Skip to main content
Log in

Temperature dependence of rate constants for the H(D) + CH4 reaction in gas and aqueous phase: deformed Transition-State Theory study including quantum tunneling and diffusion effects

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

In recent years, the understanding and control of mechanisms involving radical attacks to hydrocarbons have been object of investigation in several fields, especially in combustion reactions and energy resource technology. The H(D) + CH4 ⟶ CH3 + H2(HD) reactions are known as prototypical reactions of hydrocarbons and have been extensively investigated both experimentally and theoretically in the gas-phase. Here, the reaction rate constants for the hydrogen abstraction of methane by atomic hydrogen (and deuterium) in the gas phase have been validated by employing the deformed Transition-State Theory (\( d \)-TST): The results motivated the use of Collins-Kimball approaches to provide kinetics data in the aqueous phase. The \( d \)-TST has been found to be accurate for absolute values and temperature dependence of the reaction rate constant in the gas phase, especially for what concerns the excellent agreement with experimental data for the variant isotopic when compared with previous formulations. For the first time, theoretical rate constants in aqueous solution for the title reaction are presented reproducing the experimental data at 288.15 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Vaníček J, Miller WH, Castillo JF, Aoiz FJ (2005) Quantum-instanton evaluation of the kinetic isotope effects. J Chem Phys 123:054108. https://doi.org/10.1063/1.1946740

    Article  PubMed  CAS  Google Scholar 

  2. Saueressig G, Bergamaschi P, Crowley JN et al (1996) D/H kinetic isotope effect in the reaction CH4+ Cl. Geophys Res Lett 23:3619–3622

    Article  CAS  Google Scholar 

  3. Valadbeigi Y, Farrokhpour H (2015) Theoretical study on the mechanism and kinetics of atmospheric reactions C n H2n+2 + NH2 (n = 1-3). Struct Chem 26:383–391. https://doi.org/10.1007/s11224-014-0500-9

    Article  CAS  Google Scholar 

  4. George IJ, Abbatt JPD (2010) Heterogeneous oxidation of atmospheric aerosol particles by gas-phase radicals. Nat Chem 2:713–722. https://doi.org/10.1038/nchem.806

    Article  PubMed  CAS  Google Scholar 

  5. Yelle RV, Cui J, Müller-Wodarg ICF (2008) Methance escape from Titan’s atmosphere. J Geophys Res Earth Planets 113:1–8. https://doi.org/10.1029/2007JE003031

    Article  CAS  Google Scholar 

  6. Zahnle KJ, Marley MS (2014) Methane, carbon monoxide, and ammonia in brown dwarfs and self-luminous giant planets. Astrophys J 797:1–19. https://doi.org/10.1088/0004-637X/797/1/41

    Article  CAS  Google Scholar 

  7. Raes F, Cofala J, Derwent R et al (2010) The impact of air pollutant and methane emission controls on tropospheric ozone and radiative forcing: CTM calculations for the period 1990–2030. Atmos Chem Phys Discuss 4:8471–8538. https://doi.org/10.5194/acpd-4-8471-2004

    Article  Google Scholar 

  8. Wu T, Werner HJ, Manthe U (2006) Accurate potential energy surface and quantum reaction rate calculations for the H+CH4 → H2 +CH3 reaction. J Chem Phys 124:164307. https://doi.org/10.1063/1.2189223

    Article  PubMed  CAS  Google Scholar 

  9. Schiffel G, Manthe U, Nyman G (2010) Full-dimensional quantum reaction rate calculations for H + CH4 → H2 + CH3 on a recent potential energy surface. J Phys Chem A 114:9617–9622. https://doi.org/10.1021/jp911880u

    Article  PubMed  CAS  Google Scholar 

  10. Suleimanov YV, Collepardo-Guevara R, Manolopoulos DE (2011) Bimolecular reaction rates from ring polymer molecular dynamics: application to H + CH4→ H2 + CH3. J Chem Phys 134:044131. https://doi.org/10.1063/1.3533275

    Article  PubMed  CAS  Google Scholar 

  11. Welsch R, Manthe U (2012) Reaction dynamics with the multi-layer multi-configurational time-dependent Hartree approach: H CH4 → H2 CH3 rate constants for different potentials. J Chem Phys 137:244106. https://doi.org/10.1063/1.4772585

