Skip to main content
Log in

Application of floating spherical Gaussian orbital approach in redefining the atomic periodic descriptor

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

Chemistry plays a vital role in the improvement of the narrative properties of atoms and molecules. Many attempts have been made in this field and a few quantities like electronegativity, electron affinity, electrophilicity, polarizability, ionization potential, etc. have been introduced. Electronegativity is an important chemical construct that plays an essential role to clarify several chemical, biochemical, and physicochemical interactions. We have thoroughly studied the different periodic descriptors which are involved to define various electronegativity scales based on either theoretical concepts or experimental findings. The Floating Spherical Gaussian Orbital Approach (FSGO), being one of the the most studied ab initio methods, has been utilized in this study to develop a scale of electronegativity in terms of compressibility factor. We have proposed a model to compute atomic electronegativity values of 51 elements of the periodic table. The computed electronegativity scale observes the periodic trend and justifies many chemical phenomena. Molecular electronegativity values have also been computed using the computed atomic electronegativity data and utilized to verify the Electronegativity Equalization Principle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data that supports the findings of this study are available within the article and its supplementary material.

References

  1. A.A. Frost, Floating spherical gaussian orbital model of molecular structure. II. One-and two-electron-pair systems. J. Chem. Phys. 47(10), 3714–4371 (1967)

    Article  CAS  Google Scholar 

  2. G.M. Maggiora, J.D. Petke, R.E. Christoffersen, Electronic excited states of biomolecular systems: ab initio FSGO-based quantum mechanical methods with applications to photosynthetic and related systems, in Theoretical Treatment of Large Molecules and Their Interactions: Part 4 Theoretical Models of Chemical Bonding (1991), pp. 65–102.

  3. A.A. Frost, A floating spherical Gaussian orbital model of molecular structure. III. First-row atom hydrides. J. Phys. Chem. 72(4), 1289–1293 (1968)

    Article  CAS  Google Scholar 

  4. A.A. Frost, R.A. Rouse, Floating spherical Gaussian orbital model of molecular structure. IV. Hydrocarbons. J. Am. Chem. Soc. 90(8), 1965–1969 (1968)

    Article  CAS  Google Scholar 

  5. S.Y. Chu, A.A. Frost, Floating spherical gaussian orbital model of molecular structure. IX. Diatomic molecules of first-row and second-row atoms. J. Chem. Phys. 54(2), 764–768 (1971)

    Article  CAS  Google Scholar 

  6. R.A. Suthers, J.W. Linnett, On the use of minimal basis sets of gaussian-type orbitals. Chem. Phys. Lett. 29(4), 589–593 (1974)

    Article  CAS  Google Scholar 

  7. W.D. Erickson, J.W. Linnett, Gaussian orbital calculations of solids. Crystalline lithium hydride. J. Chem. Soc. Faraday Trans. II 68, 693–710 (1972)

    Article  Google Scholar 

  8. W.D. Erickson, J.W. Linnett, An ‘ab initio’Gaussian orbital calculation of the (100) surface of crystalline lithium hydride. Proc. Math. Phys. Eng. 331(1586), 347–359 (1972)

    CAS  Google Scholar 

  9. W. Schulz, W. Gruendler, Phys. Status Solidi B 78, 18 (1976)

    Article  Google Scholar 

  10. W. Schulz, W. Gruendler, Zeit fuer Phys. Chemie 259, 889 (1978)

    Article  CAS  Google Scholar 

  11. J.L. Nelson, A.A. Frost, A floating spherical Gaussian orbital model of molecular structure. ESCA chemical shifts for inner shell electrons for small hydrocarbons. Chem. Phys. Lett. 13(6), 610–612 (1972)

    Article  CAS  Google Scholar 

  12. P.A. Cox, S. Evans, A.F. Orchard, N.V. Richardson, P.J. Roberts, Simple quantitative molecular orbital methods used in connection with photoelectron spectroscopy. Faraday Discuss 54, 26–40 (1972)

    Article  Google Scholar 

  13. T.J. O’Donnell, P.R. LeBreton, L.L. Shipman, Ab initio quantum mechanical characterization of the ground electronic state of uracil. J. Phys. Chem. 82(3), 343–347 (1978)

