Skip to main content
Log in

Analysis of the structures, energetics, and vibrational frequencies for the hydrogen-bonded interaction of nucleic acid bases with Carmustine pharmaceutical agent: a detailed computational approach

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

In the present study, it is attempted to scrutinize the hydrogen bonding interaction between Carmustine drug and DNA pyrimidine bases by means of density functional theory calculations regarding their geometries, binding energies, vibrational frequencies, and topological features of the electron density in the gas phase and the water solution. Based on the density functional theory results, it is found that the process of intermolecular interaction between Carmustine drug and nucleobases is exothermic and all of the optimized configurations are stable. Furthermore, the negative stability energy represented by a polarizable continuum model shows the significant increase in the solubility of the nucleobase after hydrogen bonding intermolecular interaction in the presence of water solvent. It is also found that the intermolecular hydrogen bonds between drug and the nucleobases play the significant role in the stability of the physisorption configurations. Hydrogen bond energies for hydrogen-bonded complexes are obtained from Espinosa method and the atoms-in-molecules theory are also applied to get a more precise insight into the nature of the intermolecular hydrogen bond interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Li H, Mei WJ, Xu ZH, Pang DW, Ji LN, Lin ZH (2007) Electrochemistry of a novel monoruthenatedporphyrin and its interaction with DNA. J Electroanal Chem 600:243–250

    Article  CAS  Google Scholar 

  2. Sirajuddin M, Ali S, Badshah A (2013) Drug-DNA interactions and their study by UV-visible, fluorescence spectroscopies and cyclic voltammetry. J Photochem Photobiol B 124:1–19

    Article  CAS  PubMed  Google Scholar 

  3. Zhou YL, Li YZ (2004) Studies of interaction between poly (allylamine hydrochloride) and double helix DNA by spectral methods. Biophys Chem 107:273–281

    Article  CAS  PubMed  Google Scholar 

  4. Rubinson MA, Parkinson JA, Evstigneev MP (2015) Entropic binding mode preference in cooperative homo-dimeric drug–DNA recognition. Chem Phys Lett 624:12–14

    Article  CAS  Google Scholar 

  5. Baik M-H, Friesner RA, Lippard SJ (2003) Theoretical study of cisplatin binding to purine bases: why does cisplatin prefer guanine over adenine? J Am Chem Soc 125:14082–14092

    Article  CAS  PubMed  Google Scholar 

  6. Chiavarino B, Crestoni ME, Fornarini S, Scuderi D, Salpin J-Y (2013) Interaction of cisplatin with adenine and guanine: a combined IRMPD, MS/MS, and theoretical study. J Am Chem Soc 135:1445–1455

    Article  CAS  PubMed  Google Scholar 

  7. Kothandapani A, Sawant A, Dangeti VSMN, Sobol RW, Patrick SM (2013) Epistatic role of base excision repair and mismatch repair pathways in mediating cisplatin cytotoxicity. Nucleic Acids Res 41:7332–7343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Truong TB, Pham VN (2017) A DFT investigation on interactions between asymmetric derivatives of cisplatin and nucleobase guanine. Chem Phys Lett 680:44–50

    Article  CAS  Google Scholar 

  9. Sarmah A, Roy RK (2012) Understanding the preferential binding interaction of aqua-cisplatins with nucleobase guanine over adenine: a density functional reactivity theory based. RSC Adv 3:2822–2830

    Article  CAS  Google Scholar 

  10. Jiang B, Zhou L (2011) Theoretical study of anticancer drug trans-[Pd(dmnp)2Cl2] binding to DNA purine bases, phosphate group and amino acid residues. Struct Chem 22:1353–1364

    Article  CAS  Google Scholar 

  11. Yamazaki S, Taketsugu T (2012) Nonradiative deactivation mechanisms of uracil, thymine, and 5-fluorouracil: a comparative ab initio study. J Phys Chem A 116:491–503

    Article  CAS  PubMed  Google Scholar 

  12. Deepa P, Kolandaivel P, Senthil K (2008) Interactions of anticancer drugs with usual and mismatch base pairs—density functional theory studies. Biophys Chem 136:50–58

    Article  CAS  PubMed  Google Scholar 

  13. Gustavsson T, Sarkar N, Banyasz Á, Markovitsi D, Improta R (2007) Solvent effects on the steady-state absorption and fluorescence spectra of uracil, thymine and 5-fluorouracil. J Photochem Photobiol 83:595–599

    Article  CAS  Google Scholar 

  14. Hokmabady L, Raissi H, Khanmohammadi A (2016) Interactions of the 5-fluorouracil anticancer drug with DNA pyrimidine bases: a detailed computational approach. Struct Chem 27:487–504