    Article  PubMed  CAS  Google Scholar 

  12. Meng Q, Chen J, Zhang DH (2015) Communication: rate coefficients of the H + CH4 → H2 + CH3 reaction from ring polymer molecular dynamics on a highly accurate potential energy surface. J Chem Phys 143:101102. https://doi.org/10.1063/1.4930860

    Article  PubMed  CAS  Google Scholar 

  13. Mai TVT, Duong MV, Le XT et al (2014) Direct ab initio dynamics calculations of thermal rate constants for the CH4 + O2 = CH3 + HO2 reaction. Struct Chem 25:1495–1503. https://doi.org/10.1007/s11224-014-0426-2

    Article  CAS  Google Scholar 

  14. Czakó G, Bowman JM (2011) Dynamics of the reaction of methane with chlorine atom on an accurate potential energy surface. Science (80- ) 334:343–346. https://doi.org/10.1126/science.1208514

    Article  CAS  Google Scholar 

  15. Wang D (2013) Quantum Dynamics Study of the F + CH4 -> HF + CH3 Reaction on an Ab Initio Potential Energy Surface. J Phys Chem A 12:1350054. https://doi.org/10.1142/s0219633613500545

    Article  Google Scholar 

  16. Kurylo MJ, Hollinden GA, Timmons RB (1970) Esr study of the kinetic isotope effect in the reaction of H and D atoms with Ch4. J Chem Phys 52:1773–1781. https://doi.org/10.1063/1.1673216

    Article  CAS  Google Scholar 

  17. Baulch DL (1992) Evaluated kinetic data for combustion modeling of atom reactions. J Phys Chem Ref Data 21:757. https://doi.org/10.1063/1.1748524

    Article  CAS  Google Scholar 

  18. Camden JP, Bechtel HA, Brown DJA, Zare RN (2005) Effects of C-H stretch excitation on the H+CH4reaction. J Chem Phys 123:134301. https://doi.org/10.1063/1.2034507

    Article  PubMed  CAS  Google Scholar 

  19. Baker RR, Baldwin RR, Walker RW (1971) The use of the H2+O2 reaction in determining the velocity constants of elementary reaction in hydrocarbon oxidation. Symp Combust 13:291–299. https://doi.org/10.1016/S0082-0784(71)80032-2

    Article  Google Scholar 

  20. Back RA, van der Auwera D (1962) The mercury-photosensitized decomposition of methane. Can J Chem 40:2339–2347. https://doi.org/10.1139/v62-357

    Article  CAS  Google Scholar 

  21. Marquaire P-M, Dastidar AG, Manthorne KC, Pacey PD (1994) Electron spin resonance study of the reaction of hydrogen atoms with methane. Can J Chem 72:600–605. https://doi.org/10.1139/v94-083

    Article  CAS  Google Scholar 

  22. Bryukov MG, Slagle IR, Knyazev VD (2001) Kinetics of reactions of Cl atoms with methane and chlorinated methanes. J Phys Chem A 105:3107–3122. https://doi.org/10.1021/jp0257909

    Article  CAS  Google Scholar 

  23. Sutherland JW, Su MC, Michael JV (2001) Rate constants for H + CH4, CH3 + H2, and CH4 dissociation at high temperature. Int J Chem Kinet 33:669–684. https://doi.org/10.1002/kin.1064

    Article  CAS  Google Scholar 

  24. Andersson S, Nyman G, Arnaldsson A, Manthe U (2009) Comparison of Quantum Dynamics and Quantum Transition State Theory Estimates of the \ce{H+CH4} Reaction Rate. J Phys Chem A 113:4468–4478

    Article  CAS  Google Scholar 

  25. Zhou Y, Fu B, Wang C et al (2011) Ab initio potential energy surface and quantum dynamics for the H + CH4→ H2+ CH3 reaction. J Chem Phys 134:064323. https://doi.org/10.1063/1.3552088

    Article  PubMed  CAS  Google Scholar 

  26. Zhou Y, Zhang DH (2015) Eight-dimensional quantum reaction rate calculations for the H + CH4 and H2 + CH3 reactions on recent potential energy surfaces. J Chem Phys 194307:194307. https://doi.org/10.1063/1.4902005

