Skip to main content
Log in

Induction of in vitro androgenesis in anther and isolated microspore culture of different spelt wheat (Triticum spelta L.) genotypes

  • Original Article
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

This is the first report on isolated microspore culture—derived spelt wheat. The efficiency of anther- and isolated microspore was compared using four genotypes (‘Franckenkorn’, ‘GK Fehér’, ‘Mv Martongold’, ‘Oberkulmer Rotkorn’). In anther culture, genotype dependency was observed, and cold pre-treatment enhanced the efficiency of the method. In isolated microspore culture, the ovary co-culture supported the development of embryo-like structures. The presence of growth regulators (0.5 mg/l 2,4-D and 0.5 mg/l kinetin) were not essential for the induction of androgenesis, but these increased the production of embryo-like structures, green and albino plantlets. The low plant regeneration rate and high number of albinos hinder the practical application of isolated microspore culture while anther culture was efficient for in vitro green plantlets production in spelt wheat. The mean of green plantlets production was 41.45/100 anthers (from 20.93 to 83.07 depending on genotype). The phenomenon of albinism was mitigated in anther culture (3.48 albinos/100 anthers). Altogether, 1720 anther culture—derived green plantlets were produced from the four genotypes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

DH:

Doubled haploid

ELS:

Embryo-like structures

IMC:

Isolated microspore culture

References

  • Broughton S (2011) The application of n-butanol improves embryo and green plant production in anther culture of Australian wheat (Triticum aestivum L.) genotypes. Crop Pasture Sci 62:813–822

    Article  CAS  Google Scholar 

  • Dunwell JM (2010) Haploids in flowering plants: origins and exploitation. Plant Biotechnol J 8:377–424

    Article  CAS  PubMed  Google Scholar 

  • Echávarri B, Cistué L (2016) Enhancement in androgenesis efficiency in barley (Hordeum vulgare L.) and bread wheat (Triticum aestivum L.) by the addition of dimethyl sulfoxide to the mannitol pretreatment medium. Plant Cell Tiss Org 125:11–22

    Article  Google Scholar 

  • Escarnot E, Aguedo M, Agneessens R, Wathelet B, Paquot M (2011) Extraction and characterization of water-extractable and water-unextractable arabinoxylans from spelt bran: study of the hydrolysis conditions for monosaccharides analyses. J Cereal Sci 53:45–52

    Article  CAS  Google Scholar 

  • Escarnot E, Thibaut C, Forgeois P (2014) Study of the impact of growth substance treatment and maize (Zea mays L.) variety in spelt (Triticum spelta L.) haplodiploidization. Biotechnol Agron Soc 18:32–36

    Google Scholar 

  • Esteves P, Belzile F (2014) Improving the efficiency of isolated microspore culture in six-row spring barley: I-optimization of key physical factors. Plant Cell Rep 33:993–1001

    Article  CAS  PubMed  Google Scholar 

  • Esteves P, Clermont I, Marchand S, Belzile F (2014) Improving the efficiency of isolated microspore culture in six-row spring barley: II-exploring novel growth regulators to maximize embryogenesis and reduce albinism. Plant Cell Rep 33:871–879

    Article  CAS  PubMed  Google Scholar 

  • Eudes F, Amundsen E (2005) Isolated microspore culture of Canadian 6x triticale cultivars. Plant Cell Tiss Org 82:233–241

    Article  CAS  Google Scholar 

  • Flodrova D, Bobalova J, Lastovickova M (2016) Cereal n-glycoproteins enrichment by lectin affinity monolithic chromatography. Cereal Res Commun 44:286–297

    Article  CAS  Google Scholar 

  • Germana MA (2011a) Anther culture for haploid and doubled haploid production. Plant Cell Tiss Org 104:283–300

    Article  Google Scholar 

  • Germana MA (2011b) Gametic embryogenesis and haploid technology as valuable support to plant breeding. Plant Cell Rep 30:839–857

    Article  CAS  PubMed  Google Scholar 

  • Gomez-Becerra HF, Erdem H, Yazici A, Tutus Y, Torun B, Ozturk L, Cakmak I (2010) Grain concentration of protein and mineral nutrients in a large collection of spelt wheat grown under different environments. J Cereal Sci 52:342–349

    Article  CAS  Google Scholar 

  • Guzmán C, Medina-Larqué AS, Velu G, González-Santoyo H, Singh RP, Huerta-Espino J, Ortiz-Monasterio I, Pena RJ (2014) Use of wheat genetic resources to develop biofortified wheat with enhanced grain zinc and iron concentration and desirable processing quality. J Cereal Sci 60:617–622

    Article  Google Scholar 

  • Heberle-Bors E (1985) In vitro haploid formation from pollen: a critical review. Theor Appl Genet 71:361–374