    Article  CAS  Google Scholar 

  15. Gester RM, Bistafa C, Georg HC, Coutinho K, Canuto S (2014) Theoretically describing the 17O magnetic shielding constant of biomolecular systems: uracil and 5-fluorouracil in water environment. Theor Chem Accounts 133:1424–1432

    Article  CAS  Google Scholar 

  16. Kong H, Sun Q, Wang L, Tan Q, Zhang C, Sheng K, Xu W (2014) Atomic-scale investigation on the facilitation and inhibition of guanine tautomerization at Au(111) surface. ACS Nano 8:1804–1808

    Article  CAS  PubMed  Google Scholar 

  17. Salvatore P, Nazmutdinov R, Ulstrup J, Zhang J (2015) DNA bases assembled on the Au(110)/electrolyte interface: a combined experimental and theoretical study. J Phys Chem B 119:3123–3134

    Article  CAS  PubMed  Google Scholar 

  18. Sponer J, Sabat M, Burda JV, Leszczynski J, Hobza P, Lippert B (1999) Metal ions in non-complementary DNA base pairs: an ab initio study of Cu(I), Ag(I), and Au(I) complexes with the cytosine-adenine base pair. J Biol Inorg Chem 4:537–545

    Article  CAS  PubMed  Google Scholar 

  19. Zhao H, Zhou L (2012) A theoretical study on transition state of the antitumor drug: gold(III)dithiocarbamate derivative interaction with cysteine and DNA purine bases. Comput Theor Chem 979:22–32

    Article  CAS  Google Scholar 

  20. Zhu W, Luo X, Puah CM, Tan X, Shen J, Gu J, Chen K, Jiang H (2004) The multiplicity, strength, and nature of the interaction of nucleobases with alkaline and alkaline earth metal cations: a density functional theory investigation. J Phys Chem A 108:4008–4018

    Article  CAS  Google Scholar 

  21. Shakourian-Fard M, Fattahi A (2012) Theoretical investigation on the structural and electronic properties of complexes formed by thymine and 2′-deoxythymidine with different anions. Struct Chem 23(1):7–28

    Article  CAS  Google Scholar 

  22. Rosa M, Corni S, Di Felice R (2012) A density functional theory study of cytosine on Au(111). J Phys Chem C 116:21366–21373

    Article  CAS  Google Scholar 

  23. Nakanishia Y, Kitagawaa Y, Shigetab Y, Saitoa T, Matsuic T, Miyachic H, Kawakamia T, Okumuraa M, Yamaguchid K (2009) Theoretical studies on magnetic interactions between Cu(II) ions in salen nucleobases. Polyhedron 28:1945–1949

    Article  CAS  Google Scholar 

  24. Bacchus-Montabonel MC (2012) Theoretical study of charge transfer dynamics in collisions of C6+ carbon ions with pyrimidine nucleobases. Eur Phys J D 66:3002–3008

    Article  CAS  Google Scholar 

  25. Sarmah A, Kinkar Roy R (2015) Interaction between small gold clusters and nucleobases: a density functional reactivity theory based study. Phys Chem C 119:17940–17953

    Article  CAS  Google Scholar 

  26. Cao GJ, Xu HG, Re L, Zheng W (2012) Hydrogen bonds in the nucleobase, gold complexes: photoelectron spectroscopy and density functional calculations. J Chem Phys 136:014305

    Article  CAS  PubMed  Google Scholar 

  27. Benda Z, Szalay PG (2016) Characterization of the excited states of DNA building blocks: a coupled cluster computational study. Phys Chem Chem Phys 18:23596–23606

    Article  CAS  PubMed  Google Scholar 

  28. Wang H, Zeng X, Zhou R, Zhao C (2013) A comparative DFT study on aquation and nucleobase binding of ruthenium (II) and osmium (II) arene complexes. J Mol Model 19:4849–4856

    Article  CAS  PubMed  Google Scholar 

  29. Lagoja IM (2007) Pyrimidine as constituent of natural biologically active compounds. Chem Biodivers 2:1–50

    Article  Google Scholar 

  30. Nguyen HP, Seto NOL, Cai Y, Leinala EK, Borisova SN, Palcic MM, Evans SV (2003) The influence of an intramolecular hydrogen bond in differential recognition of inhibitory acceptor analogs by human ABO(H) blood group A and B glycosyltransferases. J Biol Chem 278:49191–49195

    Article  CAS  PubMed  Google Scholar 

  31. Song Y, Zhang W, Ji H, Zhou Y, Zhu J, Lu J (2001). Zhongguo Yaowu Huaxue Za Zhi 11:311–316

    CAS  Google Scholar 

  32. Raissi H, Khanmohammadi A, Yoosefian M, Mollania F (2013) Ab initio and DFT studies on 1-(thionitrosomethylene) hydrazine: conformers, energies, and intramolecular hydrogen-bond strength. Struct Chem 24:1121–1133

