Skip to main content
Log in

Ab initio and DFT studies on 1-(thionitrosomethylene) hydrazine: conformers, energies, and intramolecular hydrogen-bond strength

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

In the current study, we present an intramolecular HB, molecular structure, π-electrons delocalization and vibrational frequencies analysis of 25 possible conformers of 1-(thionitrosomethylene) hydrazine by means of DFT (B3LYP), MP2 methods in conjunction with the 6-311++G** and augmented correlation-consistent polarized-valence triple-zeta basis sets and G2MP2 theoretical level. The influence of the solvent on the stability order of conformers and the strength of intramolecular hydrogen-bonding was considered using the Tomasi’s polarized continuum model. Statistical analyses of quantitative definitions of aromaticity, nucleus independent chemical shift, harmonic oscillator model of aromaticity, aromatic fluctuation index, and the π-electron delocalization parameter (Q) as a geometrical indicator of a local aromaticity, evaluated for this conformers. Further verification of the obtained transition state structures were implemented via intrinsic reaction coordinate (IRC) analysis. Calculations of the 1H NMR chemical shift at GIAO/B3LYP/6-311++G** levels of theory are also presented. The calculated highest occupied molecular orbital (MO) and lowest unoccupied MO energies show that charge transfer occur within the molecule. Hydrogen-bond energies for H-bonded conformers were obtained from Espinosa method and the natural bond orbital theory and the atoms in molecules theory were also applied to get a more precise insight into the nature of such H-bond interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Schessl HW (1995) In: Othmer K (ed) Encyclopedia of chemical technology, vol 13. Wiley, New York

