Skip to main content

Advertisement

Log in

Ab initio investigation of the lower-energy candidate structures for (H2O)10+ water cluster

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Low-lying structures of water cationic clusters and the compounds with the OH radical have become a hot topic in recent years. We here investigate the cluster \( {\left({\mathrm{H}}_2\mathrm{O}\right)}_{10}^{+} \) and calculate its ideal structures by the quantum chemical calculation together with the particle swarm optimization method. We analyzed the properties of the obtained lower-energy isomers of \( {\left({\mathrm{H}}_2\mathrm{O}\right)}_{10}^{+} \). Their energies are further re-optimized and demonstrated at three different methods with two basis sets. Based on our numerical calculations, a new cage-like structure of \( {\left({\mathrm{H}}_2\mathrm{O}\right)}_{10}^{+} \) with the lowest energy is obtained at MP2/aug-cc-pVDZ level. Our results showed the comparison of energy order at different conditions and demonstrated the influence of temperature on the relative Gibbs energy and IR spectra. Moreover, we also contained the molecule orbitals to discuss the stability of these representative isomers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Alizadeh E, Sanche L (2012) Precursors of solvated electrons in radiobiological physics and chemistry. Chem Rev 112(11):5578–5602

    Article  CAS  Google Scholar 

  2. Wang D, Li R, Zhu J, Shi JY, Han JF, Zong X, Li C (2012) Potocatalytic water oxidation on BiVO4 with the electrocatalyst as an oxidation cocatalyst: essential relations between electrocatalyst and photocatalyst. J Phys Chem C 116(8):5082–5089

    Article  CAS  Google Scholar 

  3. Yourey JE, Kurtz JB, Bartlett BM (2012) Water oxidation on a CuWO4-WO3 composite electrode in the presence of [Fe(CN)6]3−: toward solar Z-scheme water splitting at zero bias. J Phys Chem C 116(3):3200–3205

    Article  CAS  Google Scholar 

  4. Zhang QH, Han WD, Hong YJ, Yu JG (2009) Photocatalytic reduction of CO2 with H2O on Pt-loaded TiO2 catalyst. Catal Today 148(3):335–340

    Article  CAS  Google Scholar 

  5. Wang CR, Nguyen J, Lu QB (2009) Bond breaks of nucleotides by dissociative electron transfer of nonequilibrium prehydrated electrons: a new molecular mechanism for reductive DNA damage. J Am Chem Soc 131(32):11320–11322

    Article  CAS  Google Scholar 

  6. Yun Z, Sweasy JB (2009) Biomolecular action of ionizing radiation. Radiat Res 171(3):387–387

    Article  CAS  Google Scholar 

  7. Draganic IG, Draganic ZD (1971) The radiation chemistry of water. Academic Press, New York

    Google Scholar 

  8. Garrett BC, Dixon DA, Camaioni DM, Johnson MA, Jonah CD, Kimmel GA, Miller JH, Rescigno TN, Rossky PJ, Xantheas SS, Colson SD, Laufer AH, Ray D, Barbara DR, Bartels DM, Becker KH, Bowen KH, Bradforth SE, Carmichael I, Coe JV, Corrales LR, Cowin JP, Dupuis M, Eisenthal KB, Franz JA, Gutowski MS, Jordan KD, Kay BD, LaVerne JA, Lymar SV, Madey TE, McCurdy CW, Meisel D, Mukamel S, Nilsson AR, Orlando TM, Petrik NG, Pimblott SM, Rustad JR, Schenter GK, Singer SJ, Tokmakoff A, Wang LS, Wittig C, Zwier TS (2005) Role of water in electron-initiated processes and radical chemistry: issues and scientific advances. Chem Rev 105(1):355–390

    Article  CAS  Google Scholar 

  9. Bednarek J, Plonka A, Hallbrucker A, Mayer E (1998) Radiation yield of oxygen-based radicals in hyperquenched glassy water gamma-irradiated at 77 K. Radiat Phys Chem 53(6):635–638