    Article  CAS  Google Scholar 

  27. Vikár A, Nagy T, Lendvay G (2016) Testing the Palma-Clary Reduced Dimensionality Model Using Classical Mechanics on the CH4 + H → CH3 + H2 Reaction. J Phys Chem A 120:5083–5093. https://doi.org/10.1021/acs.jpca.6b00346

    Article  PubMed  CAS  Google Scholar 

  28. Van Harrevelt R, Nyman G, Manthe U (2007) Accurate quantum calculations of the reaction rates for HD+C H4. J Chem Phys 126:084303. https://doi.org/10.1063/1.2464102

    Article  PubMed  CAS  Google Scholar 

  29. Li Y, Suleimanov YV, Li J et al (2013) Rate coefficients and kinetic isotope effects of the X + CH<inf>4</inf> ? CH<inf>3</inf> + HX (X = H, D, Mu) reactions from ring polymer molecular dynamics. J Chem Phys 138:1–10. https://doi.org/10.1063/1.4793394

    Article  CAS  Google Scholar 

  30. Pu J, Truhlar DG (2002) Validation of variational transition state theory with multidimensional tunneling contributions against accurate quantum mechanical dynamics for H+CH4→H2+CH3 in an extended temperature interval. J Chem Phys 117:1479–1481. https://doi.org/10.1063/1.1485063

    Article  CAS  Google Scholar 

  31. Kerkeni B, Clary DC (2004) Kinetic isotope effects in the reactions of D atoms with CH 4 , C 2 H 6 , and CH 3 OH: quantum dynamics calculations . J Phys Chem A 108:8966–8972. https://doi.org/10.1021/jp048440q

    Article  CAS  Google Scholar 

  32. Bunker DL, Pattengill MD (1970) Trajectory studies of hot-atom reactions. I. Tritium and methane. J Chem Phys 53:3041–3049. https://doi.org/10.1063/1.1674447

    Article  CAS  Google Scholar 

  33. Chapman S, Bunker DL (1975) An exploratory study of reactant vibrational effects in CH3+H2 and its isotopic variants. J Chem Phys 62:2890–2899. https://doi.org/10.1063/1.430827

    Article  CAS  Google Scholar 

  34. Raff LM (1974) Theoretical investigations of the reaction dynamics of polyatomic systems: chemistry of the hot atom (T* + CH4) and (T* + CD4) systems. J Chem Phys 60:2220–2244. https://doi.org/10.1063/1.1681351

    Article  CAS  Google Scholar 

  35. Yu H-G, Nyman G (2000) Interpolated ab initio quantum scattering for the reaction of OH with HCl. J Chem Phys 113:8936. https://doi.org/10.1063/1.1319999

    Article  CAS  Google Scholar 

  36. Wang D, Bowman JM (2001) A reduced dimensionality, six-degree-of-freedom, quantum calculation of the H+CH4→H2+CH3 reaction. J Chem Phys 115:2055–2061. https://doi.org/10.1063/1.1383048

    Article  CAS  Google Scholar 

  37. Huarte-Larrañaga F, Manthe U (2001) Quantum dynamics of the CH4 + H → CH3 + H2 reaction: full-dimensional and reduced dimensionality rate constant calculations †. J Phys Chem A 105:2522–2529. https://doi.org/10.1021/jp003579w

    Article  CAS  Google Scholar 

  38. Takayanagi T (1996) Reduced dimensionality calculations of quantum reactive scattering for the H+CH4→H2+CH3 reaction. J Chem Phys 104:2237–2242. https://doi.org/10.1063/1.470920

    Article  CAS  Google Scholar 

  39. Li J, Chen J, Zhao Z et al (2015) A permutationally invariant full-dimensional ab initio potential energy surface for the abstraction and exchange channels of the H + CH4 system. J Chem Phys 142:204302. https://doi.org/10.1063/1.4921412

    Article  PubMed  CAS  Google Scholar 

  40. Xu X, Chen J, Zhang DH (2014) Global potential energy surface for the H+CH<inf>4</inf>虠H<inf>2</inf>+CH<inf>3</inf> reaction using neural networks. Chin J Chem Phys 27:373–379. https://doi.org/10.1063/1674-0068/27/04/373-379

