Skip to main content
Log in

A quest for the universal atomic radii

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Atomic radius is an important periodic descriptor used in understanding a variety of physico-chemical and bio-chemical processes. Numerous scales are suggested to define atomic radii. The aim of the current study is to find out the most reliable and universal scale among different (experimental and theoretical) scales of radii. For this, we have used different types of radii to compute some size-dependent physico-chemical atomic descriptors, i.e. electronegativity, global hardness, polarizability, and a real-world molecular descriptor, i.e. internuclear bond distance for some diatomic molecules. The computed properties are compared with available experimental values. Important periodic trends and the presence of relativistic effects are also verified for each set of atomic radii. This comparative study is valuable to get an idea about the most effective atomic radii.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article and its supplementary information file.

References

  1. Cotton FA, Wilkinson G, Murillo CA, Bochmann M (2009) Advanced inorganic chemistry. Wiley-New York

  2. Rahm M, Hoffmann R, Ashcroft NW (2016) Atomic and ionic radii of elements 1–96. Chem 22:14625–14632

    Article  CAS  Google Scholar 

  3. Chakraborty T, Gazi K, Ghosh DC (2010) Computation of the atomic radii through the conjoint action of the effective nuclear charge and the ionization energy. Mol Phys 108:2081–2092

    Article  CAS  Google Scholar 

  4. Alvarez S (2013) A cartography of the van der Waals territories. Dalton Trans 42:8617–8636

    Article  CAS  PubMed  Google Scholar 

  5. Meyer L (1870) Justus Liebigs Ann Chem 354

  6. Bragg WL (1920) The arrangement of atoms in crystals. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 40:169–189

    Article  CAS  Google Scholar 

  7. Pauling LC (1960) The nature of the chemical bond and the structure of molecules and crystals. An introduction to modern structural chemistry, 3rd ed., Cornell University Press, Ithaca, N.Y.

  8. Slater JC (1930) Atomic shielding constants. Phys Rev 36:57

    Article  CAS  Google Scholar 

  9. Froese C (1966) Hartree - Fock parameters for the atoms helium to radon. J Chem Phys 45:1417–1420

    Article  CAS  Google Scholar 

  10. Clementi E, Raimondi DL, Reinhardt WP (1967) Atomic screening constants from SCF functions. II. Atoms with 37 to 86 electrons. J Chem Phys 47:1300–1307

    Article  CAS  Google Scholar 

  11. Fisk C, Fraga S (1969) Atomic Radii Anal Fis 65:135

    CAS  Google Scholar 

  12. Larson AC, Waber JT (1969) Self-consistent field Hartree calculations for atoms and ions (Report LA-4297). Los Alamos Scientific Lab, N. Mex

  13. Fischer CF (1972) Average-energy-of-configuration Hartree-Fock results for the atoms helium to radon. Atomic Data 4:301–399

    Article  CAS  Google Scholar 

  14. Kammeyer CW, Whitman DR (1972) Quantum mechanical calculation of molecular radii. I. Hydrides of elements of periodic groups IV through VII. J Chem Phys 56:4419–4421

    Article  CAS  Google Scholar 

  15. Fraga S, Karwowski J, Saxena KMS (1973) Hartree-Fock values of coupling constants, polarizabilities, susceptibilities, and radii for the neutral atoms, helium to nobelium. Atom Data Nucl Data Tables 12:467–477

    Article  CAS  Google Scholar 

  16. Fischer CF (1973) Average–energy of configuration Hartree-Fock results for the atoms helium to radon. Atom Data Nucl Data Tables 12:87–99

    Article  CAS  Google Scholar 

  17. Desclaux JP (1973) Relativistic Dirac-Fock expectation values for atoms with Z= 1 to Z= 120. Atom Data Nucl Data Tables 12:311–406

    Article  CAS  Google Scholar 

  18. Boyd RJ (1977) The relative sizes of atoms. J Phys B: At Mol Phys 10:2283

    Article  CAS  Google Scholar 

  19. Deb BM, Singh R, Sukumar N (1992) A universal density criterion for correlating the radii and other properties of atoms and ions. J Mol Struct: THEOCHEM 259:121–139

