Skip to main content
Log in

Overexpression of MpCYS2, a phytocystatin gene from Malus prunifolia (Willd.) Borkh., confers drought tolerance and protects against oxidative stress in Arabidopsis

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Cystatins, or phytocystatins, are plant-specific inhibitors of cysteine proteinases that help regulate endogenous processes and protect plants against heat, salinity, cold, water deficits, chilling, and abscisic acid treatment. MpCYS2, a cystatin gene from Malus prunifolia, localized to the nucleus, cytoplasm, and plasma membrane in onion epidermal cells. Controlled by the 35S promoter, its ectopic expression in transgenic Arabidopsis lines caused accelerated seed germination and greater seedling growth when plants were exposed to osmotic or oxidative stress. Expression by this gene was also associated with enhanced drought tolerance in those transgenics. This positive response was manifested by changes measured in electrolyte leakage, the chlorophyll concentration, and malondialdehyde accumulations. Production of reactive oxygen species (ROS) was appreciably decreased in the dehydration-treated transgenic lines. This gene also influenced root hair development under osmotic-stress conditions. Our findings indicate that MpCYS2 affects the growth and tolerance of drought-stressed Arabidopsis plants possibly because of its influence on ROS accumulations and root hair formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

ABA:

Abscisic acid

DAB:

Diaminobenzidine

EL:

Electrolyte leakage

H2O2 :

Hydrogen peroxide

Km:

Kanamycin

MDA:

Malondialdehyde

MS:

Murashige and Skoog

MV:

Methyl viologen

NBT:

Nitro blue tetrazolium

O2 :

Superoxide anion

ORF:

Open reading frame

PhyCys:

Phytocystatins

qRT-PCR:

Quantitative real-time PCR

ROS:

Reactive oxygen species

References

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  CAS  PubMed  Google Scholar 

  • Arai S, Matsumoto I, Emori Y, Abe K (2002) Plant seed cystatins and their target enzymes of endogenous and exogenous origin. J Agric Food Chem 50:6612–6617

    Article  CAS  PubMed  Google Scholar 

  • Bauer WD (1981) Infection of legumes by rhizobia. Annu Rev Plant Physiol 32:407–449

    Article  CAS  Google Scholar 

  • Belenghi B, Acconcia F, Trovato M, Perazzolli M, Bocedi A, Polticelli F, Ascenzi P, Delledonne M (2003) AtCYS1, a cystatin from Arabidopsis thaliana, suppresses hypersensitive cell death. Eur J Biochem 270:2593–2604

    Article  CAS  PubMed  Google Scholar 

  • Benchabane M, Schlüter U, Vorster J, Goulet MC, Michaud D (2010) Plant cystatins. Biochimie 92:1657–1666

    Article  CAS  PubMed  Google Scholar 

  • Bray EA (1997) Plant responses to water deficit. Trends Plant Sci 2:48–54

    Article  Google Scholar 

  • Carrillo L, Martínez M, Ramessar K, Cambra I, Castañera P, Ortego F, Díaz I (2011) Expression of a barley cystatin gene in maize enhances resistance against phytophagous mites by altering their cysteine-proteases. Plant Cell Rep 30:101–112

    Article  CAS  PubMed  Google Scholar 

  • Chang S, Puryear J, Cairney J (1993) A simple and efficient method for isolating RNA from pine trees. Plant Mol Biol Report 11:113–116

    Article  CAS  Google Scholar 

  • Christou P, Capell T, Kohli A, Gatehouse J, Gatehouse A (2006) Recent developments and future prospects in insect pest control in transformed crops. Trends Plant Sci 11:302–308

    Article  CAS  PubMed  Google Scholar 

  • Clarkson D (1985) Factors affecting mineral nutrient acquisition by plants. Annu Rev Plant Physiol 36:77–115

    Article  CAS  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  CAS  PubMed  Google Scholar 

  • Davletova S, Rizhsky L, Liang H, Shengqiang Z, Oliver DJ, Coutu J, Shulaev V, Schlauch K, Mittler R (2005) Cytosolic ascorbate peroxidase 1 is a central component of the reactive oxygen gene network of Arabidopsis. Plant Cell 17:268–281