    Article  CAS  Google Scholar 

  41. Li Y, Suleimanov YV, Li J et al (2013) Rate coefficients and kinetic isotope effects of the X + CH 4 → CH 3 + HX (X = H, D, Mu) reactions from ring polymer molecular dynamics. J Chem Phys 138:094307. https://doi.org/10.1063/1.4793394

    Article  PubMed  CAS  Google Scholar 

  42. Zhao Y, Yamamoto T, Miller WH (2004) Path integral calculation of thermal rate constants within the quantum instanton approximation: application to the H+CH4→H2+CH3hydrogen abstraction reaction in full Cartesian space. J Chem Phys 120:3100–3107. https://doi.org/10.1063/1.1641006

    Article  PubMed  CAS  Google Scholar 

  43. Laude G, Calderini D, Tew DP, Richardson JO (2018) Ab initio instanton rate theory made efficient using Gaussian process regression. Faraday Discuss 212:237–258. https://doi.org/10.1039/c8fd00085a

    Article  PubMed  CAS  Google Scholar 

  44. Suleimanov YV, Aoiz FJ, Guo H (2016) Chemical reaction rate coefficients from ring polymer molecular dynamics: theory and practical applications. J Phys Chem A 120:8488–8502. https://doi.org/10.1021/acs.jpca.6b07140

    Article  PubMed  CAS  Google Scholar 

  45. Neta P (1972) Reactions of hydrogen atoms in aqueous solutions. Chem Rev 72:533–543. https://doi.org/10.1021/cr60279a005

    Article  CAS  Google Scholar 

  46. Neta P, Shuler Robert H (1971) Rate Constants for Reaction of Hydrogen Atoms with Compounds of Biochemical. Radiat Res 47:612–627

    Article  CAS  Google Scholar 

  47. Neta P, Schuler RH (1972) Rate Constants for Reaction of Hydrogen Atoms with Aromatic and Heterocyclic Compounds. The Electrophilic Nature of Hydrogen Atom. J Am Chem Soc 94:1056–1059

    Article  CAS  Google Scholar 

  48. Mezyk SP, Bartels DM (2002) Rate of Hydrogen Atom Reaction with Ethanol, Ethanol- d 5 , 2-Propanol, and 2-Propanol- d 7 in Aqueous Solution †. J Phys Chem A 101:1329–1333. https://doi.org/10.1021/jp9629957

    Article  Google Scholar 

  49. Madden KP, Mezyk SP (2011) Critical Review of Aqueous Solution Reaction Rate Constants for Hydrogen Atoms. J Phys Chem Ref Data 40:023103. https://doi.org/10.1063/1.3578343

    Article  CAS  Google Scholar 

  50. Galano A, Alvarez-Idaboy JR (2014) Kinetics of radical-molecule reactions in aqueous solution: a benchmark study of the performance of density functional methods. J Comput Chem 35:2019–2026. https://doi.org/10.1002/jcc.23715

    Article  PubMed  CAS  Google Scholar 

  51. Carvalho-Silva VH, Aquilanti V, de Oliveira HCB, Mundim KC (2017) Deformed transition-state theory: deviation from Arrhenius behavior and application to bimolecular hydrogen transfer reaction rates in the tunneling regime. J Comput Chem 38:178–188. https://doi.org/10.1002/jcc.24529

    Article  PubMed  CAS  Google Scholar 

  52. Claudino D, Gargano R, Carvalho-Silva VH et al (2016) Investigation of the abstraction and dissociation mechanism in the nitrogen trifluoride channels: combined post-Hartree–Fock and Transition State Theory approaches. J Phys Chem A 120:5464–5473

    Article  CAS  Google Scholar 

  53. Sanches-Neto FO, Coutinho ND, Carvalho-Silva VH (2017) A novel assessment of the role of the methyl radical and water formation channel in the CH3OH + H reaction. Phys ChemChem Phys 19:24467–24477. https://doi.org/10.1039/C7CP03806B

    Article  CAS  Google Scholar 

  54. Santin LG, Toledo EM, Carvalho-Silva VH et al (2016) Methanol solvation effect on the proton rearrangement of curcumin’s enol forms: an ab initio molecular dynamics and electronic structure viewpoint. J Phys Chem C 120:19923–19931. https://doi.org/10.1021/acs.jpcc.6b02393

