Skip to main content
Log in

Ab initio and density functional theory (DFT) studies on triflic acid with water and protonated water clusters

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The structure, stability and infrared spectral signatures of triflic acid (TA) with water clusters (Wn) and protonated water clusters (TAH+Wn, n = 1 − 6) were computed using DFT and MP2 methods. Our calculations show that a minimum of three water molecules are necessary to stabilize the dissociated zwitterionic form of TA. It can be seen from the results that there is no significant movement of protons in smaller (n = 1 and 2) and linear (n = 1 – 6) types of water clusters. Further, the geometries of TAWn clusters first form a neutral pair (NP) to contact ion pair (CIP), then form a solvent separated ion pair (SSIP) in a water hexamer. These findings reveal that proton transfer may take place through NP to CIP and then CIP to SSIP. The calculated binding energies (BEs) of ion pair clusters is always higher than that of NP clusters (i.e., more stable than the NP). Existing excess proton linear chain clusters transfer a proton to adjacent water molecules via a Grotthuss mechanism, whereas the same isomers in the branched motifs do not conduct protons. Examination of geometrical parameters and infrared frequencies reveals hydronium ion (H3O+ also called Eigen cation) formation in both TAWn and protonated TAWn clusters. The stability of Eigen water clusters is three times higher than that of other non-Eigen water clusters. Our study shows clearly that formation of ion pairs in TAWn and TAH+Wn clusters greatly favors proton transfer to neighboring water molecules and also enhances the stability of these complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Schmitt UW, Voth GA (1998) J Phys Chem B 102:5547–5551