    Article  CAS  Google Scholar 

  10. Plonka A, Szajdzinskapietek E, Bednarek J, Hallbrucker A, Mayer E (2000) Unexpected radical generation on γ-irradiating metastable forms of water at 77 K. Phys Chem Chem Phys 2(8):1587–1593

    Article  CAS  Google Scholar 

  11. Visser SPD, Koning LJD, Nibbering NMM (1995) Reactivity and thermochemical properties of the water dimer radical cation in the gas phase. J Phys Chem 99(42):15444–15447

    Article  Google Scholar 

  12. Jongma RT, Huang YH, Shi SM, Wodtke AM (1998) Rapid evaporative cooling suppresses fragmentation in mass spectrometry: synthesis of ‘unprotonated’ water cluster ions. J Phys Chem A 102(45):8847–8854

    Article  CAS  Google Scholar 

  13. Kumar A, Kołaski M, Lee HM, Kim KS (2008) Photoexcitation and photoionization dynamics of water photolysis. J Phys Chem A 112(24):5502–5508

    Article  CAS  Google Scholar 

  14. Cheng QY, Evangelista FA, Simmonett AC, Yamaguchi Y, Schaeffer III HF (2009) Water dimer radical cation: structures, vibrational frequencies, and energetics. J Phys Chem A 113(49):13779–13789

    Article  CAS  Google Scholar 

  15. Periyasamy G, Collin JP, Sauvage JP, Levine RD, Remacle F (2009) Electrochemically driven sequential machines: an implementation on copper rotaxanes. Chem Eur J 15(6):1310–1313

    Article  CAS  Google Scholar 

  16. Tachikawa H, Takada T (2016) Ionization dynamics of small water clusters: proton transfer rate. Chem Phys 475:9–13

    Article  CAS  Google Scholar 

  17. Kaledin M, Wood CA (2010) Ab initio studies of structural and vibrational properties of protonated water cluster H7O3 + and its deuterium isotopologues: an application of driven molecular dynamics. J Chem Theory Comput 6(8):2525–2535

    Article  CAS  Google Scholar 

  18. Partanen L, Hӓnninen V, Halonen L (2016) Effects of global and local anharmonicities on the thermodynamic properties of sulfuric acid monohydrate. J Chem Theory Comput 12(11):5511–5524

    Article  CAS  Google Scholar 

  19. Tachikawa H, Takada T (2015) Proton transfer rates in ionized water clusters (H2O)n (n = 2–4). RSC Adv 5(9):6945–6853

    Article  CAS  Google Scholar 

  20. Floris SD, Talbot JJ, Wilkinson MJ, Herr JD, Steele RP (2016) Quantum molecular motion in the mixed ion-radical complex, [(H2O)(H2S)]+. Phys Chem Chem Phys 18(39):27450–27459

    Article  CAS  Google Scholar 

  21. Shin JW, Hammer NI, Diken EG, Johnson MA, Walter RS, Jaeger TD, Duncan MA, Christie RA, Jordan KD (2004) Infrared signature of structures associated with the H+(H2O)n (n = 6 to 27) clusters. Science 304(5674):1137–1140

    Article  CAS  Google Scholar 

  22. James T, Wales DJ, Hernández-Rojas J (2005) Global minima for water clusters (H2O)n, n ≤ 21, described by a five-site empirical potential. Chem Phys Lett 415(4):302–307

    Article  CAS  Google Scholar 

  23. Li FY, Liu Y, Wang L, Zhao JJ, Chen ZF (2012) Improved stability of water clusters (H2O)30–48: a Monte Carlo search coupled with DFT computations. Theor Chem Accounts 131(3):1–7

    Article  Google Scholar 

  24. Xantheas SS (2000) Cooperativity and hydrogen bonding network in water clusters. Chem Phys 258(2):225–231

    Article  CAS  Google Scholar 

  25. Hammond JR, Govind N, Kowalski K, Autschbach J, Xantheas SS (2009) Accurate dipole polarizabilities for water clusters n = 2–12 at the coupled-cluster level of theory and benchmarking of various density functionals. J Chem Phys 131(21):9080–9089