    Article  CAS  Google Scholar 

  14. A.M. Semkow, J.W. Linnett, Applications of a simple molecular wavefunction. Part 15.—Spectroscopic constants of selected first-row diatomic hydride molecules. J. Chem. Soc. Faraday Trans. II 72, 1503–1512 (1976)

    Article  CAS  Google Scholar 

  15. J.M. André, J. Delhalle, J.J. Pireaux, Band Structure Calculations and Their Relations to Photoelectron Spectroscopy (ACS Publications, Columbus, 1981)

    Book  Google Scholar 

  16. J. Szaniszlo, I. Tamassy-Lentei, Acta Phys. Chim. Debrecina 33, 43 (2000)

    Google Scholar 

  17. Tamassy-Lentei I, J Szaniszlo J (1976) Acta Physica et Chimica Debrecina 20:59

  18. J. Szaniszlo, I. Tamassy-Lentei, Acta Phys. Chim. Debrecina 36, 65 (2003)

    CAS  Google Scholar 

  19. N.K. Ray, Chem. Phys. Lett. 6, 225 (1970)

    Article  CAS  Google Scholar 

  20. S. Bhargava, A.K. Bakhshi, N.K. Ray, Indian J. Chem. Sec. A 19A, 1203 (1981)

    CAS  Google Scholar 

  21. J.M. Andre, G. Hardy, D.H. Mosley, L. Piela, Top. Mol. Org. Eng. 14, 189 (1996)

    CAS  Google Scholar 

  22. W. Gründler, T. Steinke, P. Walther, H/He molecules in strong electric fields. J. Compu.t Chem. 11(5), 548–559 (1990)

    Article  Google Scholar 

  23. J.M. Andre, J. Delhalle, J.G. Fripiat, G. Hennico, L. Piela, Int. J. Quantum Chem. Symp. 22, 665 (1988)

    Article  CAS  Google Scholar 

  24. L. Pauling, The nature of the chemical bond. IV. The energy of single bonds and the relative electronegativity of atoms. J. Am. Chem .Soc. 54(9), 3570–3582 (1932)

    Article  CAS  Google Scholar 

  25. A.L. Allred, E.G. Rochow, A scale of electronegativity based on electrostatic force. J. Inorg. Nucl. 5(4), 264–268 (1958)

    Article  CAS  Google Scholar 

  26. R.S. Mulliken, A new electroaffinity scale; together with data on valence states and on valence ionization potentials and electron affinities. J. Chem. Phys. 2(11), 782–793 (1934)

    Article  CAS  Google Scholar 

  27. R.T. Sanderson, Principles of electronegativity Part I. General nature. J. Chem. Educ. 65(2), 112 (1988)

    Article  CAS  Google Scholar 

  28. P. Politzer, Z. Peralta-Inga Shields, F.A. Bulat, J.S. Murray, Average local ionization energies as a route to intrinsic atomic electronegativities. J. Chem. Theory Comput 7(2), 377–384 (2011)

    Article  CAS  PubMed  Google Scholar 

  29. P. Politzer, J.S. Murray, Electronegativity: a continuing enigma. J. Phys. Org. Chem. 2022, e4406 (2022)

    Article  Google Scholar 

  30. V. Kumari, T. Singh, S. Devi, H. Tandon, M. Labarca, T. Chakraborty, Atomic electronegativity based on hardness and floating spherical gaussian orbital approach. J. Math. Chem. 1, 1–13 (2022)

    Google Scholar 

  31. K.D. Saloni, H. Tandon, M. Labarca, T. Chakraborty, Computation of atomic electronegativity values using atomic and covalent potential: a FSGO based study. J. Math. Chem. 60(8), 1505–1520 (2022)

    Article  CAS  Google Scholar 

  32. D. Kumari, H. Tandon, M. Labarca, T. Chakraborty, An FSGO based electronegativity scale invoking the electrophilicity index. ChemistrySelect 7(44), e202202238 (2022)

    Article  CAS  Google Scholar 

  33. D. Xue, S. Zuo, H. Ratajczak, Electronegativity and structural characteristics of lanthanides. Phys. B 352(1–4), 99–104 (2004)