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Denby K, Gehring C (2005) Engineering drought and salinity tolerance in plants: lessons from genome-wide expression profiling in Arabidopsis. Trends Biotechnol 23:547–552

    Article  CAS  PubMed  Google Scholar 

  • Diaz I, Martinez M, Isabel-LaMoneda I, Rubio-Somoza I, Carbonero P (2005) The DOF protein, SAD, interacts with GAMYB in plant nuclei and activates transcription of endosperm-specific genes during barley seed development. Plant J 42:652–662

    Article  CAS  PubMed  Google Scholar 

  • Dionisio-Sese ML, Tobita S (1998) Antioxidant responses of rice seedlings to salinity stress. Plant Sci 135:1–9

    Article  CAS  Google Scholar 

  • Gaddour K, Vicente-Carbajosa J, Lara P, Isabel-Lamoneda I, Díaz I, Carbonero P (2001) A constitutive cystatin-encoding gene from barley (Icy) responds differentially to abiotic stimuli. Plant Mol Biol 45:599–608

    Article  CAS  PubMed  Google Scholar 

  • Gutierrez-Campos R, Torres-Acosta JA, Saucedo-Arias LJ, Gomez-Lim MA (1999) The use of cysteine proteinase inhibitors to engineer resistance against potyviruses in transgenic tobacco plants. Nat Biotechnol 17:1223–1226

    Article  CAS  PubMed  Google Scholar 

  • Haq SK, Atif SM, Khan RH (2004) Protein proteinase inhibitor genes in combat against insects, pests, and pathogens: natural and engineered phytoprotection. Arch Biochem Biophys 431:145–159

    Article  CAS  PubMed  Google Scholar 

  • Hayano-Kanashiro C, Calderon-Vazquez C, Ibarra-Laclette E, Herrera-Estrella L, Simpson J (2009) Analysis of gene expression and physiological responses in three Mexican maize landraces under drought stress and recovery irrigation. PLoS One 4:e7531

    Article  PubMed Central  PubMed  Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198

    Article  CAS  PubMed  Google Scholar 

  • Hummer KE, Janick J (2009) Rosaceae: taxonomy, economic importance, genomics. In: Folta K, Gardiner S (eds) Genetics and genomics of Rosaceae. Springer, New York, pp 1–17

    Chapter  Google Scholar 

  • Hwang JE, Hong JK, Je JH, Lee KO, Kim DY, Lee SY, Lim CO (2009) Regulation of seed germination and seedling growth by an Arabidopsis phytocystatin isoform, AtCYS6. Plant Cell Rep 28:1623–1632

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hwang JE, Hong JK, Lim CJ, Chen H, Je J, Yang KA, Kim DY, Choi YJ, Lee SY, Lim CO (2010) Distinct expression patterns of two Arabidopsis phytocystatin genes, AtCYS1 and AtCYS2, during development and abiotic stresses. Plant Cell Rep 29:905–915

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jupp AP, Newman EI (1987) Morphological and anatomical effects of severe drought on the roots of Lolium perenne L. New Phytol 105:393–402

    Article  Google Scholar 

  • Kiggundu A, Muchwezi J, van der Vyver C, Viljoen A, Vorster J, Schlüter U, Kunert K, Michaud D (2010) Deleterious effects of plant cystatins against the banana weevil Cosmopolites sordidus. Arch Insect Biochem Physiol 73:87–105

    CAS  PubMed  Google Scholar 

  • Kim SH, Woo DH, Kim JM, Lee SY, Chung WS, Moon YH (2011) Arabidopsis MKK4 mediates osmotic-stress response via its regulation of MPK3 activity. Biochem Biophys Res Commun 412:150–154

    Article  CAS  PubMed  Google Scholar 

  • Kimura M, Ikeda T, Fukumoto D, Yamasaki N, Yonekura M (1995) Primary structure of a cysteine proteinase inhibitor from the fruit of avocado (Persea americana Mill). Biosci Biotechnol Biochem 59:2328–2329

    Article  CAS  PubMed  Google Scholar 

  • Kotchoni SO, Kuhns C, Ditzer A, Kirch H-H, Bartels D (2006) Over-expression of different aldehyde dehydrogenase genes in Arabidopsis thaliana confers tolerance to abiotic stress and protects plants against lipid peroxidation and oxidative stress. Plant Cell Environ 29:1033–1048