    Article  Google Scholar 

  20. Nath S, Bhattacharya S, Chattaraj PK (1995) Density functional calculation of a characteristic atomic radius. J Mol Struct: THEOCHEM 331:267–279

    Article  CAS  Google Scholar 

  21. Ghosh DC, Biswas R (2002) Theoretical calculation of absolute radii of atoms and ions. Part 1. The atomic radii. Int J Mol Sci 3:87–113

    Article  CAS  Google Scholar 

  22. Putz MV, Russo N, Sicilia E (2003) Atomic radii scale and related size properties from density functional electronegativity formulation. J Phys Chem A 107:5461–5465

    Article  CAS  Google Scholar 

  23. Pyykkö P, Riedel S, Patzschke M (2005) Triple–bond covalent radii. Chem A Euro J 11:3511–3520

    Article  Google Scholar 

  24. Ghosh DC, Biswas R, Chakraborty T, Islam N, Rajak SK (2008) The wave mechanical evaluation of the absolute radii of atoms. J Mol Struct: THEOCHEM 865:60–67

    Article  CAS  Google Scholar 

  25. Pyykkö P, Atsumi M (2009) Molecular single–bond covalent radii for elements 1–118. Chem A Euro J 15:186–197

    Article  Google Scholar 

  26. Mande C, Deshmukh P (1977) A new scale of electronegativity on the basis of calculations of effective nuclear charges from X-ray spectroscopic data. J Phys B: At Mol Phys 10:2293

    Article  CAS  Google Scholar 

  27. Mande C, Chattopadhyay S, Deshmukh PC, Padma R, Deshmukh PC (1990) Spectroscopically determined electronegativity values for heavy elements. Pramana 35:397–403

    Article  CAS  Google Scholar 

  28. Miller IJ (1987) The quantisation of the screening constant. Austr J Phys 40:329–346

    Article  CAS  Google Scholar 

  29. Reed JL (1999) The genius of Slater’s rules. J Chem edu 76:802

    Article  CAS  Google Scholar 

  30. Szarek P, Grochala W (2014) Most probable distance between the nucleus and HOMO electron: the latent meaning of atomic radius from the product of chemical hardness and polarizability. J Phys Chem A 118:10281–10287

    Article  CAS  PubMed  Google Scholar 

  31. Tandon H, Ranjan P, Chakraborty T, Suhag V (2020) Computation of absolute radii of 103 elements of the periodic table in terms of nucleophilicity index. J Math Chem 58:1025–1040

    Article  CAS  Google Scholar 

  32. Tandon H, Chakraborty T, Suhag V (2021) A scale of absolute radii derived from electrophilicity index. Mol Phys 119:e1820594

  33. Prasanna KG, Sunil S, Kumar A, Joseph J (2021) Theoretical atomic radii of elements (H-Cm): a non-relativistic study with Gaussian basis set using HF, post-HF and DFT methods. ChemRxiv. Preprint. https://doi.org/10.26434/chemrxiv.13663337.v1

  34. Coulson CA (1951) Critical survey of the method of ionic-homopolar resonance. Proceedings of the Royal Society of London. Series A. Math Phys Sci 207: 63–73

  35. Fukui K (1982) Role of frontier orbitals in chemical reactions. Sci 218:747–754

    Article  CAS  Google Scholar 

  36. Pauling L (1932) The nature of the chemical bond. IV. The energy of single bonds and the relative electronegativity of atoms. J Am Chem Soc 54:3570–3582

    Article  CAS  Google Scholar 

  37. Mulliken RS (1934) A new electroaffinity scale; together with data on valence states and on valence ionization potentials and electron affinities. J Chem Phys 2:782–793