    Article  CAS  Google Scholar 

  55. Aquilanti V, Mundim KC, Elango M et al (2010) Temperature dependence of chemical and biophysical rate processes: phenomenological approach to deviations from Arrhenius law. Chem Phys Lett 498:209–213. https://doi.org/10.1016/j.cplett.2010.08.035

    Article  CAS  Google Scholar 

  56. Aquilanti V, Coutinho ND, Carvalho-Silva VH (2017) Kinetics of Low-Temperature Transitions and Reaction Rate Theory from Non-Equilibrium Distributions. Philos Trans R Soc London A 375:20160204. https://doi.org/10.1098/rsta.2016.0201

    Article  CAS  Google Scholar 

  57. Aquilanti V, Borges EP, Coutinho ND et al (2018) From statistical thermodynamics to molecular kinetics: the change, the chance and the choice. Rend Lincei Sci Fis Nat 28:787–802. https://doi.org/10.1007/s12210-018-0749-9

    Article  Google Scholar 

  58. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich A, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ (2016) Gaussian 09, Revision A.02. Gaussian, Inc., Wallingford CT

    Google Scholar 

  59. Marenich AV, Cramer CJ, Truhlar DG (2009) Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J Phys Chem B 113:6378–6396

    Article  CAS  Google Scholar 

  60. Díaz MG, Andrada MF, Vega-Hissi EG, Martinez JCG (2019) Density functional theory study of the oxidation reaction in the gas and aqueous phase of allyl methyl disulfide with hydroxyl radical. Struct Chem 30:237–245. https://doi.org/10.1007/s11224-018-1198-x

    Article  CAS  Google Scholar 

  61. Silva VHC, Aquilanti V, De Oliveira HCB, Mundim KC (2013) Uniform description of non-Arrhenius temperature dependence of reaction rates, and a heuristic criterion for quantum tunneling vs classical non-extensive distribution. Chem Phys Lett 590:201–207. https://doi.org/10.1016/j.cplett.2013.10.051

    Article  CAS  Google Scholar 

  62. Takayanagi T (2004) Theory of Atom Tunneling Reactions in the Gas Phase. Springer, Berlin, pp 15–31

    Google Scholar 

  63. Bell RP (1980) The Tunnel Effect in Chemistry. Champman and Hall, London

    Book  Google Scholar 

  64. Collins FC, Kimball GE (1949) Diffusion-Controlled Reactions in Liquid Solutions. Ind Eng Chem 41:2551–2553. https://doi.org/10.1021/ie50479a040

    Article  CAS  Google Scholar 

  65. Smoluchowski MV (1916) Drei Vortrage uber Diffusion, Brownsche Bewegung und Koagulation von Kolloidteilchen. Phys Z 17:557–585

    Google Scholar 

  66. Onsager L (1936) Electric Moments of Molecules in Liquids. J Am Chem Soc 58:1486–1493. https://doi.org/10.1021/ja01299a050

    Article  CAS  Google Scholar 

  67. Johnson III, Russell D (2013) Computational chemistry comparison and benchmark database. In: NIST Stand. Ref. database, 69. http://www.boulder.nist.gov/div838/tar/file02.html. Accessed 12 Apr 2017

  68. Corchado JC, Bravo JL, Espinosa-Garcia J (2009) The hydrogen abstraction reaction H+ CH4. I. New analytical potential energy surface based on fitting to ab initio calculations. J Chem Phys 130:184314. https://doi.org/10.1063/1.3132223

    Article  PubMed  CAS  Google Scholar 

  69. Beyer AN, Richardson JO, Knowles PJ et al (2016) Quantum Tunneling Rates of Gas-Phase Reactions from On-the-Fly Instanton Calculations. J Phys Chem Lett 7:4374–4379. https://doi.org/10.1021/acs.jpclett.6b02115

    Article  PubMed  CAS  Google Scholar 

  70. Karandashev K, Xu ZH, Meuwly M et al (2017) Kinetic isotope effects and how to describe them. Struct Dyn 4:1–20. https://doi.org/10.1063/1.4996339

    Article  CAS  Google Scholar 

  71. Jacobsen RL, Johnson RD, Irikura KK, Kacker RN (2013) Anharmonic Vibrational Frequency Calculations Are Not Worthwhile for Small Basis Sets. J Chem Theory Comput 9:951–954. https://doi.org/10.1021/ct300293a