    Article  CAS  PubMed  Google Scholar 

  • Li D, Song S, Xia X, Yin W (2012) Two CBL genes from populus euphratica confer multiple stress tolerance in transgenic triploid white poplar. Plant Cell Tissue Organ Cult 109:477–489

    Article  CAS  Google Scholar 

  • Libault M, Brechenmacher L, Cheng JL, Xu D, Stacey G (2010) Root hair systems biology. Trends Plant Sci 15:641–650

    Article  CAS  PubMed  Google Scholar 

  • Lim CO, Lee SI, Chung WS, Park SH, Hwang I, Cho MJ (1996) Characterization of a cDNA encoding a cysteine proteinase inhibitor from Chinese cabbage (Brassica campestris L. ssp. pekinensis) flower buds. Plant Mol Biol 30:373–379

    Article  CAS  PubMed  Google Scholar 

  • Liu YB, Qin LJ, Han LZ, Xiang Y, Zhao DG (2015) Overexpression of maize SDD1 (ZmSDD1) improves drought resistance in Zea mays L. by reducing stomatal density. Plant Cell Tissue Organ Cult 122:147–159

    Article  CAS  Google Scholar 

  • Margis R, Reis EM, Villeret V (1998) Structural and phylogenetic relationships among plant and animal cystatins. Arch Biochem Biophys 359:24–30

    Article  CAS  PubMed  Google Scholar 

  • Martínez M, López-Solanilla E, Rodríguez-Palenzuela P, Carbonero P, Díaz I (2003) Inhibition of plant-pathogenic fungi by the barley cystatin Hv-CPI (gene Icy) is not associated with its cysteine-proteinase inhibitory properties. Mol Plant Microbe Interact 16:876–883

    Article  PubMed  Google Scholar 

  • Martínez M, Diaz-Mendoza M, Carrillo L, Díaz I (2007) Carboxy terminal extended phytocystatins are bifunctional inhibitors of papain and legumain cysteine proteinases. FEBS Lett 581:2914–2918

    Article  PubMed  Google Scholar 

  • Martínez M, Cambra I, Carrillo L, Diaz-Mendoza M, Diaz I (2009) Characterization of the entire cystatin gene family in barley and their target cathepsin L-like cysteine-proteases, partners in the hordein mobilization during seed germination. Plant Physiol 151:1531–1545

    Article  PubMed Central  PubMed  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    Article  CAS  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassay with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Popovic M, Andjelkovic U, Burazer L, Lindner B, Petersen A, Gavrovic-Jankulovic M (2013) Biochemical and immunological characterization of a recombinantly-produced antifungal cysteine proteinase inhibitor from green kiwifruit (Actinidia deliciosa). Phytochemistry 94:53–59

    Article  CAS  PubMed  Google Scholar 

  • Quain MD, Makgopa ME, Márquez-García B, Comadira G, Fernandez-Garcia N, Olmos E, Schnaubelt D, Kunert KJ, Foyer CH (2014) Ectopic phytocystatin expression leads to enhanced drought stress tolerance in soybean (Glycine max) and Arabidopsis thaliana through effects on strigolactone pathways and can also result in improved seed traits. Plant Biotechnol J 12:903–913

    Article  CAS  PubMed  Google Scholar 

  • Ramanjulu S, Bartels D (2002) Drought- and desiccation-induced modulation of gene expression in plants. Plant Cell Environ 25:141–151

    Article  CAS  PubMed  Google Scholar 

  • Rawlings ND, Morton FR, Barrett AJ (2008) MEROPS: the peptidase database. Nucl Acids Res 36:320–325

    Article  Google Scholar 

  • Stubbs MT, Laber B, Bode W, Huber R, Jerala R, Lenarcic B, Turk V (1990) The refined 2.4 Å X-ray crystal structure of recombinant human stefin B in complex with the cysteine proteinase papain: a novel type of proteinase inhibitor interaction. EMBO J 9:1939–1947

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sugawara H, Shibuya K, Yoshioka T, Hashiba T, Satoh S (2002) Is a cysteine proteinase inhibitor involved in the regulation of petal wilting in senescing carnation (Dianthus caryophyllus L.) flowers? J Exp Bot 53:407–413