    Article  CAS  Google Scholar 

  2. Cuma M, Schmitt UW, Voth GA (2001) J Phys Chem A 105:2814–2823

    Article  CAS  Google Scholar 

  3. Day TJF, Voth GA (2005) Int J Mass Spectrom 241:197–204

    Article  Google Scholar 

  4. Prakash M, Subramanian V (2011) Phys Chem Chem Phys 13:21479–21486

    Article  CAS  Google Scholar 

  5. Mauritz KA, Moore RB (2004) Chem Rev 104:4535–4586

    Article  CAS  Google Scholar 

  6. Kreuer KD (2001) J Membr Sci 185:29–39

    Article  CAS  Google Scholar 

  7. Kreuer KD, Paddison SJ, Spohr E, Schuster M (2004) Chem Rev 104:4637–4678

    Article  CAS  Google Scholar 

  8. Jang SS, Molinero V, Cagin T, Goddard WA III (2004) J Phys Chem B 108:3149–3157

    Article  CAS  Google Scholar 

  9. Urata S, Irisawa J, Takada A, Shinoda W, Tsuzuki S, Mikami M (2005) J Phys Chem B 10:4269–4278

    Article  Google Scholar 

  10. Tsuda M, Arboleda NB Jr, Kasai H (2006) Chem Phys 324:393–397

    Article  CAS  Google Scholar 

  11. Li X, Liao S (2009) J Mol Struct (Theochem) 897:66–68

    Article  CAS  Google Scholar 

  12. Eikerling M, Paddison SJ, Pratt LR, Zawodzinski TA Jr (2003) Chem Phys Lett 368:108–114

    Article  CAS  Google Scholar 

  13. Elliott JA, Paddison SJ (2005) J Phys Chem A 093:7583–7593

    Google Scholar 

  14. Elliott JA, Paddison SJ (2007) Phys Chem Chem Phys 9:2602–2618

    Article  CAS  Google Scholar 

  15. Blake NP, Mills G, Metiu H (2007) J Phys Chem B 111:2490–2494

    Article  CAS  Google Scholar 

  16. Hristov IH, Paddison SJ, Paul R (2008) J Phys Chem B 112:2937–2949

    Article  CAS  Google Scholar 

  17. Hayes RL, Paddison SJ (2009) J Phys Chem B 113:16574–16589

    Article  CAS  Google Scholar 

  18. Hayes RL, Paddison SJ, Tuckerman ME (2001) J Phys Chem A 115:6112–6124

    Article  Google Scholar 

  19. Karo J, Aabloo A, Thomas JO, Brandell D (2010) J Phys Chem B 114:6056–6064

    Article  CAS  Google Scholar 

  20. Wu DS, Paddison SJ, Elliott JA (2009) Macromolecules 43:3358–3367

    Article  Google Scholar 

  21. Phonyiem M, Chaiwongwattana S, Lao-ngam C, Sagarik K (2011) Phys Chem Chem Phys 13:10923–10939

    Article  CAS  Google Scholar 

  22. Sagarik K, Phonyiem M, Lao-ngam C, Chaiwongwattana S (2008) Phys Chem Chem Phys 10:2098–2112

    Article  CAS  Google Scholar 

  23. Wescott JT, Qi Y, Subramanian L, Capehart TW (2006) J Chem Phys 124:134702

    Article  Google Scholar 

  24. Petersen MK, Voth GA (2006) J Phys Chem B 110:8594–18600

    Google Scholar 

  25. Chen H, Yan T, Voth GA (2009) J Phys Chem A 113:4507–4517

    Article  CAS  Google Scholar 

  26. Knox CK, Voth GA (2010) J Phys Chem B 114:3205–3218

    Article  CAS  Google Scholar 

  27. Wang S, Bianco R, Hynes JT (2009) J Phys Chem A 113:1295–1307

    Article  CAS  Google Scholar 

  28. Wang S, Bianco R, Hynes JT (2010) Phys Chem Chem Phys 12:8241–8249

    Article  CAS  Google Scholar 

  29. Lee C, Sosa C, Planas M, Novoa JA (1996) J Chem Phys 104:7081–7085

    Article  CAS  Google Scholar 

  30. Fennell CJ, Bizjak A, Vlachy V, Dill KA (2009) J Phys Chem B 113:6782–6791

    Article  CAS  Google Scholar 

  31. Fulton JL, Balasubramanian M (2010) J Am Chem Soc 132:12597–12604

    Article  CAS  Google Scholar 

  32. Walewski L, Forbert H, Marx D (2011) J Phys Chem Lett 2:3069–3074

    Article  CAS  Google Scholar 

  33. Pluhařová E, Marsalek O, Schmidt B, Jungwirth P (2013) J Phys Chem Lett 4:4177–4181

    Article  Google Scholar 

  34. van der Post ST, Hunger J, Bonn M, Bakker HJ (2014) J Phys Chem B 118:4397–4403

    Article  Google Scholar 

  35. Chen H, Ruckenstein E (2015) J Phys Chem B 119:12671–12676

    Article  CAS  Google Scholar 

  36. Møller C, Plesset MS (1934) Phys Rev 46:618

    Article  Google Scholar 

  37. Curtiss LA, Redfern PC, Raghavachari K, Rassolov V, Pople JA (1999) J Chem Phys 110:4703

    Article  CAS  Google Scholar 

  38. Becke AD (1993) J Chem Phys 98:5648

    Article  CAS  Google Scholar 

  39. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785

    Article  CAS  Google Scholar 

  40. Zhao Y, Truhlar DG (2005) Phys Chem Chem Phys 7:2701–2705

    Article  CAS  Google Scholar 

  41. Jiang JC, Wang YS, Chang HC, Lin SH, Lee YT, Niedner-Schatteburg G, Chang HC (2000) J Am Chem Soc 122:1398–1410

    Article  CAS  Google Scholar 

  42. Jiang JC, Chaudhuri C, Lee YT, Chang HC (2002) J Phys Chem A 106:0937–10944

    Article  Google Scholar 

  43. Lin CK, Wu CC, Wang YS, Lee YT, Chang HC, Kuo JL, Klein ML (2005) Phys Chem Chem Phys 7:938–944

    Article  CAS  Google Scholar 

  44. Wu CC, Lin CK, Chang HC, Jiang JC, Kuo JL, Klein ML (2005) J Chem Phys 122:074315

    Article  Google Scholar 

  45. Suhara K, Fujii A, Mizuse K, Mikami N, Kuo JL (2007) J Chem Phys 126:194306

    Article  Google Scholar 

  46. Kuo JL, Xie ZZ, Bing D, Fujii A, Hamashima T, Suhara KI, Mikami N (2008) J Phys Chem A 112:10125–10133

    Article  CAS  Google Scholar 

  47. Prakash M, Subramanian V, Gadre SR (2009) J Phys Chem A 113:12260–12275

    Article  CAS  Google Scholar 

  48. Prakash M, Gopalsamy K, Subramanian V (2009) J Phys Chem A 113:13845–13852

    Article  CAS  Google Scholar 

  49. Prakash M, Mathivon K, Benoit DM, Chambaud G, Hochlaf M (2014) Phys Chem Chem Phys 16:12503–12509

    Article  CAS  Google Scholar 

  50. Prakash M, Chambaud G, Al-Mogren MM, Hochlaf M (2014) J Mol Mod 20:2534

    Article  Google Scholar 

  51. Boussouf K, Boulmene R, Prakash M, Komiha N, Taleb M, Al-Mogren MM, Hochlaf M (2015) Phys Chem Chem Phys 17:14417–14426