    Article  Google Scholar 

  26. Kang DD, Dai JY, Hou Y, Yuan JM (2010) Structure and vibrational spectra of small water clusters from first principles simulations. J Chem Phys 133(1):014302

    Article  Google Scholar 

  27. Segarra-martí J, Merchán M, Roca-sanjuán D (2012) Ab initio determination of the ionization potentials of water clusters (H2O)n (n = 2−6). J Chem Phys 136(24):244306

    Article  Google Scholar 

  28. Dopfer O (2000) Microsolvation of the water cation in argon: I. Ab initio and density functional calculations of H2O+−Arn (n = 0–4). J Phys Chem A 104(50):11693–11701

    Article  CAS  Google Scholar 

  29. Dopfer O, Roth D, Maier JP (2000) Microsolvation of the water cation in argon: II. Infrared photodissociation spectra of H2O+−Arn (n = 1−14). J Phys Chem A 104(50):11702–11713

    Article  CAS  Google Scholar 

  30. Roth D, Dopfer O, Maier JP (2001) Intermolecular potential energy surface of the proton-bound H2O+–He dimer: ab initio calculations and IR spectra of the O–H stretch vibrations. Phys Chem Chem Phys 3(12):2400–2410

    Article  CAS  Google Scholar 

  31. Eroms M, Jungen M, Meyer HD (2010) Nonadiabatic nuclear dynamics after valence ionization of H2O. J Phys Chem A 114(36):9893–9910

    Article  CAS  Google Scholar 

  32. Ghanty TK, Ghosh SK (2002) Hardness and polarizability profiles for intramolecular proton transfer in water dimer radical cation. J Phys Chem A 106(16):4200–4204

    Article  CAS  Google Scholar 

  33. Gurtubay IG, Drummond ND, Towler MD, Needs RJ (2006) Quantum Monte Carlo calculations of the dissociation energies of three-electron hemibonded radical cationic dimers. J Chem Phys 124(2):4931–4937

    Article  Google Scholar 

  34. Pieniazek PA, VandeVondele J, Jungwirth P, Krylov AI, Bradforth SE (2008) Electronic structure of the water dimer cation. J Phys Chem A 112(27):6159–6170

    Article  CAS  Google Scholar 

  35. Gardenier GH, Johnson MA, McCoy AB (2009) Spectroscopic study of the ion-radical H-bond in H4O2 +. J Phys Chem A 113(16):4772–4779

    Article  CAS  Google Scholar 

  36. Talbot JJ, Cheng XL, Herr JD, Steele RP (2016) Vibrational signatures of electronic properties in oxidized water: unraveling the anomalous spectrum of the water dimer cation. J Am Chem Soc 138(36):11936–11945

    Article  CAS  Google Scholar 

  37. Lee HM, Kumar A, Kołaski M, Kim DY, Lee EC, Min SK, Park M, Choi YC, Kim KS (2010) Comparison of cationic, anionic and neutral hydrogen bonded dimers. Phys Chem Chem Phys 12(23):6278–6287

    Article  CAS  Google Scholar 

  38. Sodupe M, Bertran J, Rodríguez-Santiago L, Baerends EJ (1999) Ground state of the (H2O)2 + radical cation: DFT versus post-Hartree−Fock methods. J Phys Chem A 103(1):166–170

    Article  CAS  Google Scholar 

  39. Shinohara H, Nishi N, Washida N, Washida N (1986) Photoionization of water clusters at 11.83 eV: observation of unprotonated cluster ions (H2O)n + (2 ≤ n ≤ 10). J Chem Phys 84(10):5561–5567

    Article  CAS  Google Scholar 

  40. Shiromaru H, Achiba Y, Kimura K, Lee YT (1987) Determinatlon of the C-H bond dissociation energies of ethylene and acetylene by observation of the threshold energies of H+ formation by synchrotron radiation. J Phys Chem 91(1):17–19

