Skip to main content
Log in

Investigating the thermal performance of different nanofluids in a metal foam tube under laminar flow regime

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Porous structures, owning a high specific surface area, are widely employed in the industry. Microporous metal foams have high thermal performance, and their combination with nanoparticles is a genuine solution to increase heat transfer. This numerical study aims to inspect laminar flow characteristics and heat transfer of water-based nanofluids through a horizontal circular tube filled with metal foam under constant heat flux. Four nanoparticles, including NiO, Ag, SiO2 and TiO2, have been studied, and the effect of the volume fraction, Reynolds number, porosity and pores per inch on the heat transfer coefficient and pressure drop has been investigated. The highest Nusselt numbers, at 0.8% porosity, 1% concentration of nanofluid and a Reynolds number of 1000, are 16.27, 16.03, 16.47 and 16.39 for NiO, Ag, SiO22 and TiO2, respectively. The results show that, in all cases, the highest Nusselt number corresponds to the SiO2, TiO, NiO and Ag nanofluids, respectively. The pore per inch has the greatest effect on the pressure drop, and its change from 5 to 60 increases the pressure drop by about 125 times.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

a :

Specific surface area [m2]

C B :

Boltzmann's constant [1.38066 × 1023 J K1]

C p :

Specific heat [J kgK1]

d :

Particle diameter [nm]

d f :

Diameter of the fiber of metal foam [mm]

d p :

Pore size [mm]

f :

Friction factor

h :

Heat transfer coefficient [W m2 K1]

k :

Thermal conductivity [W mK1]

k eff :

Effective thermal conductivity [W mK1]

K :

Permeability [m2]

L :

Tube length [m]

M :

Molecular weight

n :

Number of samples

N :

Avogadro number [6.022 × 1023 mol1]

Nu:

Nusselt number

p :

Pressure [Pa]

PPI:

Pore per inch

Q w :

Wall heat flux [W m2]

Re:

Reynolds number

Red :

Local Reynolds number

T :

Temperature [K]

U :

Velocity at x-axis [m s1]

uB:

Mean Brownian velocity of nanoparticle[m s−1]

b:

Bulk

bf:

Base fluid

eff:

Effective property

exp:

Experimental

f:

Fluid

in:

Inlet

nf:

Nanofluid

np:

Nanoparticle

ref:

Reference state

s:

Solid

sim:

Simulation

w:

Wall

ε :

Porosity

μ :

Dynamic viscosity [kg m1 s1]

ρ :

Density [kg m3]

φ :

Volume fraction

References

  1. Habibishandiz M, Saghir M. A critical review of heat transfer enhancement methods in the presence of porous media, nanofluids, and microorganisms. Therm Sci Eng Progress. 2022;30:101267. https://doi.org/10.1016/j.tsep.2022.101267.

    Article  CAS  Google Scholar 

  2. Dukhan N. Forced convection of nanofluids in metal foam: an essential review. Int J Therm Sci. 2023;187:108156. https://doi.org/10.1016/j.ijthermalsci.2023.108156.

    Article  CAS  Google Scholar 

  3. Amani M, Ameri M, Kasaeian A. The experimental study of convection heat transfer characteristics and pressure drop of magnetite nanofluid in a porous metal foam tube. Transp Porous Media. 2017;116:959–74. https://doi.org/10.1007/s11242-016-0808-6.

    Article  CAS  Google Scholar 

  4. Amani M, Ameri M, Kasaeian A. Hydrothermal characteristics of spinel manganese ferrite nanofluid in a metal foam tube: modeling of experimental results using artificial neural network. Heat Transf Eng. 2019;40(8):627–39. https://doi.org/10.1080/01457632.2018.1436644.

    Article  CAS  Google Scholar 

  5. Nazari M, et al. Experimental study of convective heat transfer of a nanofluid through a pipe filled with metal foam. Int J Therm Sci. 2015;88:33–9. https://doi.org/10.1016/j.ijthermalsci.2014.08.013.

    Article  CAS  Google Scholar 

  6. Martin E, et al. Heat transfer enhancement around a finned vertical antenna by means of porous media saturated with water-copper nanofluid. Case Stud Therm Eng. 2021;28:101555. https://doi.org/10.1016/j.csite.2021.101555.

    Article  Google Scholar 

  7. Zaaroura I, et al. Thermal performance of self-rewetting gold nanofluids: application to two-phase heat transfer devices. Int J Heat Mass Transf. 2021;174:121322. https://doi.org/10.1016/j.ijheatmasstransfer.2021.121322.

    Article  CAS  Google Scholar 

  8. Farahani SD, et al. Effect of magnetic field on heat transfer from a channel: nanofluid flow and porous layer arrangement. Case Stud Therm Engineering. 2021;28:101675. https://doi.org/10.1016/j.csite.2021.101675.