    Article  CAS  PubMed  Google Scholar 

  • Sun XL, Yang SS, Sun MZ, Wang ST, Ding XD, Zhu D, Ji W, Cai H, Zhao CY, Wang XD, Zhu YM (2014) A novel Glycine soja cysteine proteinase inhibitor GsCPI14, interacting with the calcium/calmodulin-binding receptor-like kinase GsCBRLK, regulated plant tolerance to alkali stress. Plant Mol Biol 85:33–48

    Article  CAS  PubMed  Google Scholar 

  • Szewińska J, Prabucka B, Krawczyk M, Mielecki M, Bielawski W (2013) The participation of phytocystatin TrcC-4 in the activity regulation of EP8, the main prolamin degrading cysteine endopeptidase in triticale seeds. Plant Growth Regul 69:131–137

    Article  Google Scholar 

  • Tan YX, Wang SC, Liang D, Li MJ, Ma FW (2014) Genome-wide identification and expression profiling of the cystatin gene family in apple (Malus × domestica Borkh.). Plant Physiol Biochem 79:88–97

    Article  CAS  PubMed  Google Scholar 

  • Tang LL, Cai H, Zhai H, Luo X, Wang ZY, Cui L, Bai X (2014) Overexpression of Glycine soja WRKY20 enhances both drought and salt tolerance in transgenic alfalfa (Medicago sativa L.). Plant Cell Tissue Organ Cult 118:77–86

    Article  CAS  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucl Acids Res 22:4673–4680

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Turk V, Bode W (1991) The cystatins: protein inhibitors of cysteine proteinases. FEBS Lett 285:213–219

    Article  CAS  PubMed  Google Scholar 

  • Valdés-Rodríguez S, Guerrero-Rangel A, Melgoza-Villagómez C, Chagolla-López A, Delgado-Vargas F, Martínez-Gallardo N, Sánchez-Hernández C, Délano-Frier J (2007) Cloning of a cDNA encoding a cystatin from grain amaranth (Amaranthus hypochondriacus) showing a tissue-specific expression that is modified by germination and abiotic stress. Plant Physiol Biochem 45:790–798

    Article  PubMed  Google Scholar 

  • van der Vyver C, Schneidereit J, Driscoll S, Turner J, Kunert K, Foyer CH (2003) Oryzacystatin-1 expression in transformed tobacco produces a conditional growth phenotype and enhances chilling tolerance. Plant Biotechnol J 1:101–112

    Article  PubMed  Google Scholar 

  • Vorster J, Michaud D, Kiggundu A, Kunert K (2010) Crop damage. Quest 6:30–32

    Google Scholar 

  • Wang YG, Zhan YN, Wu C, Gong SL, Zhu N, Chen SX, Li HY (2012) Cloning of a cystatin gene from sugar beet M14 that can enhance plant salt tolerance. Plant Sci 191–192:93–99

    Article  PubMed  Google Scholar 

  • Wang XM, Li ZG, Yan F, Khalil R, Ren ZX, Yang CW, Yang YW, Deng W (2013) ZmSKIP, a homologue of SKIP in maize, is involved in response to abiotic stress in tobacco. Plant Cell Tissue Organ Cult 112:203–216

    Article  CAS  Google Scholar 

  • White RG, Kirkegaard JA (2010) The distribution and abundance of wheat roots in a dense, structured subsoil–implications for water uptake. Plant Cell Environ 33:133–148

    Article  PubMed  Google Scholar 

  • Zhang X, Liu S, Takano T (2008) Two cysteine proteinase inhibitors from Arabidopsis thaliana, AtCYSa and AtCYSb, increasing the salt, drought, oxidation and cold tolerance. Plant Mol Biol 68:131–143

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National High Technology Research and Development Program of China (863 Program) (2011AA100201) and by the earmarked fund for the China Agriculture Research System (CARS-28).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fengwang Ma.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Table S1 Primers used in this study (DOC 27 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, Y., Li, M. & Ma, F. Overexpression of MpCYS2, a phytocystatin gene from Malus prunifolia (Willd.) Borkh., confers drought tolerance and protects against oxidative stress in Arabidopsis . Plant Cell Tiss Organ Cult 123, 15–27 (2015). https://doi.org/10.1007/s11240-015-0809-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-015-0809-0

Keywords

Navigation