    Google Scholar 

  2. Golabi SM, Zare HR (1999) J Electroanal Chem 465:168–176

    Article  CAS  Google Scholar 

  3. Poso A, Wright Av, Gynther J (1995) Mutat Res 332:63–71

    Article  CAS  Google Scholar 

  4. Choudhary G, Hansen H (1998) Chemosphere 37:801–843

    Article  CAS  Google Scholar 

  5. Korfhage KM, Ravichandran K, Baldwin RP (1984) Anal Chem 56:1514–1517

    Article  CAS  Google Scholar 

  6. Nguyen HP, Seto NOL, Cai Y, Leinala EK, Borisova SN, Palcic MM, Evans SV (2003) Biol J Chem 278:49191–49195

    Article  CAS  Google Scholar 

  7. Song Y, Zhang W, Ji H, Zhou Y, Zhu J, Lu J (2001) Zhongguo Yaowu Huaxue Za Zhi 11:311–316

    CAS  Google Scholar 

  8. Hobza P, Havlas Z (2000) Chem Rev 100:4253–4264

    Article  CAS  Google Scholar 

  9. Raissi H, Yoosefian M, Hajizadeh A, Imampour JS, Karimi M, Farzad F (2012) Bull Chem Soc Jpn 85:87–92

    Article  CAS  Google Scholar 

  10. Wysokinski R, Biennko DC, Michalska D, Huyskens TZ (2005) Chem Phys 315:17–26

    Article  CAS  Google Scholar 

  11. Raissi H, Yoosefian M, Zamani S, Farzad F (2012) J Sulfur Chem 33:75–85

    Article  CAS  Google Scholar 

  12. Krygowski TM, Steüpien BT (2005) Chem Rev 105:3482–3512 (and references therein)

    Article  CAS  Google Scholar 

  13. Raissi H, Jalbout AF, Yoosefian M, Fazli M, Nowroozi A, Shahini M, Leon A (2010) Int J Quant Chem 110:821–830

    CAS  Google Scholar 

  14. Lammermann A, Szatmari I, Fulop F, Kleinpeter E (2009) J Phys Chem A 113:6197–6205

    Article  Google Scholar 

  15. Raissi H, Yoosefian M, Mollania F, Farzad F, Nowroozi AR, Loghmaninejad D (2011) Comput Theor Chem 966:299–305

    Article  CAS  Google Scholar 

  16. Raissi H, Yoosefian M, Mollania F (2012) Int J Quant Chem 112:2782–2786

    Article  CAS  Google Scholar 

  17. Raissi H, Yoosefian M, Khoshkhou SJ (2012) Comput Theor Chem 983:1–6

    Article  CAS  Google Scholar 

  18. Koch U, Popelier PLA (1995) J Phys Chem 99:9747–9754

    Article  CAS  Google Scholar 

  19. Gilli G, Bellucci F, Ferretti V, Bertolasi V (1989) J Am Chem Soc 111:1023–1028

    Article  CAS  Google Scholar 

  20. Bertolasi V, Gilli P, Ferretti V, Gilli G (1991) J Am Chem Soc 113:4917–4925

    Article  CAS  Google Scholar 

  21. Gilli P, Bertolasi V, Pretto L, Ferretti V, Gilli G (2004) J Am Chem Soc 126:3845–3855

    Article  CAS  Google Scholar 

  22. Espinosa E, Molins E (2000) J Chem Phys 113:5686–5694

    Article  CAS  Google Scholar 

  23. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery JA, Stratmann JRE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Gonzalez C, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Andres JL, Gonzalez C, Head-Gordon M, Replogle ES, Pople JA (1998) Gaussian 98, revision A.7. Gaussian, Inc, Pittsburgh

    Google Scholar 

  24. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  25. Møller C, Plesset MS (1934) Phys Rev 46:618–622

    Article  Google Scholar 

  26. Kendall RA, Dunning TH, Harrison RJ (1992) J Chem Phys 96:6796–6806

    Article  CAS  Google Scholar 

  27. Bader RFW (1998) J Phys Chem A 102:7314–7323

    Article  CAS  Google Scholar 

  28. Glendening DE, Reed AE, Carpenter JE, Weinhold F (1996) NBO, Version 3.1. Gaussian, Inc., Pittsburgh

  29. Wendt M, Weinhold F (2001) NBOView 1.0. Theoretical Chemistry Institute, University of Wisconsin, Madison

    Google Scholar 

  30. Tomasi J, Cammi R, Mennucci B, Cappelli C, Corni S (2002) Phys Chem Chem Phys 4:5697–5712

    Article  CAS  Google Scholar 

  31. Cyranski MK, Krygowski TM, Katritzky AL, Schleyer PvR (2002) J Org Chem 67:1333–1338

    Article  CAS  Google Scholar 

  32. Mrozek A, Karolak-Wojciechowska J, Amiel P, Barbe J (2000) J Mol Struct 524:159–167

    Article  CAS  Google Scholar 

  33. Poater J, Duran M, Sola M, Silvi B (2005) Chem Rev 105:3911–3947

    Article  CAS  Google Scholar 

  34. Matito E, Durán M, Solà M (2005) J Chem Phys 122:014109–014117

    Article  Google Scholar 

  35. Wolinski K, Hinton JF, Pulay P (1990) J Am Chem Soc 112:8251–8260

    Article  CAS  Google Scholar 

  36. Krygowski TM, Cyranski MK (2001) Chem Rev 101:1385–1419

    Article  CAS  Google Scholar 

  37. Grabowski SJ (2007) J Mol Struct (THEOCHEM) 811:61–67

    Article  CAS  Google Scholar 

  38. Durig JR, Little TS, Gounev TK, Gardner JK, Sullivan JF (1996) J Mol Struct 375:83–94

    Article  CAS  Google Scholar 

  39. Eliel EL, Wilen SH (1994) Stereochemistry of organic compounds. Wiley, New York

    Google Scholar 

  40. Kemp JD, Pitzer KS (1936) J Chem Phys 4:749–753

    Article  CAS  Google Scholar 

  41. Pitzer KS (1952) Discuss Faraday Soc 10:66–93

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Heidar Raissi or Mehdi Yoosefian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raissi, H., Khanmohammadi, A., Yoosefian, M. et al. Ab initio and DFT studies on 1-(thionitrosomethylene) hydrazine: conformers, energies, and intramolecular hydrogen-bond strength. Struct Chem 24, 1121–1133 (2013). https://doi.org/10.1007/s11224-012-0144-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-012-0144-6

Keywords

Navigation