Skip to main content
Log in

Improving the efficiency of isolated microspore culture in six-row spring barley: II-exploring novel growth regulators to maximize embryogenesis and reduce albinism

  • Original Paper
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

Two alternative cytokinins, thidiazuron and meta-topoline, were tested in isolated microspore culture on recalcitrant barley genotypes (six-row, spring), and green plant regeneration was improved substantially.

Abstract

Doubled-haploid (DH) plants are coveted in plant breeding and in genetic studies, since they are rapidly obtained and perfectly homozygous. In barley, DHs are produced mainly via androgenesis, and isolated microspore culture (IMC) constitutes the method offering the greatest potential efficiency. However, IMC can often be challenging in some genotypes because of low yield of microspores, low regeneration and high incidence of albinism. Six-row spring-type barleys, the predominant type grown in Eastern Canada, are considered recalcitrant in this regard. Our general objective was to optimize an IMC protocol for DH production in six-row spring barley. In particular, we explored the use of alternative hormones in the induction medium (thidiazuron and dicamba), and in the regeneration medium (meta-topoline). This optimization was performed on two typical six-row spring (ACCA and Léger), a two-row spring (Gobernadora) and a two-row winter (Igri) barley cultivar. When 6-benzyl-aminopurine (BAP) was replaced by a combination of thidiazuron and dicamba in the induction medium, a 5.1-fold increase (P < 0.01) in the production of green plants resulted. This increase was mainly achieved by a reduction of albinism. Moreover, a 2.9-fold increase (P < 0.01) in embryo differentiation into green plants was obtained using meta-topoline instead of BAP in the regeneration medium. Together, these innovations allowed us to achieve a substantial improvement in the efficiency of IMC in this recalcitrant type of barley. These results were later successfully validated using sets of F1s from a six-row spring barley breeding program.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Asif M (2013) Progress and opportunities of doubled haploid production. SpringerBriefs in Plant Science 6. doi:10.1007/978-3-319-00732-8_5

  • Bedinger PA, Edgerton MD (1991) Developmental staging of maize microspores reveals a transition in developing microspore proteins. Plant Physiol 92:474–479. doi:10.1104/pp.92.2.474

    Article  Google Scholar 

  • Carman JG (1987) Improved somatic embryogenesis in wheat by partial stimulation of in vitro oxygen, growth regulator, and desiccation environment. Planta 175:417–424

    Article  Google Scholar 

  • Castillo AM, Valdés MP, Cistué L (2000) Comparison of anther and isolated microspore cultures in barley. Effects of culture density and regeneration medium. Euphytica 113:1–8. doi:10.1023/A:1003937530907

    Article  CAS  Google Scholar 

  • Cistué L, Ramos A, Castillo AM (1999) Influence of anther pretreatment and culture medium composition on the production of barley doubled haploids from model and low responding cultivars. Plant Cell Tiss Org Cult 55:159–166

    Article  Google Scholar 

  • Devaux P, Kasha KJ (2009) Overview of barley doubled haploid production. In: Forster BP, Jain SM, Touraev A (eds) Advances in haploid production in higher plants. Springer Science + Business Media BV, The Netherlands

    Google Scholar 

  • Devaux P, Pickering R (2005) Haploids in the improvement of Poaceae. In: Palmer CE, Keller WA, Kasha KJ (eds) Haploids in crop improvement II. Springer, Berlin

    Google Scholar 

  • Dolezal K, Bairu M, Mala J, Spichal L, Strnad M, Van Staden J (2010) New cytokinin derivatives for plant biotechnology, agriculture and forestry. In: Proceeding of conference presentation, 12th IAPB Congress

  • Eeckhaut T, Werbrouck S, Dendauw J, Van Bockstaele E, Debergh P (2001) Induction of homozygous Spathiphyllum wallisii genotypes through gynogenesis. Plant Cell Tiss Org Cult 67:181–189

    Article  CAS  Google Scholar 

  • Germana MA, Chiancone B (2003) Improvement of Citrus clementina Hort. ex Tan. microspore-derived embryoid induction and regeneration. Plant Cell Rep 22:181–187. doi:10.1007/s00299-003-0669-7