    Article  CAS  Google Scholar 

  38. Gordy W (1946) A new method of determining electronegativity from other atomic properties. Phys Rev 69:604

    Article  CAS  Google Scholar 

  39. Allred AL, Rochow EG (1958) A scale of electronegativity based on electrostatic force. J Inorg Nucl Chem 5:264–268

    Article  CAS  Google Scholar 

  40. Simons G, Zandler ME, Talaty ER (1976) Nonempirical electronegativity scale. J Am Chem Soc 98:7869–7870

    Article  CAS  Google Scholar 

  41. Nagle JK (1990) Atomic polarizability and electronegativity. J Am Chem Soc 112:4741–4747

    Article  CAS  Google Scholar 

  42. Ghosh DC, Chakraborty T (2009) Gordy’s electrostatic scale of electronegativity revisited. J Mol Struct: THEOCHEM 906:87–93

    Article  CAS  Google Scholar 

  43. Tandon H, Labarca M, Chakraborty T (2021) A scale of atomic electronegativity based on floating spherical gaussian orbital approach. ChemistrySelect 6:5622–5627

    Article  CAS  Google Scholar 

  44. Allen LC (1989) Electronegativity is the average one-electron energy of the valence-shell electrons in ground-state free atoms. J Am Chem Soc 111:9003–9014

    Article  CAS  Google Scholar 

  45. Islam N, Ghosh DC (2011) Spectroscopic evaluation of the global hardness of the atoms. Mol Phys 109:1533–1544

    Article  CAS  Google Scholar 

  46. Pearson RG (1997) Chemical hardness. Wiley-VCH, Weinheim

    Book  Google Scholar 

  47. Mulliken RS (1952) Molecular compounds and their spectra. II J Am Chem Soc 74:811–824

    Article  CAS  Google Scholar 

  48. Cárdenas C, Heidar-Zadeh F, Ayers PW (2016) Benchmark values of chemical potential and chemical hardness for atoms and atomic ions (including unstable anions) from the energies of isoelectronic series. Phys Chem Chem Phys 18:25721–25734

    Article  PubMed  Google Scholar 

  49. Pearson RG (1988) Absolute electronegativity and hardness: application to inorganic chemistry. Inorg Chem 27:734–740

    Article  CAS  Google Scholar 

  50. Robles J, Bartolotti LJ (1984) Electronegativities, electron affinities, ionization potentials, and hardnesses of the elements within spin polarized density functional theory. J Am Chem Soc 106:3723–3727

    Article  CAS  Google Scholar 

  51. Ghosh DC, Islam N (2010) Semiempirical evaluation of the global hardness of the atoms of 103 elements of the periodic table using the most probable radii as their size descriptors. Int J Quantum Chem 110:1206–1213

    Article  CAS  Google Scholar 

  52. Kaya S, Kaya C (2015) A new equation for calculation of chemical hardness of groups and molecules. Mol Phys 113:1311–1319

    Article  CAS  Google Scholar 

  53. Yadav P, Tandon H, Malik B, Chakraborty T (2021) An alternative approach to compute atomic hardness. Theor Chem Acc 140:60

    Article  CAS  Google Scholar 

  54. Dalgarno A (1962) Atomic polarizabilities and shielding factors. Adv Phys 11:281–315

    Article  CAS  Google Scholar 

  55. Bonin KD, Kresin VV (1997) Electric-dipole polarizabilities of atoms, molecules, and clusters. World Scientific, Singapore

    Book  Google Scholar 

  56. Teachout RR, Pack RT (1971) The static dipole polarizabilities of all the neutral atoms in their ground states. Atom Data Nucl Data Tables 3:195–214

    Article  Google Scholar 

  57. Bonin KD, Kadar-Kallen MA (1994) Linear electric-dipole polarizabilities. Int J Modern Phys B 8:3313–3370

    Article  CAS  Google Scholar 

  58. Chattaraj PK, Maiti B (2001) Electronic structure principles and atomic shell structure. J Chem Edu 78:811

    Article  CAS  Google Scholar 

  59. Politzer P, Murray JS, Bulat FA (2010) Average local ionization energy: a review. J Mol Model 16:1731–1742

    Article  CAS  PubMed  Google Scholar 

  60. Safronova MS, Mitroy J, Clark CW, Kozlov MG (2015) Atomic polarizabilities AIP Conf Proc 1642:81–89

    Article  Google Scholar 

  61. Schwerdtfeger P, Nagle JK (2019) Table of static dipole polarizabilities of the neutral elements in the periodic table. Mol Phys 117:1200–1225