    Article  CAS  Google Scholar 

  41. Shiromaru H, Suzuki H, Hiroyasu S, Nagaoka S, Kimura K (1989) Synchrotron radiation study on small binary molecular clusters. Ar-water and CO2-water systems. J Phys Chem 93(5):1832–1835

    Article  CAS  Google Scholar 

  42. Mizuse K, Mikami N, Fujii A (2010) Infrared spectra and hydrogen-bonded network structures of large protonated water clusters H+(H2O)n (n = 20–200). Angew Chem 122(52):10317–10320

    Article  Google Scholar 

  43. Mizuse K, Fujii A (2011) Infrared photodissociation spectroscopy of H+(H2O)6·Mm (M = Ne, Ar, Kr, Xe, H2, N2, and CH4): messenger-dependent balance between H3O+ and H5O2 + core isomers. Phys Chem Chem Phys 13(15):7129–7135

    Article  CAS  Google Scholar 

  44. Mizuse K, Fujii A (2013) Infrared spectroscopy of large protonated water clusters H+(H2O)20–50 cooled by inert gas attachment. Chem Phys 419(419):2–7

    Article  CAS  Google Scholar 

  45. Mizuse K, Fujii A (2013) Characterization of a solvent-separated ion-radical pair in cationized water networks: infrared photodissociation and Ar-attachment experiments for water cluster radical cations (H2O)n + (n = 3–8). J Phys Chem A 117(5):929–938

    Article  CAS  Google Scholar 

  46. Mizuse K, Kuob JL, Fujii A (2011) Structural trends of ionized water networks: infrared spectroscopy of water cluster radical cations (H2O)n + (n = 3–11). Chem Sci 2(5):868–876

    Article  CAS  Google Scholar 

  47. Herr JD, Steele RP (2016) Ion-radical pair separation in larger oxidized water clusters, (H2O)+ n = 6–21. J Phys Chem A 120(36):7225–7239

    Article  CAS  Google Scholar 

  48. Wales DJ, Doye JPK (1997) Global optimization by basin-hopping and the lowest energy structures of Lennard-Jones clusters containing up to 110 atoms. J Phys Chem A 101(28):5111–5116

    Article  CAS  Google Scholar 

  49. Wang YC, Lv J, Zhu L, Ma YM (2010) Crystal structure prediction via particle swarm optimization. Physics 82(9):7174–7182

    Google Scholar 

  50. Becke AD (1998) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98(7):5648–5652

    Article  Google Scholar 

  51. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich A, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ (2009) Gaussian 09, Revision B.01. Wallingford CT

  52. Møller C, Plesset MS (1934) Note on an approximation treatment for many-electron systems. Phys Rev 46(7):618–622

    Article  Google Scholar 

  53. Sholl DS, Steckel JA (2009) Density functional theory/a practical introduction. Wiley, New York

    Book  Google Scholar 

  54. Lee HM, Kim KS (2011) Water trimer cation. Theor Chem Accounts 130(2–3):543–548

    Article  CAS  Google Scholar 

  55. Lu EP, Pan PR, Li YC, Tsai MK, Kuo JL (2014) Structural evolution and solvation of the OH radical in ionized water radical cations (H2O)n +, n = 5–8. Phys Chem Chem Phys 16(35):18888–18895

    Article  CAS  Google Scholar 

  56. Lv ZL, Cheng Y, Chen XR, Cai LC (2015) Structural exploration and properties of (H2O)4 + cluster via ab initio in combination with particle swarm optimization method. Chem Phys 452(2):25–30

    Article  CAS  Google Scholar 

  57. Lv ZL, Xu K, Cheng Y, Chen XR, Cai LC (2014) Ab initio molecular dynamics investigation of the lower energy candidate structures for (H2O)5 + water cluster. J Chem Phys 141(5):432–439