    Article  CAS  Google Scholar 

  34. S.G. Hur, T.W. Kim, S.J. Hwang, H. Park, W. Choi, S.J. Kim, J.H. Choy, Synthesis of new visible light active photocatalysts of Ba (In1/3Pb1/3M1/3 ‘) O3 (M ‘= Nb, Ta): a band gap engineering strategy based on electronegativity of a metal component. J. Phys. Chem. B 109(31), 15001–15007 (2005)

    Article  CAS  PubMed  Google Scholar 

  35. D.R. Herrick, Connecting pauling and mulliken electronegativities. J. Chem. Theory Comput. 1(2), 255–260 (2005)

    Article  CAS  PubMed  Google Scholar 

  36. D.V. Louzguine-Luzgin, A. Inoue, W.J. Botta, Reduced electronegativity difference as a factor leading to the formation of Al-based glassy alloys with a large supercooled liquid region of 50 K. Appl. Phys. Lett. 88(1), 011911 (2006)

    Article  Google Scholar 

  37. S. Noorizadeh, E. Shakerzadeh, Bond dissociation energies from a new electronegativity scale. J. Mol. Struct. 20(1–3), 110–113 (2009)

    Article  Google Scholar 

  38. H. Tandon, T. Chakraborty, V. Suhag, A scale of atomic electronegativity in terms of atomic nucleophilicity index. Found. Chem. 22, 335–346 (2020)

    Article  CAS  Google Scholar 

  39. S. Carniato, L. Journel, R. Guillemin, M.N. Piancastelli, W.C. Stolte, D.W. Lindle, M. Simon, A new method to derive electronegativity from resonant inelastic x-ray scattering. J. Chem. Phys. 137(14), 144303 (2012)

    Article  CAS  PubMed  Google Scholar 

  40. S. Kaya, C. Kaya, A new equation based on ionization energies and electron affinities of atoms for calculating of group electronegativity. Comput. Theor. Chem. 1052, 42–46 (2015)

    Article  CAS  Google Scholar 

  41. A. Qteish, Electronegativity scales and electronegativity-bond ionicity relations: a comparative study. J. Phys. Chem. Solids 124, 186–191 (2019)

    Article  CAS  Google Scholar 

  42. L.P. Williams, André-Marie Ampère. Sci. Am. 260(1), 90–97 (1989)

    Article  Google Scholar 

  43. S. Noorizadeh, M. Parhizgar, The atomic and group compressibility. J. Mol. Struct. 725(1–3), 23–26 (2005)

    Article  CAS  Google Scholar 

  44. J.P. Connerade, R. Semaoune, Atomic compressibility and reversible insertion of atoms into solids. J. Phys. B 33(17), 3467 (2000)

    Article  CAS  Google Scholar 

  45. H. Tandon, T. Chakraborty, V. Suhag, A model of atomic compressibility and its application in QSAR domain for toxicological property prediction. J. Mol. Model. 25, 1–14 (2019)

    Article  CAS  Google Scholar 

  46. J. Hinze, H.H. Jaffe, Electronegativity. I. Orbital electronegativity of neutral atoms. J. Am. Chem. Soc. 84(4), 540–546 (1962)

    Article  CAS  Google Scholar 

  47. W. Gordy, A new method of determining electronegativity from other atomic properties. Phys. Rev. 69(11–12), 604 (1946)

    Article  CAS  Google Scholar 

  48. C. Tantardini, A.R. Oganov, Thermochemical electronegativities of the elements. Nat. Commun. 12(1), 2087 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. R.T. Sanderson, An interpretation of bond lengths in alkali halide gas molecules. J. Am. Chem. Soc. 74(1), 272–274 (1952)

    Article  CAS  Google Scholar 

  50. R.A. Donnelly, R.G. Parr, Elementary properties of an energy functional of the first-order reduced density matrix. J. Chem. Phys. 69(10), 4431–4439 (1978)

    Article  CAS  Google Scholar 

  51. P. Politzer, H. Weinstein, Some relations between electronic distribution and electronegativity. J. Chem. Phys. 71(11), 4218–4220 (1979)

    Article  CAS  Google Scholar 

  52. R.G. Parr, L.J. Bartolotti, On the geometric mean principle for electronegativity equalization. J. Am. Chem. Soc. 104(14), 3801–3803 (1982)