    Article  CAS  PubMed  Google Scholar 

  • Guo B, Bilal Haider A, Zeb A, Xu LL, Wei YH (2011) Thidiazuron: a multi-dimensional plant growth regulator. Afr J Biotechnol 10(44):8984–9000. doi:10.5897/AJB11.636

    CAS  Google Scholar 

  • Halámková E, Vagera J, Ohnoutková L (2004) Regeneration capacity of calli derived from immature embryos in spring barley cultivars. Biol Plantarum 48(2):313–316

    Article  Google Scholar 

  • Hoekstra S, van Zijderveld MH, Heidekamp E, van der Mark E (1993) Microspore culture of Hordeum vulgare L.: the influence of density and osmolality. Plant Cell Rep 12:661–665

    Article  CAS  PubMed  Google Scholar 

  • Hoekstra S, van Bergen S, van Brouwershaven IR, Schilperoort RA, Wang M (1997) Androgenesis in Hordeum vulgare L.: effects of mannitol, calcium and abscisic acid on anther pretreatment. Plant Sci 126:211–218

    Article  CAS  Google Scholar 

  • Huetteman A, Preece EJ (1993) Thidiazuron: a potent cytokinin for woody plant tissue culture. Plant Cell Tiss Org Cult 33:105–119

    Article  CAS  Google Scholar 

  • Hunter CP (1988) Plant regeneration from microspores of barley, Hordeum vulgare L. PhD thesis. Wye College, University London

  • Kaminek M, Motyka V, Vankova R (1997) Regulation of cytokinin content in plant cells. Physiol Plantarum 101:689–700

    Article  CAS  Google Scholar 

  • Kasha KJ, Simion E, Oro R, Yao QA, Hu TC, Carlson AR (2001) An improved in vitro technique for isolated microspore culture of barley. Euphytica 120:379–385

    Article  Google Scholar 

  • Kiviharju E, Moisander S, Laurila J (2005) Improved green plant regeneration rates from oat anther culture and the agronomic performance of some HD lines. Plant Cell Tiss Org Cult 81:1–9. doi:10.1007/s11240-004-1560-0

    Article  CAS  Google Scholar 

  • Knudsen S, Dui IK, Andersen SB (1989) Components of response in barley anther culture. Plant Breed 103:241–246

    Article  Google Scholar 

  • Lakshmanan P, Taji A (2000) Somatic embryogenesis in leguminous plants. Plant Biol 2:136–148. doi:10.1055/s-2000-9159

    Article  CAS  Google Scholar 

  • Li H, Devaux P (2003) High frequency regeneration of barley doubled haploid plants from isolated microspore culture. Plant Sci 164:379–386. doi:10.1016/S0168-9452(02)00424-7

    Article  CAS  Google Scholar 

  • Li H, Devaux P (2005) Isolated microspore culture over performs anther culture for green plant regeneration in barley (Hordeum vulgare L.). Acta Physiol Plant 27:611–619

    Article  Google Scholar 

  • Marchand S, Fonquerne G, Clermont I, Laroche L, Huynh TT, Belzile FJ (2008) Androgenic response of barley accessions and F1s with Fusarium head blight resistance. Plant Cell Rep 27:443–451. doi:10.1007/s00299-007-0477-6

    Article  CAS  PubMed  Google Scholar 

  • Mendoza MG, Kaeppler HF (2002) Auxin and sugar effects on callus induction and plant regeneration frequencies from mature embryo of wheat (Triticum aestivum L.). In Vitro Cell Dev Biol 38:39–45. doi:10.1079/IVP2001250

    Article  CAS  Google Scholar 

  • Mirzaei M, Kahrizi D, Rezaeizad A (2011) Androgenesis and spontaneous chromosome doubling in Hordeum vulgare L. researches of the first international conference (Babylon and Razi Universities). Euphrates J Agric Sci 3(9):248–252