    Article  CAS  PubMed  Google Scholar 

  • Hensel G, Oleszczuk S, Daghma DES, Zimny J, Melzer M, Kumlehn J (2012) Analysis of T-DNA integration and generative segregation in transgenic winter triticale (X Triticosecale Wittmack). BMC Plant Biol 12:171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hsam SLK, Huang XQ, Ernst F, Hartl L, Zeller FJ (1998) Chromosomal location of genes for resistance to powdery mildew in common wheat (Triticum aestivum L. em Thell.). 5. Alleles at the Pm1 locus. Theor Appl Genet 96:1129–1134

    Article  CAS  Google Scholar 

  • Indrianto A, Barinova I, Touraev A, Heberle-Bors E (2001) Tracking individual wheat microspores in vitro: identification of embryogenic microspores and body axis formation in the embryo. Planta 212:163–174

    Article  CAS  PubMed  Google Scholar 

  • Jauhar PP, Xu SS, Baezinger PS (2009) Haploidy in cultivated wheats: induction and utility in basic and applied research. Crop Sci 49:737–755

    Article  Google Scholar 

  • Kema GHJ (1992) Resistance in spelt wheat to yellow rust I. Formal analysis and variation for gliadin patterns. Euphytica 63:207–217

    Google Scholar 

  • Koutroubas SD, Fotiadis S, Damalas CA (2012) Biomass and nitrogen accumulation and translocation in spelt (Triticum spelta) grown in Mediterranean area. Field Crop Res 127:1–8

    Article  Google Scholar 

  • Krzewska M, Czyczylo-Mysza I, Dubas E, Golebiowska-Pikana G, Zur I (2015) Identification of QTLs associated with albino plant formation and some new facts concerning green and albino ratio determinants in triticale (X Triticosecale Wittm.) anther culture. Euphytica 206:263–278

    Article  Google Scholar 

  • Kumari M, Clarke HJ, Small I, Siddique KHM (2009) Albinism in Plants: a major bottleneck in wide hybridization, androgenesis and doubled haploid culture. Crit Rev Plant Sci 28:393–409

    Article  CAS  Google Scholar 

  • Kunz C, Islam MS, Berberat J, Peter O, Büter B, Stamp P, Schmid JE (2000) Assessment and improvement of wheat microspore derived embryo induction and regeneration. J Plant Physiol 156:190–196

    Article  CAS  Google Scholar 

  • Lantos C, Pauk J (2016) Anther Culture as an effective tool in winter wheat (Triticum aestivum L.) breeding. Russ J Genet 52(8):794–801

    Article  CAS  Google Scholar 

  • Lantos C, Jenes B, Bóna L, Cserháti M, Pauk J (2016) High frequency of doubled haploid plant production in spelt wheat. Acta Biol Cracov Bot 58(2):107–112

    Google Scholar 

  • Lazaridou T, Pankou C, Xynias I, Roupakias D (2016) Effect of D genome on wheat anther culture response after cold and mannitol pretreatment. Acta Biol Cracov Bot 58:95–102

    CAS  Google Scholar 

  • Makowska K, Oleszczuk S (2014) Albinism in barley androgenesis. Plant Cell Rep 33:385–392

    Article  CAS  PubMed  Google Scholar 

  • Mejza SJ, Morgant V, DiBona DE, Wong JR (1993) Plant regeneration from isolated microspores of Triticum aestivum. Plant Cell Rep 12:149–153

    Article  CAS  PubMed  Google Scholar 

  • Mohler V, Singh D, Singrün C, Park RF (2012) Characterization and mapping of Lr65 in spelt wheat ‘Altgold Rotkorn’. Plant Breed 131:252–257

    Article  CAS  Google Scholar 

  • Niu Z, Jiang A, Abu Hammad W, Oladzadabbasabadi A, Xu SS, Mergoum M, Elias EM (2014) Review of doubled haploid production in durum and common wheat through wheat × maize hybridization. Plant Breed 133:313–320

    Article  CAS  Google Scholar 

  • Oleszczuk S, Sowa S, Zimny J (2004) Direct embryogenesis and green plant regeneration from isolated microspores of hexaploid triticale (× Triticosecale Wittmack) cv. Bogo. Plant Cell Rep 22:885–893

    Article  CAS  PubMed  Google Scholar 

  • Ouyang JW, Jia SE, Zhang C, Chen X, Fen G (1989) A new synthetic medium (W14) for wheat anther culture. Annual Report, 91–92. Institute of Genetics, Academia Sinica, Beijing

  • Pauk J, Poulimatka M, Lökös Tóth K, Monostori T (2000) In vitro androgenesis of triticale in isolated microspore culture. Plant Cell Tiss Org 61:221–229

    Article  CAS  Google Scholar 

  • Pauk J, Mihály R, Puolimatka M (2003) Protocol of wheat (Triticum aestivum L.) anther culture. In: Maluszynski M, Kasha KJ, Forster BP, Szarejko I (eds) Doubled haploid production in crop plants, a manual. Kluwer Academic Publishers, Dordrecht, pp 59–64