    Article  CAS  Google Scholar 

  53. R.F. Nalewajski, A study of electronegativity equalization. J. Phys. Chem. 89(13), 2831–2837 (1985)

    Article  CAS  Google Scholar 

  54. P.K. Chattaraj, S. Giri, S. Duley, Electrophilicity equalization principle. J. Phys. Chem. Lett. 1(7), 1064–1067 (2010)

    Article  CAS  Google Scholar 

  55. R.G. Parr, Companions in the search. Int. J. Quantum Chem. 49, 739–770 (1994)

    Article  Google Scholar 

  56. R.A. Miranda-Quintana, P.W. Ayers, The “| Δμ| big is good” rule, the maximum hardness, and minimum electrophilicity principles. Theor. Chem. Acc. 138, 1–6 (2019)

    Article  CAS  Google Scholar 

  57. R.A. Miranda-Quintana, P.W. Ayers, F. Heidar-Zadeh, Reactivity and charge transfer beyond the parabolic model: the “| Δμ| big is good” principle. Chem. Select. 6(1), 96–100 (2021)

    CAS  Google Scholar 

  58. R.A. Miranda-Quintana, A kinetic perspective of charge transfer reactions: the downfall of hard/soft acid/base interactions. Theor. Chem. Acc. 142(5), 52 (2023)

    Article  CAS  Google Scholar 

  59. U. Hohm, Is there a minimum polarizability principle in chemical reactions? J. Phys. Chem. A 104(36), 8418–8423 (2000)

    Article  Google Scholar 

  60. H. Tandon, T. Chakraborty, V. Suhag, On the validity of minimum magnetizability principle in chemical reactions. Acta Chim. Slov. 68(1), 178–184 (2021)

    Article  CAS  PubMed  Google Scholar 

  61. R.A. Miranda-Quintana, F. Heidar-Zadeh, P.W. Ayers, Elementary derivation of the “| Δμ| big is good” rule. J. Phys. Chem. Lett. 9(15), 4344–4348 (2018)

    Article  CAS  PubMed  Google Scholar 

  62. R.A. Miranda-Quintana, P.W. Ayers, Dipolar cycloadditions and the “| Δ μ| big is good” rule: a computational study. Theor. Chem. Acc. 137, 1–7 (2018)

    Article  CAS  Google Scholar 

  63. L.C. Allen, J.F. Capitani, G.A. Kolks, G.D. Sproul, Van Arkel—Ketelaar triangles. J. Mol. Struct. 300, 647–655 (1993)

    Article  Google Scholar 

  64. W.B. Jensen, A quantitative van Arkel diagram. J. Chem. Educ. 72(5), 395 (1995)

    Article  CAS  Google Scholar 

  65. G. Sproul, Electronegativity and bond type: predicting bond type. J. Chem. Educ. 78(3), 387 (2001)

    Article  CAS  Google Scholar 

  66. A.E.V. Arkel, Molecules and Crystals in Inorganic Chemistry. Read Books Limited (2011)

  67. T.L. Meek, L.D. Garner, Electronegativity and the bond triangle. J. Chem. Educ. 82(2), 325 (2005)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Ms. Dimple Kumari, Ms. Saloni, and Dr. Tanmoy Chakraborty are thankful to Sharda University for providing the research facility.

Funding

Dr. Tanmoy Chakraborty acknowledges the funding support from the Science and Engineering Research Board (SERB), Department of Science and Technology, Government of India, under Grant No. CRG/2020/002951. Dr. Martín Labarca is thankful to Agencia Nacional de PromocíonCientífica y Tecnológica (FONCyT) (Grant PICT-2018-04519), to Universidad de Buenos Aires (Grant UBACyT 20020190200097BA) and to Universidad Austral of Argentina.

Author information

Authors and Affiliations

Authors

Contributions

TC conceptualized this study. Data collection, and analysis were performed by DK. The first draft of manuscript was written by DK and SSaloni. Supervision, writing—review and editing done by ML. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Martín Labarca or Tanmoy Chakraborty.

Ethics declarations

Conflict of interest

The authors declared there were no financial interests or individual relationships to impact the published paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 15 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumari, D., Saloni, S., Labarca, M. et al. Application of floating spherical Gaussian orbital approach in redefining the atomic periodic descriptor. J Math Chem 61, 1924–1935 (2023). https://doi.org/10.1007/s10910-023-01494-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-023-01494-4

Keywords

Navigation