    Google Scholar 

  • Mok MC, Mok DWS, Armstrong DJ, Shudo K, Isogai Y (1982) Cytokinin activity of N-phenyl-N′-1,2,3-thiadiazol-5-ylurea (Thidiazuron). Phytochemistry 21:1509–1511. doi:10.1016/S0031-9422(82)85007-3

    Article  CAS  Google Scholar 

  • Moqbeli E, Peyvast GH, Hamidoghli Y, Olfati JA (2013) In vitro cucumber haploid line generation in several new cultivars. AsPac J Mol Biol Biotechnol 21(1):18–25

    Google Scholar 

  • Olmedilla A (2010) Microspore embryogenesis. In: Pua E-C, Davey (eds) Plant developmental biology—biotechnological perspectives, vol 2. Springer, Berlin. doi:10.1007/978-3-642-04670-4_2

    Google Scholar 

  • Ouédraogo JT, St-Pierre C-A, Collin J, Rioux S, Comeau A (1998) Effect of amino acids, growth regulators and genotype on androgenesis in barley. Plant Cell Tiss Org Cult 53:59–66

    Article  Google Scholar 

  • Schulze J (2007) Improvements in cereal tissue culture by Thidiazuron: a review. Fruit Veg Cereal Sci Biotech 1(2):64–79 Global Science Book

    Google Scholar 

  • Strnad M (1997) The aromatic cytokinins. Physiol Plant 101:674–688. doi:10.1111/j.1399-3054.1997.tb01052.x

    Article  CAS  Google Scholar 

  • Sujatha D, Chithakari R, Raghuvarhdan L, Prasad B, GulabKhan R, Sadanandam A, Reuben CT (2013) In vitro plantlet regeneration and genetic transformation of sponge gourd (Luffa cylindrica L.). Afr J Plant Sci 7(6):244–252. doi:10.5897/AJPS12.196

    Article  Google Scholar 

  • Tsay HS, Teng YC, Lai PC, Chi NC (1981) The culture of rice anthers of Japonica × Indica crosses. J Agric Res China 30:133–139

    Google Scholar 

  • Wenzel G, Hoffmann F, Potrykus I, Thomas E (1975) The separation of viable rye microspores from mixed populations and their development in culture. Mol Gen Genet 138:293–297

    Article  Google Scholar 

  • Weyen J (2009) Barley and wheat doubled haploids in breeding. In: Touraev A, Forster BP, Jain SM (eds) Advances in haploid production in higher plants. Springer Science + Business Media BV, The Netherlands

    Google Scholar 

  • Wojtania A (2010) Effect of meta-topolin on in vitro propagation of Pelargonium × hortorum and Pelargonium × hederaefolium cultivars. Acta Societatis Botanicorum Poloniae 2:101–106

    Article  Google Scholar 

  • Ziauddin A, Marsolais A, Simion E, Kasha KJ (1992) Improved plant regeneration from wheat anther and barley microspore culture using phenylacetic acid (PAA). Plant Cell Rep 11:489–498

    Article  CAS  PubMed  Google Scholar 

  • Zubo YO, Yamburenko MV, Selivankina SY, Shakirova FM, Avalbaev AM, Kudryakova NV, Zubkova NK, Liere K, Kulaeva ON, Kusnetsov VV, Börner T (2008) Cytokinin stimulates chloroplast transcription in detached barley leaves. Plant Physiol 148:1082–1093. doi:10.1104/pp.108.122275

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The financial support of the Natural Sciences and Engineering Research Council of Canada (NSERC) and of La Coop Fédérée are acknowledged. The authors wish to thank B. Legge (AAFC Brandon) for providing seeds of some of the cultivars used here.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to François Belzile.

Additional information

Communicated by X. S. Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 17 kb)

Supplementary material 2 (DOCX 20 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Esteves, P., Clermont, I., Marchand, S. et al. Improving the efficiency of isolated microspore culture in six-row spring barley: II-exploring novel growth regulators to maximize embryogenesis and reduce albinism. Plant Cell Rep 33, 871–879 (2014). https://doi.org/10.1007/s00299-014-1563-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-014-1563-1

Keywords

Navigation