    Chapter  Google Scholar 

  • Peng FX, Song N, Shen HX, Wu HB, Dong HT, Zhang J, Li YH, Peng HR, Ni ZF, Liu ZY, Yang TM, Li BY, Xie CJ, Sun QX (2014) Molecular mapping of a recessive powdery mildew gene in spelt wheat cultivar Hubel. Mol Breed 34:491–500

    Article  CAS  Google Scholar 

  • Puolimatka M, Laine S, Pauk J (1996) Effect of ovary co-cultivation and culture medium on embryogenesis of directly isolated microspores of wheat. Cereal Res Commun 24:393–400

    Google Scholar 

  • Raman H, Rahman R, Luckett D, Raman R, Bekes F, Láng L, Bedő Z (2009) Characterisation of genetic variation for aluminium resistance and polyphenol oxidase activity in genebank accessions of spelt wheat. Breed Sci 59:373–381

    Article  CAS  Google Scholar 

  • Redha A, Attia T, Büter B, Stamp P, Schmid JE (1998) Single and combined effects of colchicine, L-proline and post inoculation low temperature on anther culture of wheat, Triticum aestivum L. Plant Breed 117:335–340

    Article  CAS  Google Scholar 

  • Schmid J (1990) In vitro production of haploids in Triticum spelta. In: Bajaj YPS (ed) Biotechnology and in agriculture and forestry-13 wheat. Springer, Berlin, pp 363–381

    Google Scholar 

  • Shariatpanahi ME, Belogradova K, Hessamvaziri L, Heberle-Bors E, Touraev A (2006) Efficient embryogenesis and regeneration in freshly isolated and cultured wheat (Triticum aestivum L.) microspores without stress pretreatment. Plant Cell Rep 25:1294–1299

    Article  CAS  PubMed  Google Scholar 

  • Singh D, Mohler V, Park RF (2013) Discovery, characterisation and mapping of wheat leaf rust resistance gene Lr71. Euphytica 190:131–136

    Article  CAS  Google Scholar 

  • Soriano M, Li H, Boutilier K (2013) Microspore embryogensis: establishment of embryo identity and pattern in culture. Plant Reprod 26:181–196

    Article  PubMed  PubMed Central  Google Scholar 

  • Sunderland N, Huang B, Hills GJ (1984) Disposition of pollen in situ and its relevance to anther/pollen culture. J Exp Bot 35:521–530

    Article  Google Scholar 

  • Takács I, Kovács G, Barnabás B (1994) Analysis of the genotypic effect on different developmental pathways in gametophyte cultures. Plant Cell Rep 13:227–230

    PubMed  Google Scholar 

  • Tuvesson IKD, Öhlund RCV (1993) Plant regeneration through culture of isolated microspores Triticum aestivum L. Plant Cell Tiss Org 34:163–167

    Article  Google Scholar 

  • Vu NT, Chin J, Pasco JA, Kovacs A, Wing LW, Békés F, Suter DAI (2015) Prevalence of Wheat and Spelt sensitivity in a randomly selected Australian population. Cereal Res Commun 43:97–107

    Article  CAS  Google Scholar 

  • Wang Y, Peng H, Liu G, Xie C, Ni Z, Yang T, Liu Z, Sun Q (2010) Identification and molecular mapping of a leaf rust resistance gene in spelt wheat landrace Altgold. Euphytica 174:371–375

    Article  CAS  Google Scholar 

  • Zielinski H, Ceglinska A, Michalska A (2008) Bioactive compounds in spelt bread. Eur Food Res Technol 226:537–544

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the support of scientific projects (Project Code: OTKA-K_16-K119835; name of project: Improvement of spelt wheat lines with low fermentable carbohydrate content (FODMAP) using modern and classical research methods). The experiments were interlocked with GINOP project (Project Number: GINOP-2.2.1-15-2016-00026) and supportment of Foundation of Szegedért. This project was supported by the János Bolyai Research Scholarship of the Hungarian Academy of Sciences. The authors also thank the conscientious work of Csaba Ponta, Ferenc Markó and Sándor Vajasdi-Nagy. We would like to acknowledge valuable comments and grammatical corrections made by Allan Rattey (Canberra, Australia).

Author information

Authors and Affiliations

Authors

Contributions

JP designing experiment, LB serving plant material, CL and ÉN carrying out experiments and statistical analyses, CL FB and JP writing manuscript.

Corresponding author

Correspondence to János Pauk.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Sergio J. Ochatt.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lantos, C., Bóna, L., Nagy, É. et al. Induction of in vitro androgenesis in anther and isolated microspore culture of different spelt wheat (Triticum spelta L.) genotypes. Plant Cell Tiss Organ Cult 133, 385–393 (2018). https://doi.org/10.1007/s11240-018-1391-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-018-1391-z

Keywords

Navigation