    Article  Google Scholar 

  9. Achard, F., James Clerk Maxwell, A treatise on electricity and magnetism, (1873), in Landmark Writings in Western Mathematics 1640–1940. 2005, Elsevier. p. 564–587. https://doi.org/10.1016/B978-044450871-3/50125-X

  10. Choi, S.U. and J.A. Eastman, Enhancing thermal conductivity of fluids with nanoparticles. 1995, Argonne National Lab., IL (United States)

  11. Baghban A, et al. Connectionist intelligent model estimates of convective heat transfer coefficient of nanofluids in circular cross-sectional channels. J Therm Anal Calorim. 2018;132:1213–39. https://doi.org/10.1007/s10973-017-6886-z.

    Article  CAS  Google Scholar 

  12. Khan U, et al. A novel analysis of heat transfer in the nanofluid composed by nanodimaond and silver nanomaterials: numerical investigation. Sci Rep. 2022;12(1):1284. https://doi.org/10.1038/s41598-021-04658-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Baghban A, et al. Towards experimental and modeling study of heat transfer performance of water-SiO2 nanofluid in quadrangular cross-section channels. Eng Appl Comput Fluid Mech. 2019;13(1):453–69. https://doi.org/10.1080/19942060.2019.1599428.

    Article  Google Scholar 

  14. Ekiciler R, Çetinkaya MSA. A comparative heat transfer study between monotype and hybrid nanofluid in a duct with various shapes of ribs. Therm Sci Eng Progress. 2021;23:100913. https://doi.org/10.1016/j.tsep.2021.100913.

    Article  CAS  Google Scholar 

  15. Anitha S, Pichumani M. Numerical analysis on heat transfer performance of industrial double-tube heat exchanger using CNT: Newtonian/non-Newtonian hybrid nanofluids. J Therm Anal Calorim. 2022;147(17):9603–24. https://doi.org/10.1007/s10973-022-11249-z.

    Article  CAS  Google Scholar 

  16. Zaboli S, Alimoradi H, Shams M. Numerical investigation on improvement in pool boiling heat transfer characteristics using different nanofluid concentrations. J Therm Anal Calorim. 2022;147(19):10659–76. https://doi.org/10.1007/s10973-022-11272-0.

    Article  CAS  Google Scholar 

  17. Jalili B, et al. Novel usage of the curved rectangular fin on the heat transfer of a double-pipe heat exchanger with a nanofluid. Case Stud Therm Eng. 2022;35:102086. https://doi.org/10.1016/j.csite.2022.102086.

    Article  Google Scholar 

  18. Saleh B, Sundar LS. Thermal performance, embodied energy and environmental CO2 emissions analyses for double pipe U-bend heat exchanger working with MWCNT/water nanofluid. Int J Therm Sci. 2021;169:107094. https://doi.org/10.1016/j.ijthermalsci.2021.107094.

    Article  CAS  Google Scholar 

  19. Sundar LS, Deepanraj B, Mewada HK. ANFIS based effectiveness and number of transfer units predictions of MWCNT/water nanofluids flow in a double pipe U-bend heat exchanger. Case Stud Therm Eng. 2023;43:102645. https://doi.org/10.1016/j.csite.2022.102645.

    Article  Google Scholar 

  20. Alklaibi A, Mouli KVC, Sundar LS. Experimental investigation of heat transfer and effectiveness of employing water and ethylene glycol mixture based Fe3O4 nanofluid in a shell and helical coil heat exchanger. Therm Sci Eng Progress. 2023;40:101739. https://doi.org/10.1016/j.csite.2022.102645.

    Article  CAS  Google Scholar 

  21. Lotfi M, et al. An experimental study on convective heat transfer and pressure drop during the movement of TiO2/water nanofluid through a helical coiled path. J Therm Anal Calorim. 2023;148(13):6183–95. https://doi.org/10.1007/s10973-023-12080-w.

    Article  CAS  Google Scholar 

  22. Abadeh A, et al. An experimental study on ferrofluid flow and heat transfer in a micro-fin straight circular tube. J Therm Anal Calorim. 2023. https://doi.org/10.1007/s10973-023-12024-4.

    Article  Google Scholar 

  23. Faizan M, et al. Numerical study of nanofluid flow and heat transfer through a non-uniformly heated converging duct. Case Stud Therm Eng. 2022;40:102545. https://doi.org/10.1016/j.csite.2022.102545.

    Article  Google Scholar 

  24. Prabakar KS, et al. Thermo-convective behavior and entropy generation studies on alumina and titania nanofluids flowing through polygonal ducts. Int J Therm Sci. 2023;186:108123. https://doi.org/10.1016/j.ijthermalsci.2022.108123.

    Article  CAS  Google Scholar 

  25. Ambreen T, Saleem A, Park CW. Thermal efficiency of eco-friendly MXene based nanofluid for performance enhancement of a pin-fin heat sink: experimental and numerical analyses. Int J Heat Mass Transf. 2022;186:122451. https://doi.org/10.1016/j.ijheatmasstransfer.2021.122451.

