Skip to main content
Log in

Theoretical study on the mechanism and kinetics of atmospheric reactions C n H2n+2 + NH2 (n = 1–3)

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Mechanism and kinetics of the gas phase reactions of C n H2n+2 (n = 1–3) with NH2 were studied using the B3LYP and MP2 methods. The considered reactions were both hydrogen abstraction and substitution reactions. The calculated values of activation energies for hydrogen abstraction reactions were less than 80 kJ/mol and those for substitution reactions were about 230 kJ/mol. Formation of six heterocyclic molecules (I–VI) through free-radical cyclization reaction was investigated. The calculated values of activation energies for the radical cyclization reactions were about 200 kJ/mol. The rate constants of the reactions were calculated using transition state theory at 298 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Sutherland JW, Su M-C, Michael JV (2001) Rate constants for H + CH4, CH3 + H2 and CH4 dissociation at high temperature. Int J Chem Kinet 33:669–684

    Article  CAS  Google Scholar 

  2. Wang Z-X, Liu R-Z, Huang M-B, Yu Z (1996) An ab initio study on the insertion reactions of CH(X2∏) with NH3, H2O, and HF. Can J Chem 74:910–917

    Article  CAS  Google Scholar 

  3. Moskaleva LV, Lin MC (1998) Theoretical study of the NH2 + C2H2 Reaction. J Phys Chem A 102:4687–4693

    Article  CAS  Google Scholar 

  4. Corchado JC, Espinosa-Garcia J, Yang M (2011) Kinetics and Dynamics of the NH3 + H → NH2 + H2 reaction using transition state methods, quasi-classical trajectories, and quantum mechanical scattering. J Chem Phys 135:014303

    Article  Google Scholar 

  5. Monge-Palacios M, Rangel C, Espinosa-Garcia J (2013) Ab initio based potential energy surface and kinetics study of OH + NH3 hydrogen abstraction reaction. J Chem Phys 138:084305

    Article  CAS  Google Scholar 

  6. Monge-Palacios M, Rangel C, Corchado JC, Espinosa-Garcia J (2012) Analytical potential energy surface for the reaction with intermediate complexes NH3 + Cl → NH2 + HCl: application to the kinetics study. Int J Quant Chem 112:1887–1903

    Article  CAS  Google Scholar 

  7. Atkinson R, Baulch DL, Cox RA, Crowley JN, Hampson RF, Hynes RG, Jenkin ME, Rossi MJ, Troe J (2004) Evaluated kinetic and photochemical data for atmospheric chemistry: volume I-gas phase reactions of O x , HO x , NO x and SO x Species. Atmos Chem Phys 4:1461–1738

    Article  CAS  Google Scholar 

  8. Espinosa-Garcia J, Corchado JC (2010) Analytical potential energy surface and kinetics of NH3 + H → NH2 + H2 hydrogen abstraction and the ammonia inversion reactions. J Phys Chem A 114:4455–4463

    Article  CAS  Google Scholar 

  9. Valadbeigi Y, Farrokhpour H, Tabrizchi M (2014) Theoretical study on the mechanism and kinetics of atmospheric reactions NH2OH + OOH and NH2CH3 + OOH. Phys Lett A 378:777–784

    Article  CAS  Google Scholar 

  10. Song S, Golden DM, Hanson RK, Bowman CT, Senosiain JP, Musgrave CB, Friedrichs G (2003) A shock tube study of the reaction NH2 + CH4 → NH3 + CH3 and comparison with transition state theory. Int J Chem Kinet 35:304–309

    Article  CAS  Google Scholar 

  11. Demissy M, Lesclaux R (1980) Kinetics of hydrogen abstraction by amino radicals from alkanes in the gas phase. A flash photolysis-laser resonance absorption study. J Am Chem Soc 102:2897–2902

    Article  CAS  Google Scholar 

  12. Mebel AM, Lin MC (1999) Prediction of absolute rate constants for the reactions of NH2 with alkanes from ab initio G2M/TST calculations. J Phys Chem A 103:2088–2096

    Article  CAS  Google Scholar 

  13. Huntress WT Jr, Elleman DD (1970) An ion cyclotron resonance study of the ion-molecule reactions in methane–ammonia mixtures. J Am Chem Soc 92:3565–3573

    Article  CAS  Google Scholar 

  14. Koszinowski K, Schroder D, Schwarz H (2003) Probing cooperative effects in bimetallic clusters: indications of C–N coupling of CH4 and NH3 mediated by the cluster ion PtAu+ in the gas phase. J Am Chem Soc 125:3676–3677

    Article  CAS  Google Scholar 

  15. Krestchmer R, Schlangen M, Kaupp M, Schwarz H (2012) Neutral metal atoms acting as a leaving group in gas-phase SN2 reactions: M(CH3)+ + NH3 → CH3NH3++M (M = Zn, Cd, Hg). Organometallics 31:3816–3824

    Article  Google Scholar 

  16. Diefenbach M, Brönstrup M, Aschi M, Schröder D, Schwarz H (1999) HCN synthesis from methane and ammonia: mechanisms of Pt+-mediated C–N coupling. J Am Chem Soc 121:10614–10625

    Article  CAS  Google Scholar 

  17. Naito T (2008) Heterocycle synthesis via radical reactions. Pure Appl Chem 80:717–726

    Article  CAS  Google Scholar 

  18. RajanBabu TV (1991) Stereochemistry of intramolecular free-radical cyclization reactions. Acc Chem Res 24:139–145

    Article  CAS  Google Scholar 

  19. Malone A, Scanlan EM (2013) Applications of 5-exo-trig thyl radical cyclizations for the synthesis of thiosugars. J Org Chem 78:10917–10930

    Article  CAS  Google Scholar 

  20. Fukui K (1981) The path of chemical reactions: the IRC approach. Acc Chem Res 14:363–368

    Article  CAS  Google Scholar 

  21. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, revision A.1. Gaussian, Inc., Wallingford

  22. Gong S, Wang C, Li Q (2012) Theoretical study of the mechanisms and rate constants on the reaction of H2CNH with O(3P). Comput Theor Chem 991:141–149

    Article  CAS  Google Scholar 

  23. Tzima TD, Papavasileiou KD, Papayannis DK, Melissas VS (2006) Theoretical kinetic study of the CH3Br + OH atmospheric system. Chem Phys 324:591–599

    Article  CAS  Google Scholar 

  24. Metcalfe WK, Simmie JM, Curran HJ (2010) Ab initio chemical kinetics of methyl formate decomposition: the simplest model biodiesel. J Phys Chem A 114:5478–5484

    Article  CAS  Google Scholar 

  25. Zhao Y, Truhlar DG (2008) Density functional with broad applications in chemistry. Acc Chem Res 41:157–167

    Article  CAS  Google Scholar 

  26. Valadbeigi Y, Farrokhpour H (2013) Theoretical study on keto–enol tautomerism and isomerization in pyruvic acid. Int J Quant Chem 113:2372–2378

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to express their thanks to the Center of Excellency in Chemistry of Isfahan University of Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Farrokhpour.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 2512 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Valadbeigi, Y., Farrokhpour, H. Theoretical study on the mechanism and kinetics of atmospheric reactions C n H2n+2 + NH2 (n = 1–3). Struct Chem 26, 383–391 (2015). https://doi.org/10.1007/s11224-014-0500-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-014-0500-9

Keywords

Navigation