    Article  PubMed  CAS  Google Scholar 

  72. Kashinski DO, Chase GM, Nelson RG et al (2017) Harmonic vibrational frequencies: approximate global scaling factors for TPSS, M06, and M11 functional families using several common basis sets. J Phys Chem A 121:2265–2273. https://doi.org/10.1021/acs.jpca.6b12147

    Article  PubMed  CAS  Google Scholar 

  73. Carvalho-Silva VH, Coutinho ND, Aquilanti V (2019) Temperature dependence of rate processes beyond arrhenius and eyring: activation and transitivity. Front Chem 7:380. https://doi.org/10.3389/fchem.2019.00380

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Laidler KJ (1984) The development of the Arrhenius equation. J Chem Educ 61:494. https://doi.org/10.1021/ed061p494

    Article  CAS  Google Scholar 

  75. Coutinho ND, Silva VHC, Mundim KC, de Oliveira HCB (2015) Description of the effect of temperature on food systems using the deformed Arrhenius rate law: deviations from linearity in logarithmic plots vs. inverse temperature. Rend Lincei 26:141–149. https://doi.org/10.1007/s12210-015-0407-4

    Article  Google Scholar 

  76. Coutinho ND, Silva VHC, de Oliveira HCB et al (2015) Stereodynamical origin of anti-arrhenius kinetics: negative activation energy and roaming for a four-atom reaction. J Phys Chem Lett 6:1553–1558. https://doi.org/10.1021/acs.jpclett.5b00384

    Article  PubMed  CAS  Google Scholar 

  77. Schuler RH, Neta P, Fessenden RW (1971) Electron spin resonance study of the rate constants for reaction of hydrogen atoms with organic compounds in aqueous solution. J Phys Chem 75:1654–1666. https://doi.org/10.1021/j100906a004

    Article  CAS  Google Scholar 

  78. Li G, Li Q-S, Xie Y, Schaefer HF (2015) From gas-phase to liquid-water chemical reactions: the fluorine atom plus water trimer system. Angew Chem Int Ed 54:11223–11226. https://doi.org/10.1002/anie.201505075

    Article  CAS  Google Scholar 

  79. Li G, Xie Y, Schaefer HF (2016) From gas-phase to liquid water chemical reactions: the F + (H2O)n, n = 1–4 systems. Chem Phys Lett 648:1–7. https://doi.org/10.1016/J.CPLETT.2016.01.014

    Article  CAS  Google Scholar 

  80. Li G, Wang H, Li Q-S et al (2016) The reaction between bromine and the water dimer and the highly exothermic reverse reaction. J Comput Chem 37:177–182. https://doi.org/10.1002/jcc.23951

    Article  PubMed  CAS  Google Scholar 

  81. Li G, Wang H, Li Q-S et al (2014) The exothermic HCl + OH·(H 2 O) reaction: removal of the HCl + OH barrier by a single water molecule. J Chem Phys 140:124316. https://doi.org/10.1063/1.4869518

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Danilo Calderini and Vincenzo Aquilanti for fruitful discussions.

Funding

Support was given by the Brazilian agency CAPES. This research is also supported by the High-Performance Computing Center at the Universidade Estadual de Goiás, Brazil. Valter H. Carvalho-Silva thanks Brazilian agency CNPq for the research funding programs (Universal 01/2016-Faixa A-406063/2016-8) and Organizzazione Internazionale Italo-Latino Americana (IILA) for a Biotechnology Sector-2019 scholarship. Federico Palazzetti and Nayara D. Coutinho was financially supported by the Italian Ministry for Education, University and Research, MIUR: SIR 2014 “Scientific Independence for young Researchers” (RBSI14U3VF).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Flávio O. Sanches-Neto or Valter H. Carvalho-Silva.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This paper has not been submitted elsewhere for consideration of publication.

Electronic supplementary material

ESM 1

(DOCX 160 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sanches-Neto, F.O., Coutinho, N.D., Palazzetti, F. et al. Temperature dependence of rate constants for the H(D) + CH4 reaction in gas and aqueous phase: deformed Transition-State Theory study including quantum tunneling and diffusion effects. Struct Chem 31, 609–617 (2020). https://doi.org/10.1007/s11224-019-01437-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-019-01437-3

Keywords

Navigation