Skip to main content

Advertisement

Log in

Acid-based analogs of certain water tetramers: an examination of some crystal structures in the literature

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Chemical clusters with composition (H2nOn), (H2n+1On)+, and (H2n−1On) with n = 4 are crystallographically known. Moreover, for each of those classes, there are documented examples in more than one stereochemical conformation. In this study, we consider the relation between their stereochemical characteristics in the solid and in their free form as fluids, by calculating their energies as crystallographically reported, as well as by energy optimization. Also, since accurate crystallographic studies provided these species in more than one geometrical isomer, quantum mechanical comparisons of their energies in crystalline and free molecular form are herein reported. Finally, for those in which energy minimization(s) resulted in stereochemical rearrangements, the new stereoisomer resulting is herein described. Quantum calculations show the molecular energy increases from deprotonated, to neutral, to protonated fragments. Energy optimization was carried out for each of the crystal structures studied, which allowed us to determine the structural relationship between the crystalline and free form of these fragments. Among these aquo-fragments, the most frequent structures were quadrangular and triangular motifs with either four or three hydrogen bonds. The quantum chemical calculated energy of all crystal and optimized structures are reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. CSD = The Cambridge Structural Database, C. R. Groom, I. J. Bruno, M. P. Lightfoot and S. C. Ward, Acta Cryst. (2016). B72, 171–179.

  2. Bernal I (2006) C R Chimie 9:1454

    Article  CAS  Google Scholar 

  3. Bernal I (2007) C R Chimie 10:1209

    Article  CAS  Google Scholar 

  4. Bernal I, Watkins SF (2014) Acta Cryst C70:566

    Google Scholar 

  5. Gaussian 09: Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery Jr, J. A., Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Keith, T., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J. , Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, O., Foresman, J. B., Ortiz, J. V., Cioslowski, J., and Fox, D. J.; Gaussian Inc.: Wallingford CT, 2010.

  6. Density functional theory (1989) Parr RG. Yang W. Density-functional theory of atoms and molecules. Oxford University Press, Oxford

    Google Scholar 

  7. Koch W, Holthausen MC (2001) A Chemist’s Guide to Density Functional Theory, 2nd edn. Wiley-VCH, New York

    Book  Google Scholar 

  8. GaussView: Dennington R, Keith TA, Millam JM (2009) Gauss View, Version 5. Semi chem Inc., Shawnee Mission, Kansas

  9. MATLEY = Wiebcke M, Felsche J (2000) Acta Crystallogr., Sect. C: Cryst Struct Commun  56, 901. Sp. Gr. = Pnma, z = 4.0, R = 4.73, T = 153 K

  10. VORYEG = Burshtein IF, Gerbeleu NV, Bologa OA, Lozan VI, Malinovskii TI, Dokl. Akad. Nauk SSSR (Russ.) Proc Nat Acad Sci USSR, 316, 368 (1991). Sp. Gr. = R(-3), z = 3.0, R = 6.30, T = 283–303 K

  11. AQUNAB = Michels JJ, O'Connell MJ, Taylor PN, Wilson JS, Cacialli F, Anderson HL (2003) Chem -Eur J 9, 6167. Sp. Gr. = P(-1), z = 2.0, R = 1.82, T = 150 K

  12. FMPECW = Greenhough TJ, Ladd MFC (1978) Acta Crystallogr., Sect. B: Struct Crystallogr Cryst Chem 34, 2619 Sp. Gr. = P21/c, z = 4.0, R = 3.40, T = 296 K

  13. IMCDCP01 = Jian F, Zhao P, Wang S, Zhang S (2002) J Chem Cryst 32, 395 . Sp. Gr. = P63/m, z = 2.0, R = 2.85, T = 293 K

  14. JEDYAT = Matczak-Jon E, Slepokura K, Kafarski P (2006) J Mol Struct 782, 81–93. Sp. Gr. = P21, z = 2.0, R = 4.02, T = 100 K

  15. NUDCEV = Constable EC, Zhang G, Housecroft CE, Neuburger M, Schaffner S (2009) Cryst Eng Comm 11, 1014 Sp. Gr. = P21/n, z = 4.0, R = 2.89, T = 223 K

  16. ASUHIF = Rafizadeh M, Ranjbar M, Amani V (2004) Acta Crystallogr., Sect. E: Struct Rep Online 60, m479

  17.  Allen FH (2002) MERCURY is the computational and graphics routine accompanying CSD (see above, reference [1]). Acta Cryst B58:380–388

  18. Wallace S, Huang L, Massa L, Mukhopadhyay U, Bernal I, Karle J (2007) The structures of cyclic dihydronium cations. Proc Natl Acad Sci 104(43):16798–16803. https://doi.org/10.1073/pnas.0708249104

    Article  PubMed  PubMed Central  Google Scholar 

  19. Huang L, Matta CF, Wallace S, Massa L, Bernal I (2015) A unique trapping by crystal forces of a hydronium cation displaying a transition state structure. C R Chim 18:511–515

    Article  CAS  Google Scholar 

  20. Quantifying hydrogen bond cooperativity in water: VRT spectroscopy of the water tetramer. Science. 271, 59–61

  21. Cruzan JD, Brown MG, Liu K, Braly LB, Saykally RJ (1996) The far-infrared vibration–rotation–tunneling spectrum of the water tetramer-d8. J Chem Phys 105:6634–6644

    Article  CAS  Google Scholar 

  22. Keutsch FN, Saykally RJ (2001) Water clusters: untangling the mysteries of the liquid, one molecule at a time. Proc Natl Acad Sci USA 98 10533–10540

  23. Liu K, Cruzan J, Saykally R (1996) Water Clusters. Science 271:929–933

    Article  CAS  Google Scholar 

  24. Xantheas SS, Dunning TH Jr (1993) Ab initio studies of cyclic water clusters (H2O)n , n=1–6. I. Optimal structures and vibrational spectra. J Chem Phys 99, 8774

  25. Miliordos E, Aprà E, Xantheas SS (2013) Optimal geometries and harmonic vibrational frequencies of the global minima of water clusters (H2O)n, n = 2–6, and several hexamer local minima at the CCSD(T) level of theory. J Chem Phys 139(114302–1):114302–114313

    Article  Google Scholar 

  26. Xantheas SS, Burnham CJ, Harrison RJ (2002) Harrison, Development of transferable interaction models for water. II. Accurate energetics of the first few water clusters from first principles. J Chem Phys 116, 1493–1499

  27. Howard JC, Tschumper GS (2014) Wavefunction methods for the accurate characterization of water clusters. Comput Mol Sci https://doi.org/10.1002/wcms.1168

  28. Bates DM, Smith JR, Tschumper GS (2011) Efficient and accurate methods for the geometry optimization of water clusters: application of analytic gradients for the two-body:many-body QM:QM fragmentation method to (H2O)n, n = 3–10. J Chem Theory Comput 7:2753–2760

    Article  CAS  Google Scholar 

  29. Howard JC, Tschumper GS (2015) Benchmark structures and harmonic vibrational frequencies near the CCSD(T) complete basis set limit for small water clusters: (H2O)n = 2, 3, 4, 5, 6, Chem Theory Comput 11, 2126−2136

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors, HA, IB, LM, contributed equally to all sections of the paper.

Corresponding author

Correspondence to Lou Massa.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ajiki, H., Bernal, I. & Massa, L. Acid-based analogs of certain water tetramers: an examination of some crystal structures in the literature. Struct Chem 33, 1177–1188 (2022). https://doi.org/10.1007/s11224-022-01924-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-022-01924-0

Keywords

Navigation