    Article  CAS  Google Scholar 

  33. Raissi H, Yoosefian M, Mollania F, Khoshkhou S (2013) Electronic structures, intramolecular interactions, and aromaticity of substituted 1-(2-iminoethylidene) silan amine: a density functional study. Struct Chem 24:123–137

    Article  CAS  Google Scholar 

  34. Raissi H, Khoshbin Z, Mollania F (2014) The analysis of structural and electronic properties for assessment of intramolecular hydrogen bond (IMHB) interaction: a comprehensive study into the effect of substitution on intramolecular hydrogen bond of 4-nitropyridine-3-thiol in ground and electronic excited state. Struct Chem 25:515–538

    Article  CAS  Google Scholar 

  35. Westphal M, Hilt DC, Bortey E, Delavault P, Olivares R, Warnke PC, Whittle IR, Jääskeläinen J, Ram Z (2003) A phase 3 trial of local chemotherapy with biodegradable carmustine (BCNU) wafers (Gliadel wafers) in patients with primary malignant glioma. Neuro-Oncology 5:79–88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Reithmeier T, Graf E, Piroth T, Trippel M, Pinsker MO, Nikkhah G (2010) BCNU for recurrent glioblastomamultiforme: efficacy, toxicity and prognostic factors. BMC Cancer:10–30

  37. Qian L, Zheng J, Wang K, Tang Y, Zhang X, Zhang H, Huang F, Pei Y, Jiang Y (2013) Cationic coree shell nanoparticles with carmustine contained within O6-benzylguanine shell for glioma therapy. Biomaterials 34:8968–8978

    Article  CAS  PubMed  Google Scholar 

  38. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Vreven Jr T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Liu G, Stefanov BB, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nana-yakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian 03, revision C.02 (or D.01). Gaussian Inc., Pittsburgh

    Google Scholar 

  39. Becke AD (1993) A new mixing of Hartree-Fock and local density functional theories. J Chem Phys 98:1372–1377

    Article  CAS  Google Scholar 

  40. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  41. VMiertus S, Scrocco EC, Tomasi J (1981) Electrostatic interaction of asolute with a continuum. A direct utilization of ab initio molecular potentials for the prevision of solvent effects. J Chem Phys 55:117–129

    Google Scholar 

  42. Mennucci B (2012) Polarizable continuum model. Wiley Interdiscip. Rev Comput Mol Sci 2:386–404

    Article  CAS  Google Scholar 

  43. Boys SF, Bernardi F (1970) The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol Phys 19:553–566

    Article  CAS  Google Scholar 

  44. RFW B (1990) Atoms in molecules—a quantum theory. Clarendon Press, Oxford A. E Reed, L A Curtiss and F Weinhold, Chem Rev, 88: 899

    Google Scholar 

  45. Espinosa E, Molins E (2000) Retrieving interaction potentials from the topology of the electron density distribution: the case of hydrogen bonds. J Chem Phys 113:5686–5694

    Article  CAS  Google Scholar 

  46. Espionsa E, Souhassou M, Lachekar H, Lecomte C (1999) Topological analysis of the electron density in hydrogen bonds. Acta Crystallogr B 55:563–572

    Article  Google Scholar 

  47. Safdari F, Raissi H, Shahabi M, Zaboli M (2017) DFT calculations and molecular dynamics simulation study on the adsorption of 5-fluorouracil anticancer drug on Graphene oxide nanosheet as a drug delivery vehicle. J Incl Phenom Macrocycl Chem 27:805–817

    CAS  Google Scholar 

  48. Shahabi M, Raissi H, Mollania F (2014) Electronic structures, intramolecular hydrogen bond interaction, and aromaticity of substituted 4-amino-3-penten-2-one in ground and electronic excited state. Struct Chem 26:491–506

    Article  CAS  Google Scholar 

  49. Kamel M, Raissi H, Morsali A, Shahabi M (2017) Assessment of the adsorption mechanism of flutamide anticancer drug on the functionalized single-walled carbon nanotube surface as a drug delivery vehicle: an alternative theoretical approach based on DFT and MD. Appl Surf Sci, In Press

  50. Shahabi M, Raissi H (2017) Screening of the structural, topological, and electronic properties of the functionalized Graphene nanosheets as potential Tegafur anticancer drug carriers using DFT method, J Biomol Struct Dyn, In Press

  51. Murray JS, Sen K (1996) Molecular electrostatic potentials concepts and applications. Elsevier, Amsterdam

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rabeeh Khorram.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(DOCX 37 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khorram, R., Raissi, H. & Shahabi, M. Analysis of the structures, energetics, and vibrational frequencies for the hydrogen-bonded interaction of nucleic acid bases with Carmustine pharmaceutical agent: a detailed computational approach. Struct Chem 29, 1165–1174 (2018). https://doi.org/10.1007/s11224-018-1102-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-018-1102-8

Keywords

Navigation