    Article  CAS  Google Scholar 

  52. Boussouf K, Khairat T, Prakash M, Komiha N, Chambaud G, Hochlaf M (2015) J Phys Chem A 119:11928–11940

    Article  CAS  Google Scholar 

  53. Boulmene R, Boussouf K, Prakash M, Komiha N, Al-Mogren MM, Hochlaf M (2016) Chem Phys Chem 17:1–13

    Google Scholar 

  54. Boys SF, Bernardi F (1970) Mol Phys 19:553–566

    Article  CAS  Google Scholar 

  55. Frisch MJ et al (2009) Gaussian 09 Revision A 0.2. Gaussian Inc, Wallingford, CT

    Google Scholar 

  56. Mandal A, Prakash M, Kumar RM, Parthasarathi R, Subramanian V (2010) J Phys Chem A 114:2250–2258

    Article  CAS  Google Scholar 

  57. Headrick JM, Diken EG, Walters RS, Hammer NI, Christie RA, Cui J, Myshakin EM, Duncan MA, Johnson MA, Jordan KD (2005) Science 308:1765–1769

    Article  CAS  Google Scholar 

  58. Miyazaki M, Fujii A, Ebata T, Mikami N (2004) Science 304:1134–1137

    Article  CAS  Google Scholar 

  59. Shin JW, Hammer NI, Diken EG, Johnson MA, Walters RS, Jaeger TD, Duncan MA, Christie RA, Jordan KD (2004) Science 304:1137–1140

    Article  CAS  Google Scholar 

  60. Bgemann MH, Gudeman CS, Pfaff J, Saykally R (1983) J Phys Rev Lett 51:554

    Article  Google Scholar 

  61. Schwartz HA (1977) J Chem Phys 67:5525

    Article  Google Scholar 

  62. Asmis KN, Pivonka NL, Santambrogio G, Brümmer M, Kaposta C, Neumark DM, Wöste L (2003) Science 299:1375–1377

    Article  CAS  Google Scholar 

  63. Fridgen TD, McMahon TB, MacAleese L, Lemaire J, Maitre P (2004) J Phys Chem A 108:9008–9010

    Article  CAS  Google Scholar 

  64. Park M, Shin I, Singh NJ, Kim KS (2007) J Phys Chem A 111:10692–10702

    Article  CAS  Google Scholar 

  65. Prakash M, Gopalsamy K, Subramanian V (2011) J Chem Phys 135:214308

    Article  CAS  Google Scholar 

  66. Frank RAW, Titman CM, Pratap JV, Luisi BF, Perham RN (2004) Science 306:872–876

    Article  CAS  Google Scholar 

  67. Falk M (1980) Can J Chem 58:1495–1501

    Article  CAS  Google Scholar 

  68. Quezado S, Kwak JCT, Falk M (1984) Can J Chem 62:958–966

    Article  CAS  Google Scholar 

  69. Moilanen DE, Piletic IR, Fayer MD (2006) J Phys Chem A 110:9084–9088

    Article  CAS  Google Scholar 

  70. Moilanen DE, Spry DB, Fayer MD (2008) Langmuir 24:3690–3698

    Article  CAS  Google Scholar 

  71. Liu S, Aquino AJA, Korzeniewski C (2013) Langmuir 29:13890–13897

    Article  CAS  Google Scholar 

  72. Kabrane J, Aquino AJA (2015) J Phys Chem A 119:1754–1764

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by DST India-European Union sponsored project (HYPOMAP 8/233482/2008) and the Council of Scientific and Industrial Research (CSIR), India. We also thank the CSIR-CLRI for high performance computing time.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Subramanian.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 30 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prakash, M., Subramanian, V. Ab initio and density functional theory (DFT) studies on triflic acid with water and protonated water clusters. J Mol Model 22, 293 (2016). https://doi.org/10.1007/s00894-016-3158-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-016-3158-y

Keywords

Navigation