriat, G.: Forced convection in micro-channels filled with porous media in local thermal non-equilibrium conditions. Int. J. Therm. Sci. 77, 206–222 (2014)

    Article  Google Scholar 

  • Calmidi, V., Mahajan, R.: Forced convection in high porosity metal foams. J. Heat Transf. 122, 557–565 (2000)

    Article  Google Scholar 

  • Demir, A., Baykal, A., Sözeri, H., Topkaya, R.: Low temperature magnetic investigation of Fe\(_3\)O\(_4\) nanoparticles filled into multiwalled carbon nanotubes. Synth. Met. 187, 75–80 (2014)

    Article  Google Scholar 

  • Dukhan, N., Ali, M.: Strong wall and transverse size effects on pressure drop of flow through open-cell metal foam. Int. J. Therm. Sci. 57, 85–91 (2012b)

    Article  Google Scholar 

  • Dukhan, N., Ali, M.: Effect of confining wall on properties of gas flow through metal foam: an experimental study. Transp. Porous Media 91, 225–237 (2012a)

    Article  Google Scholar 

  • Esmaeilzadeh, E., Almohammadi, H., Nasiri Vatan, S., Omrani, A.N.: Experimental investigation of hydrodynamics and heat transfer characteristics of \(\gamma \)-Al\(_2\)O\(_3\)/water under laminar flow inside a horizontal tube. Int. J. Therm. Sci. 63, 31–37 (2013)

    Article  Google Scholar 

  • Fotukian, S., Esfahany, M.: Experimental study of turbulent convective heat transfer and pressure drop of dilute CuO/water nanofluid inside a circular tube. Commun. Heat Mass Transf. 37, 214–219 (2010)

    Article  Google Scholar 

  • Ghaziani, N.O., Hassanipour, F.: Experimental analysis of nanofluid slurry through rectangular porous channel. In: ASME 2012 International Mechanical Engineering Congress and Exposition (pp. 713–720) (2012)

  • Hajipour, M., Molaei Dehkordi, A.: Mixed-convection flow of Al\(_2\)O\(_3\)–H\(_2\)O nanofluid in a channel partially filled with porous metal foam: experimental and numerical study. Exp. Therm. Fluid Sci. 53, 49–56 (2014)

    Article  Google Scholar 

  • Heris, S.Z., Etemad, S.G., Esfahany, M.N.: Experimental investigation of oxide nanofluids laminar flow convective heat transfer. Int. Commun. Heat Mass Transf. 33, 529–535 (2006)

    Article  Google Scholar 

  • Heyhat, M.M., Kowsary, F., Rashidi, A.M., Alem Varzane Esfehani, S., Amrollahi, A.: Experimental investigation of turbulent flow and convective heat transfer characteristics of alumina water nanofluids in fully developed flow regime. Int. Commun. Heat Mass Transf. 39, 1272–1278 (2012)

    Article  Google Scholar 

  • Hwang, K.S., Jang, S.P., Choi, S.U.S.: Flow and convective heat transfer characteristics of water-based Al\(_2\)O\(_3\) nanofluids in fully developed laminar flow regime. Int. J. Heat Mass Transf. 52, 193–199 (2009)

    Article  Google Scholar 

  • Kasaeian, A.: Convection heat transfer modeling of Ag nanofluid using different viscosity theories. IIUM Eng. J. 13, 1–11 (2012)

    Google Scholar 

  • Kasaeian, A., Nasiri, S.: Convection heat transfer modeling of nano-fluid Tio\(_2\) using different viscosity theories. Int. J. Nanosci. Nanotechnol. 11, 45–51 (2015)

    Google Scholar 

  • Kuznetsov, A.V., Nield, D.A.: Effect of local thermal non-equilibrium on the onset of convection in a porous medium layer saturated by a nanofluid. Transp. Porous Media 83, 425–436 (2010)

    Article  Google Scholar 

  • Maghrebi, M.J., Nazari, M., Armaghani, T.: Forced convection heat transfer of nanofluids in a porous channel. Transp. Porous Media 93, 401–413 (2012)