    Article  CAS  Google Scholar 

  26. Kumar R, Tiwary B, Singh PK. Thermofluidic analysis of Al2O3-water nanofluid cooled branched wavy heat sink. Appl Therm Eng. 2022;201:117787. https://doi.org/10.1016/j.applthermaleng.2021.117787.

    Article  CAS  Google Scholar 

  27. Ali AM, Angelino M, Rona A. Numerical analysis on the thermal performance of microchannel heat sinks with Al2O3 nanofluid and various fins. Appl Therm Eng. 2021;198:117458. https://doi.org/10.1016/j.applthermaleng.2021.117458.

    Article  CAS  Google Scholar 

  28. Xu H, et al. Analytical considerations of local thermal non-equilibrium conditions for thermal transport in metal foams. Int J Therm Sci. 2015;95:73–87. https://doi.org/10.1016/j.ijthermalsci.2015.04.007.

    Article  Google Scholar 

  29. Buonomo B, Manca O, Lauriat G. Forced convection in micro-channels filled with porous media in local thermal non-equilibrium conditions. Int J Therm Sci. 2014;77:206–22. https://doi.org/10.1016/j.ijthermalsci.2013.11.003.

    Article  Google Scholar 

  30. Xu H, Xing Z, Vafai K. Analytical considerations of flow/thermal coupling of nanofluids in foam metals with local thermal non-equilibrium (LTNE) phenomena and inhomogeneous nanoparticle distribution. Int J Heat Fluid Flow. 2019;77:242–55. https://doi.org/10.1016/j.ijheatfluidflow.2019.04.009.

    Article  Google Scholar 

  31. Lu W, Zhao CY, Tassou SA. Thermal analysis on metal-foam filled heat exchangers. Part I: metal-foam filled pipes. Int J Heat Mass Transf. 2006;49(15–16):2751–61.

    Article  Google Scholar 

  32. Calmidi VV, Mahajan RL. Forced convection in high porosity metal foams. J Heat Transf. 2000;122(3):557–65. https://doi.org/10.1115/1.1287793.

    Article  CAS  Google Scholar 

  33. Kim S, Paek J, Kang B. Flow and heat transfer correlations for porous fin in a plate-fin heat exchanger. J Heat Transf. 2000;122(3):572–8. https://doi.org/10.1115/1.1287170.

    Article  CAS  Google Scholar 

  34. Khanafer K, Vafai K. A critical synthesis of thermophysical characteristics of nanofluids. Int J Heat Mass Transf. 2011;54(19–20):4410–28. https://doi.org/10.1016/j.ijheatmasstransfer.2011.04.048.

    Article  CAS  Google Scholar 

  35. Corcione M. Heat transfer features of buoyancy-driven nanofluids inside rectangular enclosures differentially heated at the sidewalls. Int J Therm Sci. 2010;49(9):1536–46. https://doi.org/10.1016/j.ijthermalsci.2010.05.005.

    Article  CAS  Google Scholar 

  36. Bianco V, Scarpa F, Tagliafico LA. Numerical analysis of the Al2O3-water nanofluid forced laminar convection in an asymmetric heated channel for application in flat plate PV/T collector. Renew Energy. 2018;116:9–21. https://doi.org/10.1016/j.renene.2017.09.067.

    Article  CAS  Google Scholar 

  37. Pourfayaz F, et al. An experimental comparison of SiO2/water nanofluid heat transfer in square and circular cross-sectional channels. J Therm Anal Calorim. 2018;131:1577–86. https://doi.org/10.1007/s10973-017-6500-4.

    Article  CAS  Google Scholar 

  38. Aguilar T, et al. Investigation of enhanced thermal properties in NiO-based nanofluids for concentrating solar power applications: a molecular dynamics and experimental analysis. Appl Energy. 2018;211:677–88. https://doi.org/10.1016/j.apenergy.2017.11.069.

    Article  CAS  Google Scholar 

  39. Sheikholeslami M, Rokni HB. Simulation of nanofluid heat transfer in presence of magnetic field: a review. Int J Heat Mass Transf. 2017;115:1203–33. https://doi.org/10.1016/j.ijheatmasstransfer.2017.08.108.

    Article  CAS  Google Scholar 

  40. Alvariño PF, et al. A numerical investigation of laminar flow of a water/alumina nanofluid. Int J Heat Mass Transf. 2013;59:423–32. https://doi.org/10.1016/j.ijheatmasstransfer.2012.12.033.

    Article  CAS  Google Scholar 

  41. Zhu G, et al. Heat transfer characteristics of subcooled water in a hypervapotron under high mass fluxes and high heat fluxes. Int J Heat Mass Transf. 2019;129:580–90. https://doi.org/10.1016/j.ijheatmasstransfer.2018.09.102.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alibakhsh Kasaeian.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fallah Barzoki, M., Rahmani, M., Shahabi Nejad, A. et al. Investigating the thermal performance of different nanofluids in a metal foam tube under laminar flow regime. J Therm Anal Calorim 148, 12947–12959 (2023). https://doi.org/10.1007/s10973-023-12553-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-023-12553-y

Keywords

Navigation