    Article  CAS  Google Scholar 

  62. Tandon H, Chakraborty T, Suhag V (2019) A new scale of atomic static dipole polarizability invoking other periodic descriptors. J Math Chem 57:2142–2153

    Article  CAS  Google Scholar 

  63. Chakraborty T, Ghosh DC (2010) Computation of the internuclear distances of some heteronuclear diatomic molecules in terms of the revised electronegativity scale of Gordy. Eur Phys J D 59:183–192

    Article  CAS  Google Scholar 

  64. Ray NK, Samuelsc L, Parr RG (1979) Studies of electronegativity equalization. J Chem Phys 70:3680–3684

    Article  CAS  Google Scholar 

  65. Sanderson RT (1951) An interpretation of bond lengths and a classification of bonds. Science 114:670–672

    Article  CAS  PubMed  Google Scholar 

  66. Sanderson RT (1952a) An interpretation of bond lengths in alkali halide gas molecules. J Am Chem Soc 74:272–274

    Article  CAS  Google Scholar 

  67. Sanderson RT (1952b) Electronegativities in inorganic chemistry. J Chem Edu 29:539

    Article  CAS  Google Scholar 

  68. Sanderson RT (1955) Partial charges on atoms in organic compounds. Science 121:207–208

    Article  CAS  PubMed  Google Scholar 

  69. Pasternak A (1977) Electronegativity based on the simple bond charge model. Chem Phys 26:101–112

    Article  CAS  Google Scholar 

  70. Parr RG, Borkman RF (1967) Chemical binding and potential-energy functions for molecules. J Chem Phys 46:3683–3685

    Article  CAS  Google Scholar 

  71. Borkman RF, Parr RG (1968) Toward an understanding of potential-energy functions for diatomic molecules. J Chem Phys 48:1116–1126

    Article  CAS  Google Scholar 

  72. Parr RG, Borkman RF (1968) Simple bond-charge model for potential-energy curves of homonuclear diatomic molecules. J Chem Phys 49:1055–1058

    Article  CAS  Google Scholar 

  73. Borkman RF, Simons G, Parr RG (1969) Simple bond-charge model for potential-energy curves of heteronuclear diatomic molecules. J Chem Phys 50:58–65

    Article  CAS  Google Scholar 

  74. Lovas FJ, Tiemann E (1974) Microwave spectral tables 1. Diatomic Molecules. J Phys Chem Ref Data 3:609–770

    Article  CAS  Google Scholar 

  75. Pyykkö P (2012) Relativistic effects in chemistry: more common than you thought. Annu Rev Phys Chem 63:45–64

    Article  PubMed  Google Scholar 

  76. Balasubramanian K (1997a) Relativistic effects in chemistry: part A theory and techniques. John Wiley & Sons, New York

    Google Scholar 

  77. Balasubramanian K (1997b) Relativistic effects in chemistry: part B: applications. Wiley, New York

    Google Scholar 

  78. Emsley J (1991) The elements. Clarendon Press, Oxford

    Google Scholar 

Download references

Acknowledgements

Dr. Tanmoy Chakraborty is thankful to Sharda University, and Dr. Hiteshi Tandon and Ms. PoonamYadav are thankful to Manipal University Jaipur for providing a research facility.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Tanmoy Chakraborty; data curation: Hiteshi Tandon; methodology: Tanmoy Chakraborty; formal analysis: Poonam Yadav; investigation: Poonam Yadav; visualization: Hiteshi Tandon, Poonam Yadav; writing — original draft: Poonam Yadav; writing — review and editing: Hiteshi Tandon, Tanmoy Chakraborty; resources: Hiteshi Tandon; supervision: Tanmoy Chakraborty, Babita Malik, Vandana Suhag.

Corresponding authors

Correspondence to Hiteshi Tandon or Tanmoy Chakraborty.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 711 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, P., Tandon, H., Malik, B. et al. A quest for the universal atomic radii. Struct Chem 33, 389–394 (2022). https://doi.org/10.1007/s11224-021-01850-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-021-01850-7

Keywords

Navigation