    Article  Google Scholar 

  • Mahdavi, M., Saffar-Avval, M., Tiari, S., Mansoori, Z.: Entropy generation and heat transfer numerical analysis in pipes partially filled with porous medium. Int. J. Heat Mass Transf. 79, 496–506 (2014)

    Article  Google Scholar 

  • Nazar, R., Tham, L., Pop, I., Ingham, D.B.: Mixed convection boundary layer flow from a horizontal circular cylinder embedded in a porous medium filled with a nanofluid. Transp. Porous Media 86, 517–536 (2011)

    Article  Google Scholar 

  • Nazari, M., Ashouri, M., Kayhani, M.H., Tamayol, A.: Experimental study of convective heat transfer of a nanofluid through a pipe filled with metal foam. Int. J. Therm. Sci. 88, 33–39 (2015)

    Article  Google Scholar 

  • Popa, C., Kasaeian, A., Nasiri, S.: Natural convection heat and mass transfer modeling for Cu/water and CuO/water nanofluids. Adv. Mech. Eng. 5, 863935 (2013)

    Article  Google Scholar 

  • Roşca, A.V., Roşca, N.C., Pop, I.: Mixed convection heat and mass transfer from a vertical surface embedded in a porous medium. Transp. Porous Media 109, 279–295 (2015)

    Article  Google Scholar 

  • Salas, K.I., Waas, A.M.: Convective heat transfer in open cell metal foams. J. Heat Transf. 129, 1217–1229 (2007)

    Article  Google Scholar 

  • Shah, R., London, A.: Laminar flow forced convection in ducts. Academic Press, New York (1978)

    Google Scholar 

  • Sundar, L.S., Naik, M.T., Sharma, K.V., Singh, M.K., Siva, T.C.: Experimental investigation of forced convection heat transfer and friction factor in a tube with Fe\(_3\)O\(_4\) magnetic nanofluid. Exp. Therm. Fluid Sci. 37, 65–71 (2012)

    Article  Google Scholar 

  • Teamah, M.A.: Effect of Reynolds and Prandtl numbers on laminar forced convection in horizontal pipe partially filled with porous material effect of reynolds and prandtl numbers on laminar forced convection in horizontal pipe partially filled with porous material. Eur. J. Sci. Res. 66, 171–186 (2011)

    Google Scholar 

  • Torabi, M., Zhang, K., Yang, G., Wang, J., Wu, P.: Heat transfer and entropy generation analyses in a channel partially filled with porous media using local thermal non-equilibrium model. Energy 82, 922–938 (2015)

    Article  Google Scholar 

  • Venugopal, G., Balaji, C., Venkateshan, S.P.: Experimental study of mixed convection heat transfer in a vertical duct filled with metallic porous structures. Int. J. Therm. Sci. 49, 340–348 (2010)

    Article  Google Scholar 

  • Webb, R., Kim, N.: Principles of enhanced heat transfer. Taylor Fr. New York, NY (2004)

    Google Scholar 

  • Wen, D., Ding, Y.: Experimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions. Int. J. Heat Mass Transf. 47, 5181–5188 (2004)

    Article  Google Scholar 

  • Williams, W., Forrest, E., Hu, L., Buongiorno, J.: Preparation and Characterization of Water-Based Nano-Fluids for Nuclear Applications. American Nuclear Society, La Grange Park (2006)

    Google Scholar 

  • Yang, C., Ando, K., Nakayama, A.: A local thermal non-equilibrium analysis of fully developed forced convective flow in a tube filled with a porous medium. Transp. Porous Media 89, 237–249 (2011)

    Article  Google Scholar 

  • Yu, W., Choi, S.: The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated Maxwell model. J. Nanopart. Res. 5, 167–171 (2003)

    Article  Google Scholar 

  • Zhao, C., Hodson, H., Kim, T., Lu, T.: Thermal transport in high porosity cellular metal foams. J. Thermophys. Heat Transf. 18, 309–317 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alibakhsh Kasaeian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amani, M., Ameri, M. & Kasaeian, A. The Experimental Study of Convection Heat Transfer Characteristics and Pressure Drop of Magnetite Nanofluid in a Porous Metal Foam Tube. Transp Porous Med 116, 959–974 (2017). https://doi.org/10.1007/s11242-016-0808-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-016-0808-6

Keywords

Navigation