    Article  Google Scholar 

  58. Do H, Besley NA (2013) Structure and bonding in ionized water clusters. J Phys Chem A 117(25):5385–5391

    Article  CAS  Google Scholar 

  59. Lee HM, Kim KS (2009) Water dimer cation: density functional theory vs ab initio theory. J Chem Theory Comput 5(4):976–981

    Article  CAS  Google Scholar 

  60. Kim H, Lee HM (2009) Ammonia-water cation and ammonia dimer cation. J Phys Chem A 113(25):6859–6864

    Article  CAS  Google Scholar 

  61. Lu T, Chen F (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33(5):580–592

    Article  Google Scholar 

  62. Pan PR, Lin YS, Tsai MK, Kuo JL, Chai JD (2012) Assessment of density functional approximations for the hemibonded structure of the water dimer radical cation. Phys Chem Chem Phys 14(30):10705–10712

    Article  CAS  Google Scholar 

  63. Tsai MK, Kuo JL, Lu JM (2012) The dynamics and spectroscopic fingerprint of hydroxyl radical generation through water dimer ionization: ab initio molecular dynamic simulation study. Phys Chem Chem Phys 14(38):13402–13408

    Article  CAS  Google Scholar 

  64. Do H, Besley NA (2013) Proton transfer or hemibonding? The structure and stability of radical cation clusters. Phys Chem Chem Phys 15(38):16214–16219

    Article  CAS  Google Scholar 

  65. Lynch BJ, Fast PL, Harris M, Truhlar DG (2000) Adiabatic connection for kinetics. J Phys Chem A 104(21):4811–4815

    Article  CAS  Google Scholar 

  66. Adamo C, Barone V (1998) Exchange functionals with improved long-range behavior and adiabatic connection methods without adjustable parameters: the mPW and mPW1PW models. J Chem Phys 108(2):664–675

    Article  CAS  Google Scholar 

  67. Becke AD (1993) A new mixing of Hartree–Fock and local density-functional theories. J Chem Phys 98(2):1372–1377

    Article  CAS  Google Scholar 

  68. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B Condens Matter 37(2):785–789

    Article  CAS  Google Scholar 

  69. Lee HM, Kim KS (2013) Dynamics and structural changes of small water clusters on ionization. J Comput Chem 34(18):1589–1597

    Article  CAS  Google Scholar 

  70. Liu L, Hu CE, Tang M, Chen XR, Cai LC (2016) Ab initio investigation of structure, stability, thermal behavior, bonding, and infrared spectra of ionized water cluster (H2O)6 +. J Chem Phys 145(15):154307

    Article  Google Scholar 

  71. Andersson MP, Uvdal P (2005) New scale factors for harmonic vibrational frequencies using the B3LYP density functional method with the triple-ζ basis set 6-311+G(d,p). J Phys Chem A 109(12):2937–2941

    Article  CAS  Google Scholar 

  72. Johnson ER, Keinan S, Mori-Sánchez P, Conteras-García J, Cohen AJ, Yang W (2010) NCI: Revealing non-covalent interactions. J Am Chem Soc 132(18):6498–6506

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the supports by the NSAF (Grant No. U1430117) and National Natural Science Foundation of China (Grant No. 11404099). We also acknowledge the support for the computational resources by the State Key Laboratory of Polymer Materials Engineering of China in Sichuan University. Some calculations are performed on the ScGrid of Supercomputing Center, Computer Network Information Center of Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhao-Yi Zeng or Bai-Ru Yu.

Ethics declarations

This paper has not been published in whole or in part elsewhere. The manuscript is not currently being considered for publication in another journal. All authors have been personally and actively involved in substantive work leading to the manuscript and will hold themselves jointly and individually responsible for its content.

Conflict to interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, WQ., Fu, M., Wang, HY. et al. Ab initio investigation of the lower-energy candidate structures for (H2O)10+ water cluster. Struct Chem 29, 1273–1285 (2018). https://doi.org/10.1007/s11224-018-1109-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-018-1109-1

Keywords

Navigation